Chapter 3-2: Programs

Soo-lk Chae

High Performance Embedded Computing

| Topics

= Program performance analysis.

High Performance Embedded Computing

Varieties of performance metrics

Worst-case execution time (WCET):
o Factor in meeting deadlines.
o Schedulability

Average-case execution time:
o Load balancing, etc.
o To find hot spot

Best-case execution time (BCET):
o Factor in meeting deadlines.

High Performance Embedded Computing

Performance analysis techniques

Simulation.
o Not exhaustive.
o Cycle-accurate CPU models are often available.

WCET analysis.

o Formal method; may make use of some
simulation technigues.

o Bounds execution time but hides some detail.

High Performance Embedded Computing

WCET analysis approach

Path analysis + path timing .

__._FI(]

Path analysis determines ,‘%f
worst-case execution path. i
Path timing determines the LLP
execution time of a path. S“l”
Loop =
body

The two problems interact
somewnhat.

High Performance Embedded Computing

Performance models

Simple model --- table of instructions and
execution times.

o Ignores instruction interactions, data-dependent
effects.

Timing accident: a reason why an instruction
takes longer than normal to execute.

Timing penalty: amount of execution time
Increase from a timing accident.

High Performance Embedded Computing

SW estimation overview: approaches

Two aspects to be considered

o The structure of the code (program path analysis)
E.g. loops and false paths

o The system on which the software will run (micro-

architecture modeling)

CPU (ISA, interrupts, etc.), HW (cache, etc.), OS,
Compiler

Needs to be done at high/system level

o Low-level
e.g. gate-level, assembly-language level
Easy and accurate, but long design iteration time

o High/system-level
Reduces the exploration time of the design space

High Performance Embedded Computing

System-level software model

Must be fast - whole system simulation
Processor model must be cheap

o “what if” my processor did X

o future processors not yet developed

o evaluation of processor not currently used
Must be convenient to use

o no need to compile with cross-compilers
o debug on my desktop

Must be accurate enough for the purpose

High Performance Embedded Computing

Accuracy vs Performance vs Cost

Accuracy Speed $$H*

Hardware Emulation

Cycle accurate model

Cycle counting ISS

Dynamic estimation

Static spreadsheet

*$$$ = NRE + per model + per design

High Performance Embedded Computing

Program path analysis

Basic blocks

o A basic block is a program segment which is
only entered at the first statement and only left at
the last statement.

o Example: function calls

o The WCET (or BCET) of a basic block is
determined

A program is divided into basic blocks

o Program structure is represented on a directed
program flow graph with basic blocks as nodes.

o Alongest / shortest path analysis on the
program flow identify WCET / BCET

High Performance Embedded Computing

10

Program path analysis

Program path analysis
o Determine extreme case execution paths.

o Avoid exhaustive search of program paths.
for (i=0; i<100; i++) {

|fjg?nd() > 0.9 2100 possible

else <— worst case
k++; paths‘
}

o Eliminate False Paths:

Make use of path information provided by the user.
if (ok)

i = 1*1 + 1;
else

e \ Always
)) executed
it (i) 4______——,,———”’— together!

J++;

else
J =137
High Performance Embedded Computing

11

Program path analysis

Transform the problem into an integer linear
programming (ILP) problem.

o Basic idea: ma_x(ZCixi)
i

Single exec. time of Exec. count of B;
basic block B; (constant) (integer variable)

subject to a set of linear constraints that bound
all feasible values of x;’s.

Assumption for now: simple micro-architecture
model (constant instruction execution time)

High Performance Embedded Computing

12

Program path analysis: structural constraints

Linear constraints constructed automatically from
program’s control flow graph.

Structural Constraints

Example: While loop 0 At each node:
v Exec. count of B; = 2. inputs
“a=p: |x1
. . Bl =P, = 2. outputs
/*p>=0*/ d2 1 1 2
q =0, . — =
while (g<10) B2 while(g<10)]<2 \ 292 +=05+05
g+ N3 X3 =03 =0y
- q- = =dg
r q: d5 B3: g++; [x3
B4:r=q; |x4 ctional Constraints:
ldG rovide loop bounds and
other path information
Source Code Control Flow Graph 0x <x3 <10%

High Performance Embedded Computing
13

Program path analysis: functional constraints

Provide loop bounds (mandatory).
Supply additional path information (optional).

