
Chapter 3-2: Programs

Soo-Ik Chae

High Performance Embedded Computing
1

Topicsp

Program performance analysis.

High Performance Embedded Computing
2

Varieties of performance metricsp

Worst-case execution time (WCET):
Factor in meeting deadlines.g

Schedulability

Average-case execution time:Average-case execution time:
Load balancing, etc.

T fi d h t tTo find hot spot

Best-case execution time (BCET):
Factor in meeting deadlines.

High Performance Embedded Computing
3

Performance analysis techniquesy q

Simulation.
Not exhaustive.

Cycle-accurate CPU models are often available.

WCET analysisWCET analysis.
Formal method; may make use of some
simulation techniquessimulation techniques.

Bounds execution time but hides some detail.

High Performance Embedded Computing
4

WCET analysis approachy pp

Path analysis + path timing

Path analysis determines
worst-case execution path.

Path timing determines the
execution time of a path.

The two problems interact p
somewhat.

High Performance Embedded Computing
5

Performance models

Simple model --- table of instructions and
execution times.

Ignores instruction interactions, data-dependent
effects.

Timing accident: a reason why an instruction
takes longer than normal to executetakes longer than normal to execute.

Timing penalty: amount of execution time
i f ti i id tincrease from a timing accident.

High Performance Embedded Computing
6

SW estimation overview: approachespp

Two aspects to be considered
The structure of the code (program path analysis)

E.g. loops and false paths

Th t hi h th ft ill (iThe system on which the software will run (micro-
architecture modeling)

CPU (ISA, interrupts, etc.), HW (cache, etc.), OS, (, p ,), (,), ,
Compiler

Needs to be done at high/system level
Low-level

e.g. gate-level, assembly-language level
Easy and accurate, but long design iteration timeEasy and accurate, but long design iteration time

High/system-level
Reduces the exploration time of the design space

High Performance Embedded Computing
7

System-level software modely

M t b f t h l t i l tiMust be fast - whole system simulation

Processor model must be cheap

“ h if” did X“what if” my processor did X

future processors not yet developed

evaluation of processor not currently used

Must be convenient to use

no need to compile with cross-compilers

debug on my desktop

Must be accurate enough for the purpose

High Performance Embedded Computing
8

Accuracy vs Performance vs Costy

Accuracy Speed $$$*

Hardware Emulation +++ ---+ -

Cycle accurate model --++ --

++ +Cycle counting ISS ++ + -

+ ++ ++

St ti d h t

Dynamic estimation + ++ ++

+++ +++Static spreadsheet - +++ +++

*$$$ = NRE + per model + per design
High Performance Embedded Computing

9

$$$ = NRE + per model + per design

Program path analysisg p

Basic blocks

A basic block is a program segment which is
only entered at the first statement and only left at
the last statementthe last statement.

Example: function calls

Th WCET (BCET) f b i bl k iThe WCET (or BCET) of a basic block is
determined

A program is divided into basic blocksA program is divided into basic blocks

Program structure is represented on a directed
program flow graph with basic blocks as nodesprogram flow graph with basic blocks as nodes.

A longest / shortest path analysis on the
program flow identify WCET / BCET

High Performance Embedded Computing
10

program flow identify WCET / BCET

Program path analysisg p
Program path analysis

Determine extreme case execution pathsDetermine extreme case execution paths.

Avoid exhaustive search of program paths.
for (i=0; i<100; i++) {
if (rand() > 0.5)
j++;

else
k++;

2100 possible
worst case
paths!

Eliminate False Paths:

Make use of path information provided by the user

}

Make use of path information provided by the user.
if (ok)
i = i*i + 1;

else
i = 0; Always i = 0;

if (i)
j++;

else

y
executed
together!

High Performance Embedded Computing
11

j = j*j;

Program path analysisg p

Transform the problem into an integer linear
programming (ILP) problemprogramming (ILP) problem.

Basic idea: max(cixi
i
∑)

Exec. count of Bi

(integer variable)
Single exec. time of

basic block Bi (constant)

i

subject to a set of linear constraints that bound
all feasible values of x ’sall feasible values of xi s.

