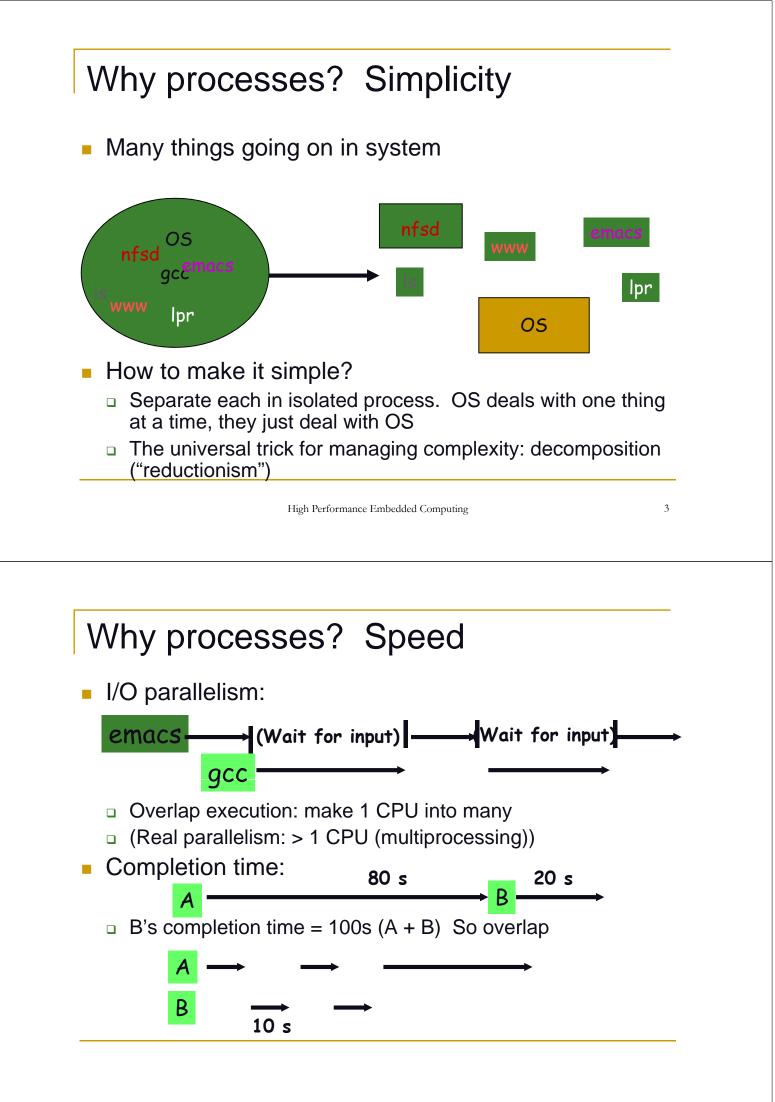
Chapter 4-1: Processes and Operating Systems

Soo-Ik Chae

High Performance Embedded Computing

Topics

- Processes and threads
- Real-time scheduling.



What is a thread?

What's needed to run code on CPU

- "execution stream in an execution context"
- Execution stream: a sequence of instructions
- CPU execution context (1 thread)
 - State: stack, heap, registers
 - Position: program counter register

add r1, r2, r3 sub r2, r3, r10 st r2, 0(r1)