Nested loop:

X, for (i=0; #<10; ++i) Xp =10% > loop bounds
X5 for (J=0; j<i; ++j) OX2SX3 S9X2
X i] += illil;
s ALl BLI10T: X3 = 45X, «<— path info.
If statements:
X1 it (o0k)
X5 I=i*i+l; .
True statement executed at most 50%:
else
X3 1=0; Xy £0.5%;
X, it (1)
Xg j=0; « B, and Bg have same execution counts:
else
. Xy =X
Xg i=i*3; 2775

High Performance Embedded Computing
14

Path timing

= Includes processor modeling:
o Pipeline state.
o Cache state.
= Also includes loop iteration bounding.

o Loops with conditionals, data-dependent bounds
create problems.

High Performance Embedded Computing

Li/Malik ILP results

Program (i i 1 bound Caleulated bound imi
sets Lower Upper Lower Upper _ |Lower | Upper|
check_data 4=2 a5 1,193 a5 1,193 0.00 | 0.00
circle 1 431 15,958 431 15,726 0.00 | 0.01
des 2 73912 672,298 75,033 667,127 | 0.01 0.01
dhry 8=3 314,266 1,326,475 314,266 1,326475| 0.00 | 0.00
djpeg 1 12,703,432 |122,638,368 (12,925,769 [98,696,050 | 0,02 | 0.24
fdet 1 5,587 16,693 5,587 16,693 | 0.00 | 0.00
fft 1 1,589,026| 3.974,624| 1,593,122| 3,974,601 | 0.00 0.00
line 1 380 9,148 380 9,148 | 0,00 | 0.00
matent 1 1,722,105 8,172,149 1,722,105 8,172,149] 0.00 | 0.00
piksrt 1 236 5,862 236 5,862 0,00 | 0.00
sort 1 13,965 50,244,928 13,965 (50,244,928 | 0.00 | 0.00
stats 1 1,007,815 2,951,746| 1,007,815] 2,951,746 | 0.00 | 0.00
whetstone 1 5,634,926| 14,871,610| 5,634,926|14,871,610| 0.00 | 0.00
WCET bound vs. calculated bound
Program Estimated bound Measured bound Pessimism
Lower Upper Lower Upper Lower Upper
check_data 35 1,193 35 430 0.00 1.77
circle 431 15,958 585 14,483 0.26 0.10
des 73,912 672,298 | 111.468| 243,676 0.34 1.76
dhry 314,266 1,326475| 575492| 575.622| 045 1.30
djpeg 12,703,432 (122,838,368 | 14,975,268 | 35,636,948 0.15 245
fdct 5,587 16,693 7.616 9,048 0.27 0.684
f_ft 1,589,026 | 3,974,624 | 1.,719.813 | 2,204,472 0.08 0.80
line 380 49,148 929 4,836 0.59 0.89
""_at‘:“t 1,722,105 8,172,149 | 2,202,276| 2,202,698 0.22 271
piksrt 236 5,862 337 1,705 0.30 2.44
sort 13,965 | 50,244,928 16,492 9,991,172 0.15 4.03
stats 1,007,815 2,951,746 | 1,158,142 | 1,158,469 0.13 1.55
whetstone | 5 634,926 | 14,871,610 | 6,935612| 6935668| 0.19 1.14

WCET bound vs. measured bound

High Performance Embedded Computing

Cache behavior and timing

Cache affects instruction fetch time.
o Time depends on state of the cache.

Li and Malik break the program into units of
cache lines.

o Each basic block constitutes one or more I|-blocks
that correspond to cache lines.

o Each I-block has hit, miss execution times.

o Cache conflict graph models states of the cache
lines.

High Performance Embedded Computing
17

Direct mapped Instruction caches

m the code in basic blocks are divided into a humber of
line-blocks

m the line blocks are assignhed to cache lines
— cache sets (cache lines) represent physical cache memory
|

AR
\\\[\ﬁ%ﬁ Cache Set
TIRT :
// A [I]] 2 -CacheSet _Basic Block
—L__ £33 0 s[(B] [
...... ! 5B b
z h'm Bs| B,
3 B
(ii) Cache table

High Performance Embedded Computing
18

Grouping Instructions: Line-blocks

e Line-block (I-block) = Basic block m Cache line

» All instructions within a I-block have same cache hit/
miss counts.

