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Topicsp

Program performance analysis.

High Performance Embedded Computing
2



Varieties of performance metricsp

Worst-case execution time (WCET):
Factor in meeting deadlines.g

Schedulability 

Average-case execution time:Average-case execution time:
Load balancing, etc.

T fi d h t tTo find hot spot

Best-case execution time (BCET):
Factor in meeting deadlines.
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Performance analysis techniquesy q

Simulation.
Not exhaustive.

Cycle-accurate CPU models are often available.

WCET analysisWCET analysis.
Formal method; may make use of some 
simulation techniquessimulation techniques.

Bounds execution time but hides some detail.
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WCET analysis approachy pp

Path analysis + path timing

Path analysis determines 
worst-case execution path.

Path timing determines the 
execution time of a path.

The two problems interact p
somewhat.
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Performance models

Simple model --- table of instructions and 
execution times.

Ignores instruction interactions, data-dependent 
effects.

Timing accident: a reason why an instruction 
takes longer than normal to executetakes longer than normal to execute.

Timing penalty: amount of execution time 
i f ti i id tincrease from a timing accident.
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SW estimation overview: approachespp

Two aspects to be considered
The structure of the code (program path analysis)

E.g. loops and false paths

Th t hi h th ft ill ( iThe system on which the software will run (micro-
architecture modeling)

CPU (ISA, interrupts, etc.), HW (cache, etc.), OS, ( , p , ), ( , ), ,
Compiler

Needs to be done at high/system level
Low-level

e.g. gate-level, assembly-language level
Easy and accurate, but long design iteration timeEasy and accurate, but long design iteration time

High/system-level
Reduces the exploration time of the design space
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System-level software modely

M t b f t h l t i l tiMust be fast - whole system simulation

Processor model must be cheap

“ h if” did X“what if” my processor did X

future processors not yet developed

evaluation of processor not currently used

Must be convenient to use

no need to compile with cross-compilers

debug on my desktop

Must be accurate enough for the purpose
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Accuracy vs Performance vs Costy

Accuracy Speed $$$*

Hardware Emulation +++ ---+ -

Cycle accurate model --++ --

++ +Cycle counting ISS ++ + -

+ ++ ++

St ti d h t

Dynamic estimation + ++ ++

+++ +++Static spreadsheet - +++ +++

*$$$ = NRE + per model + per design
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$$$ = NRE + per model + per design

Program path analysisg p

Basic blocks

A basic block is a program segment which is 
only entered at the first statement and only left at 
the last statementthe last statement.

Example: function calls

Th WCET ( BCET) f b i bl k iThe WCET (or BCET) of a basic block is 
determined

A program is divided into basic blocksA program is divided into basic blocks

Program structure is represented on a directed 
program flow graph with basic blocks as nodesprogram flow graph with basic blocks as nodes.

A longest / shortest path analysis on the 
program flow identify WCET / BCET
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Program path analysisg p
Program path analysis

Determine extreme case execution pathsDetermine extreme case execution paths.

Avoid exhaustive search of program paths.
for (i=0; i<100; i++) {
if (rand() > 0.5)
j++;

else
k++;

2100 possible 
worst case 
paths!

Eliminate False Paths:

Make use of path information provided by the user

}

Make use of path information provided by the user.
if (ok)
i = i*i + 1;

else
i = 0; Always i = 0;

if (i)
j++;

else

y
executed 
together!

High Performance Embedded Computing
11

j = j*j;

Program path analysisg p

Transform the problem into an integer linear 
programming (ILP) problemprogramming (ILP) problem.

Basic idea: max( cixi
i
∑ )

Exec. count of Bi

(integer variable)
Single exec. time of 

basic block Bi (constant)

i

subject to a set of linear constraints that bound 
all feasible values of x ’sall feasible values of xi s.

Assumption for now: simple micro-architecture 
model (constant instruction execution time)model  (constant instruction execution time)

High Performance Embedded Computing
12



Program path analysis: structural constraints
Linear constraints constructed automatically from 
program’s control flow graph.p g g p

Example: While loop
Structural Constraints
At each node:

Σ
d1

/* p >= 0 */

Exec. count of Bi = Σ inputs

= Σ outputs
1 1 2

B1: q=p;

d2 d4

x1

p
q = p; 
while (q<10)
q++;

1 1 2
x2 =d2 +d4 = d3 +d5
x3 =d3 = d4

B2: while(q<10)

d2

d3

x2

q++;
r = q;

Functional Constraints:

x4 = d5 =d6

B4: r=q;
B3: q++;

d3

d5 x3
x4

provide loop bounds and
other path information

Control Flow Graph 0x1 ≤ x3 ≤10x1Source Code

q

d6
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p 0x1 ≤ x3 ≤10x1

Program path analysis: functional constraints

Provide loop bounds (mandatory).

S l dditi l th i f ti ( ti l)Supply additional path information (optional).

Nested loop: x = 10xx1 for (i=0; i<10; ++i)
x2 for (j=0; j<i; ++j)
x3 A[i] += B[i][j];

loop bounds

path info.

x2 = 10x1

0x2 ≤ x3 ≤ 9x2

x3 = 45x1 p

If statements:
x1 if (ok)
x2 i=i*i+1;

%

3 1

x2 i i i+1;
else

x3 i=0;

True statement executed at most 50%:

x2 ≤ 0.5x1

x4 if (i)
x5 j=0;

else
x j=j*j;

B2 and B5 have same execution counts:

x2 = x5
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Path timingg

Includes processor modeling:
Pipeline state.

Cache state.

Also includes loop iteration boundingAlso includes loop iteration bounding.
Loops with conditionals, data-dependent bounds 
create problemscreate problems.
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Li/Malik ILP results/
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Cache behavior and timingg

Cache affects instruction fetch time.
Time depends on state of the cache.

Li and Malik break the program into units of 
cache linescache lines.

Each basic block constitutes one or more l-blocks 
that correspond to cache linesthat correspond to cache lines.

Each l-block has hit, miss execution times.

C h fli t h d l t t f th hCache conflict graph models states of the cache 
lines.
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Path Timingg

Several techniques are used to analyze path 
timing at different levels of abstraction.

Abstract interpretation: to understand the 
execution states of the programexecution states of the program

Data flow analysis: a more detailed view of 
ho the program beha eshow the program behaves

Simulation: the most concrete technique
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Healy et al. loop iteration boundingy p g

Use an iterative algorithm to identify 
branches that affect loop termination.

Identifies the loop iteration on which those 
branches change directionbranches change direction.

Determine whether these branches are 
reachedreached.

Calculate iteration bounds.
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Loop iteration example (Healy et al)p p ( y )

f ( 0
i=0, j=1 jump

for (i=0, j=1;
i<100;
i++ j+=3) {

j>75, jump if falseiteration 26

i++, j+=3) {
if (j>75 and somecond ||      

j>300)

somecond, jump if false

returnj )
break;

} j>300, jump if trueiteration 101

i++, j+=3

i i 101
Lower bound: 26

i<100, jump if false

jump

iteration 101Upper bound: 101

Redundant code
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Thieling et al. abstract interpretationg p

Executes a program using symbolic values.
Allows behavior to be generalized.

Concrete state is full state; abstract state is one-to-many 
onto the concrete state.

Cache behavior may be analyzed using abstractCache behavior may be analyzed using abstract 
state.

Must analysis looks at upper bounds of memory block agesMust analysis looks at upper bounds of memory block ages.

May analysis looks at lower bounds.

Persistence analysis looks at behavior after first accessPersistence analysis looks at behavior after first access.
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