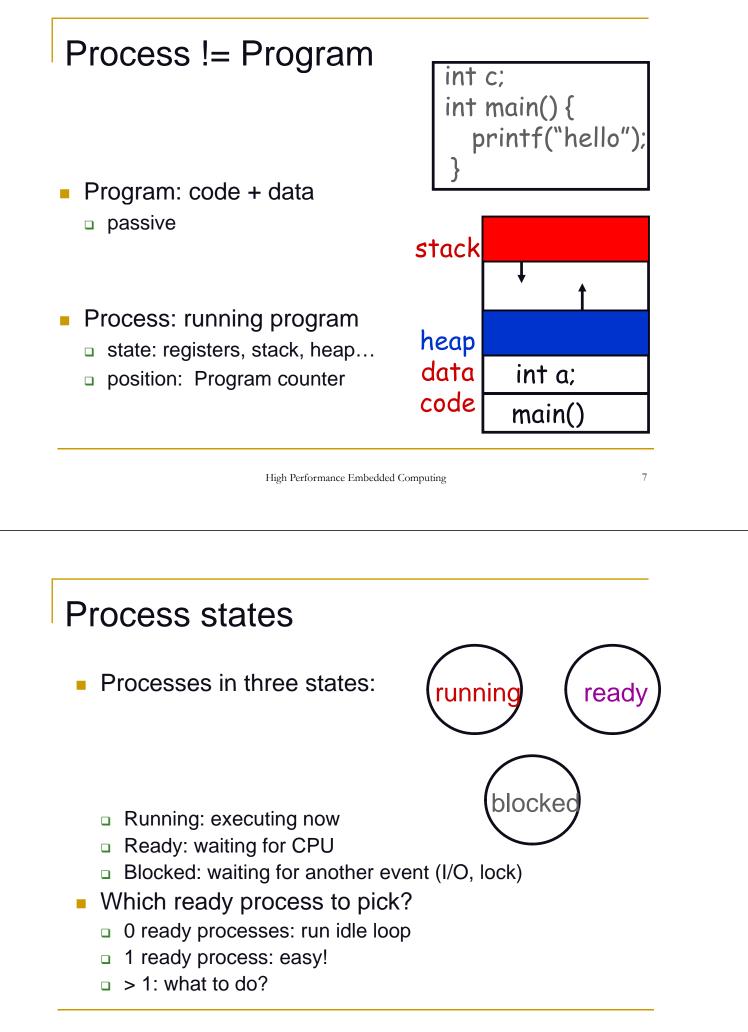
5

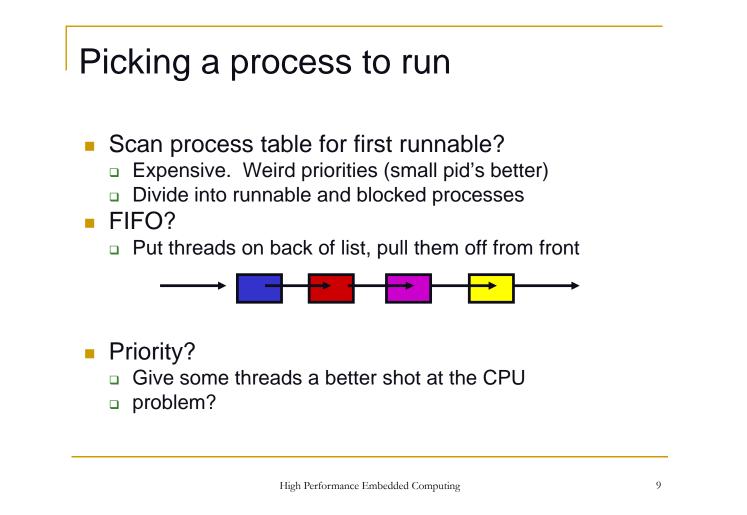
...

High Performance Embedded Computing

What is a process?

- Process: threads + address space
 - or, abstraction representing what you need to run thread on OS (open files, etc)
- Address space: encapsulates protection
 - address state passive, threads active
- Why separate thread, process?
 - Many situations where you want multiple threads per address space (servers, OS, parallel program)





Scheduling policies

- Scheduling issues
 - Fairness: don't starve process
 - Prioritize: more important first
 - Deadlines: must do by time 'x' (car brakes)
 - Optimization: some schedules >> faster than others
- No universal policy:
 - Many variables, can't maximize them all
 - Conflicting goals
 - More important jobs vs starving others
 - I want my job to run first, you want yours.
- Given some policy, how to get control? Switch?

Real-time scheduling terminology

- Process: unique execution of a program
- Context switch: operating system switch from one process to another.
- Time quantum: time between OS interrupts.
- Schedule: sequence of process executions or context switches.
- Thread: process that shares address space with other threads.
- Task: a collection of processes.
- Subtask: one process in a task.