— |

e Construction of I-blocks: Conflicting I-blocks
|
- Cache line/Basic Bloﬁl\
\\B]\ Cache Line 0 Bll Bl B3 BSII
! L1 o 1 B,,|B; B3| B;,
B =1 2 B [B
/ 2 B,; |by |_2le.1
] 3 3

N (%

\ &\ | Non-conflicting I-blocks
'

High Performance Embedded Computing

Adding cache analysis to the ILP

model

m Now execution times of basic blocks differ if the line-
blocks are in the cache or not

N 1;
hit hit miss miss

Execution time = Z Z (¢, X tC X)

i=1 j=1

i = all basic blocks

= the execution count of Jj = all line blocks 1n block 7
a basic block becomes x" = number of cache hits

¥ = xhiz‘ I xmiss x™* = number of cache misses
! 1.] 1.] ¢""= execution time for cache hit

1=12.. ni ¢"* execution time of cache miss

High Performance Embedded Computing

Cache constraints

= There are three possible types of cache assighnments
that can occur

— Only one line-block assigned to a cache line

+ when a miss occurs, the line-block will be loaded and no more
cache misses will occur miss < l
Xep S

— Two or more nonconflicting line-blocks are assigned to the
same cache line

* when a miss occurs in either block, the line-blocks will be
loaded and no more cache misses will occur

miss miss
- - < 1

'Xl.3 + 12.1 —
— a cache line contains two or more conflicting line-blocks

High Performance Embedded Computing
21

Cache Conlflict Graph

Capture control flow of I-blocks mapping to the same cache line only.

start

end

Control Flow Graph Cache Conflict Graph
(CFG) (CCQG)

High Performance Embedded Computing
22

Cache conflict graphs

® s and e nodes represents the start and the end of the program respectively
® B - nodes represent conflicting line-blocks

m Edges represent
possible program
flow between blocks

— acquired from
program cfg

P (s.00m.m)
p(m.n M)

m p(node1, node2)
IS a counter
associated with
each edge

High Performance Embedded Computing
23

Constraints on cache conflict
graphs

= The counters (p) are bound to the structural and
functional constraints trough the x variables

— the execution count of a line-block must be equal to the
execution count of the basic block

— the control flow to a line-block node must be equal to the
flow from the line-block node

%= X pv,if) = pli.j.uv)

u.y u.v

High Performance Embedded Computing
24

Constraints from CCG

D (s.h.0) p (s.m.i1)
Pm.nm.n)

a2

Flow at node B,;:
Xfe = P(s k1) T Pm.njed) T P(k.Lk.D)
= P(kle) "‘P(k.f,m.n) +P(k.l,k.1)

Cache hit count for /-block B,.;:

P(kLkl) < x;’:}" S P(sgdy T PkLET)

Starting Condition:
P(s, k1) TP(s,mn) T P(se) = 1

High Performance Embedded Computing
25

Implementation - cinderella’

Executable
Functionality file

3 Source
constraints

files

Annotated Estimated bound,
source basic block
files counts & costs

e Target processor: Intel iI960KB
e ~15,000 lines C++ code

e WWW page: http://www.princeton.edu/~yauli/
cinderella

High Performance Embedded Computing
26

Experimental Results

600

g 500 = Measured WCET —
i:_ 00 mEst. WCET with Cache Analysis
é m Est. WCET w/o Cache Analysis
L

=]

[4F]

N

©

£

<]

2

sort
fft

0
I
-
a

check_data
piksrt
matent
matcnt2
stats

fdct
circle

des
whetatone

dhry

High Performance Embedded Computing

27

‘ Path Timing

= Several techniques are used to analyze path
timing at different levels of abstraction.

= Abstract interpretation: to understand the
execution states of the program

= Data flow analysis: a more detailed view of
how the program behaves

= Simulation: the most concrete technique

High Performance Embedded Computing

28

| Healy et al. loop iteration bounding

= Use an iterative algorithm to identify
branches that affect loop termination.

= ldentifies the loop iteration on which those
branches change direction.

= Determine whether these branches are
reached.

= Calculate iteration bounds.

High Performance Embedded Computing

29

| Loop iteration example (Healy et al)

for (i=0, j=1,
i<100: iteration
I++, j+=3) {
if (j>75 and somecond ||
j>300)
break;

} iteration

Lower bound: 26
Upper bound: 101

iteration

Redundant code

High Performance Embedded Computing

30

Thieling et al. abstract interpretation

Executes a program using symbolic values.

o Allows behavior to be generalized.

o Concrete state is full state; abstract state is one-to-many
onto the concrete state.

Cache behavior may be analyzed using abstract

state.

o Must analysis looks at upper bounds of memory block ages.

o May analysis looks at lower bounds.

o Persistence analysis looks at behavior after first access.

High Performance Embedded Computing
31