Assumption for now: simple micro-architecture
model (constant instruction execution time)model (constant instruction execution time)

High Performance Embedded Computing
12

Program path analysis: structural constraints
Linear constraints constructed automatically from
program’s control flow graph.p g g p

Example: While loop
Structural Constraints
At each node:

Σ
d1

/* p >= 0 */

Exec. count of Bi = Σ inputs

= Σ outputs
1 1 2

B1: q=p;

d2 d4

x1

p
q = p;
while (q<10)
q++;

1 1 2
x2 =d2 +d4 = d3 +d5
x3 =d3 = d4

B2: while(q<10)

d2

d3

x2

q++;
r = q;

Functional Constraints:

x4 = d5 =d6

B4: r=q;
B3: q++;

d3

d5 x3
x4

provide loop bounds and
other path information

Control Flow Graph 0x1 ≤ x3 ≤10x1Source Code

q

d6

High Performance Embedded Computing
13

p 0x1 ≤ x3 ≤10x1

Program path analysis: functional constraints

Provide loop bounds (mandatory).

S l dditi l th i f ti (ti l)Supply additional path information (optional).

Nested loop: x = 10xx1 for (i=0; i<10; ++i)
x2 for (j=0; j<i; ++j)
x3 A[i] += B[i][j];

loop bounds

path info.

x2 = 10x1

0x2 ≤ x3 ≤ 9x2

x3 = 45x1 p

If statements:
x1 if (ok)
x2 i=i*i+1;

%

3 1

x2 i i i+1;
else

x3 i=0;

True statement executed at most 50%:

x2 ≤ 0.5x1

x4 if (i)
x5 j=0;

else
x j=j*j;

B2 and B5 have same execution counts:

x2 = x5

High Performance Embedded Computing
14

x6 j=j*j; 5

Path timingg

Includes processor modeling:
Pipeline state.

Cache state.

Also includes loop iteration boundingAlso includes loop iteration bounding.
Loops with conditionals, data-dependent bounds
create problemscreate problems.

High Performance Embedded Computing
15

Li/Malik ILP results/

High Performance Embedded Computing
16

Cache behavior and timingg

Cache affects instruction fetch time.
Time depends on state of the cache.

Li and Malik break the program into units of
cache linescache lines.

Each basic block constitutes one or more l-blocks
that correspond to cache linesthat correspond to cache lines.

Each l-block has hit, miss execution times.

C h fli t h d l t t f th hCache conflict graph models states of the cache
lines.

High Performance Embedded Computing
17

High Performance Embedded Computing
18

High Performance Embedded Computing
19

High Performance Embedded Computing
20

High Performance Embedded Computing
21

High Performance Embedded Computing
22

High Performance Embedded Computing
23

High Performance Embedded Computing
24

High Performance Embedded Computing
25

High Performance Embedded Computing
26

High Performance Embedded Computing
27

Path Timingg

Several techniques are used to analyze path
timing at different levels of abstraction.

Abstract interpretation: to understand the
execution states of the programexecution states of the program

Data flow analysis: a more detailed view of
ho the program beha eshow the program behaves

Simulation: the most concrete technique

High Performance Embedded Computing
28

Healy et al. loop iteration boundingy p g

Use an iterative algorithm to identify
branches that affect loop termination.

Identifies the loop iteration on which those
branches change directionbranches change direction.

Determine whether these branches are
reachedreached.

Calculate iteration bounds.

High Performance Embedded Computing
29

Loop iteration example (Healy et al)p p (y)

f (0
i=0, j=1 jump

for (i=0, j=1;
i<100;
i++ j+=3) {

j>75, jump if falseiteration 26

i++, j+=3) {
if (j>75 and somecond ||

j>300)

somecond, jump if false

returnj)
break;

} j>300, jump if trueiteration 101

i++, j+=3

i i 101
Lower bound: 26

i<100, jump if false

jump

iteration 101Upper bound: 101

Redundant code

High Performance Embedded Computing
30

j p

Thieling et al. abstract interpretationg p

Executes a program using symbolic values.
Allows behavior to be generalized.

Concrete state is full state; abstract state is one-to-many
onto the concrete state.

Cache behavior may be analyzed using abstractCache behavior may be analyzed using abstract
state.

Must analysis looks at upper bounds of memory block agesMust analysis looks at upper bounds of memory block ages.

May analysis looks at lower bounds.

Persistence analysis looks at behavior after first accessPersistence analysis looks at behavior after first access.

High Performance Embedded Computing
31