High Performance Embedded Computing

11

Real-time scheduling algorithms

- Static scheduling algorithms determine the schedule off-line before the system begins to operate.
 - Constructive algorithms don't have a complete schedule until the end of the scheduling algorithm.
 - Iterative improvement algorithms build a schedule, then modify it.
- Dynamic scheduling algorithms build the schedule during system operation.
 - Priority schedulers assign priorities to processes.
 - Priorities may be static or dynamic.

Timing requirements

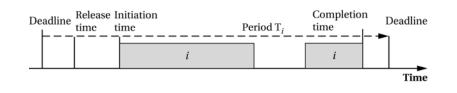
- Real-time systems have timing requirements.
 - □ Hard: missing a deadline causes system failure.
 - Soft: missing a deadline does not cause failure.
- Deadline: time at which computation must finish.
- Release time: first time that computation may start.
- Period (T): interval between deadlines.
- Relative deadline: release time to deadline.

High Performance Embedded Computing

```
13
```

Timing behavior

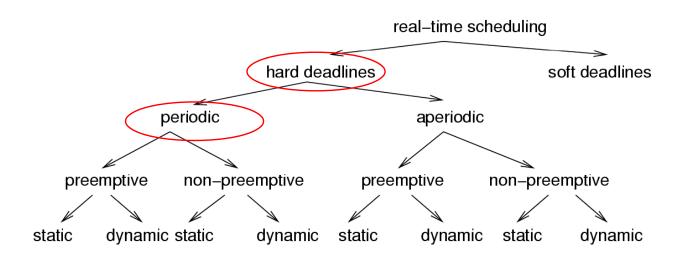
- Initiation time: time when process actually starts executing.
- Completion time: time when process finishes.
- Response time = completion time release time.
- Execution time (C): amount of time required to run the process on the CPU.



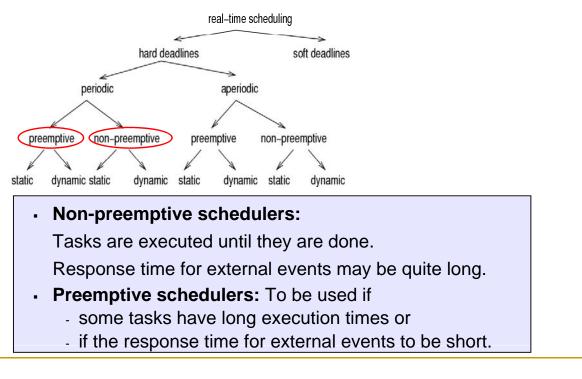
Utilization

- Total execution time C required to execute processes 1..n is the sum of the C_is for the processes.
- Given available time t, utilization U = C/t.
 - Generally expressed as a percentage.
 - CPU can't deliver more than 100% utilization.

Classification of scheduling algorithms



Preemptive/non-preemptive scheduling



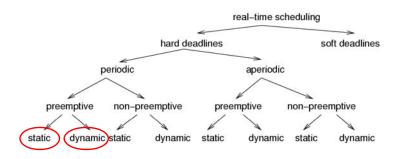
High Performance Embedded Computing

17

Dynamic/online scheduling

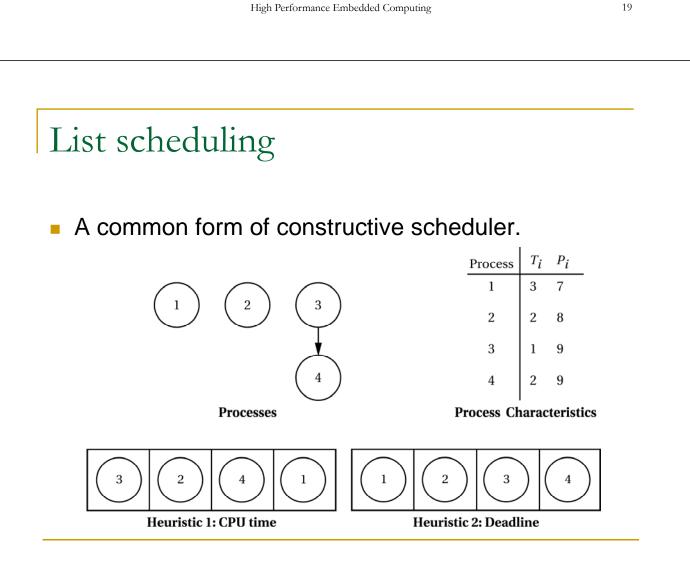
Dynamic/online scheduling:

Processor allocation decisions (scheduling) at run-time; based on the information about the tasks arrived so far.



Static scheduling algorithms

- Often take advantage of data dependencies.
 Resource dependencies come from the implementation.
- As-soon-as-possible (ASAP): schedule each process as soon as data dependencies allow.
- As-late-as-possible (ALAP): schedule each process as late as data dependencies and deadlines allow.



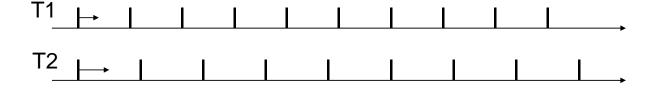
Priority-driven scheduling

- Each process has a priority.
- Processes may be ready or waiting.
- Highest-priority ready process runs in the current quantum.
 - Assume that lower-numbered processes have higher priority
- Priorities may be static or dynamic.

High Performance Embedded Computing

21

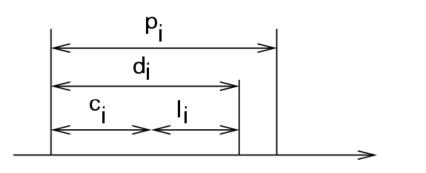
Periodic scheduling



For periodic scheduling, the best that we can do is to design an algorithm which will always find a schedule if one exists.
A scheduler is defined to be **optimal** iff it will find a schedule if one exists.

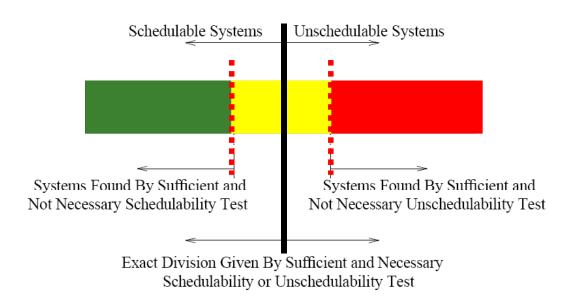
Periodic scheduling

- Let
 - \square p_i be the period of task T_i ,
 - c_i be the execution time of T_i ,
 - d_i be the deadline interval, that is, the time between a job of T_i becoming available and the time after which the same job T_i has to finish execution.
 - I_i be the **laxity** or **slack**, defined as $I_i = d_i c_i$



High Performance Embedded Computing

Schedulabilty test



Rate-monotonic scheduling (RMS)

- Liu and Layland: proved properties of static priority scheduling.
 - No data dependencies between processes.
 - Process periods may have arbitrary relationships.
 - Ideal (zero) context switching time.
 - Release time of process is start of period.
 - Process execution time is fixed.

High Performance Embedded Computing

Independent tasks:

Rate monotonic (RM) scheduling

 Most well-known technique for scheduling independent periodic tasks [Liu, 1973].

Assumptions:

- All tasks that have hard deadlines are periodic.
- All tasks are independent.
- $d_i = p_i$, for all tasks.
- c_i is constant and is known for all tasks.
- The time required for context switching is negligible.
- For a single processor and for *n* tasks, the following equation holds for the accumulated utilization μ :

$$\mu = \sum_{i=1}^{n} \frac{c_i}{p_i} \le n(2^{1/n} - 1) \le \ln 2 \ge 0.6931$$

Rate monotonic (RM) scheduling - The policy -

RM policy: The priority of a task is a monotonically decreasing function of its period. At any time, a highest priority task among all those that are ready for execution is allocated.

Theorem: If all RM assumptions are met, schedulability is guaranteed.

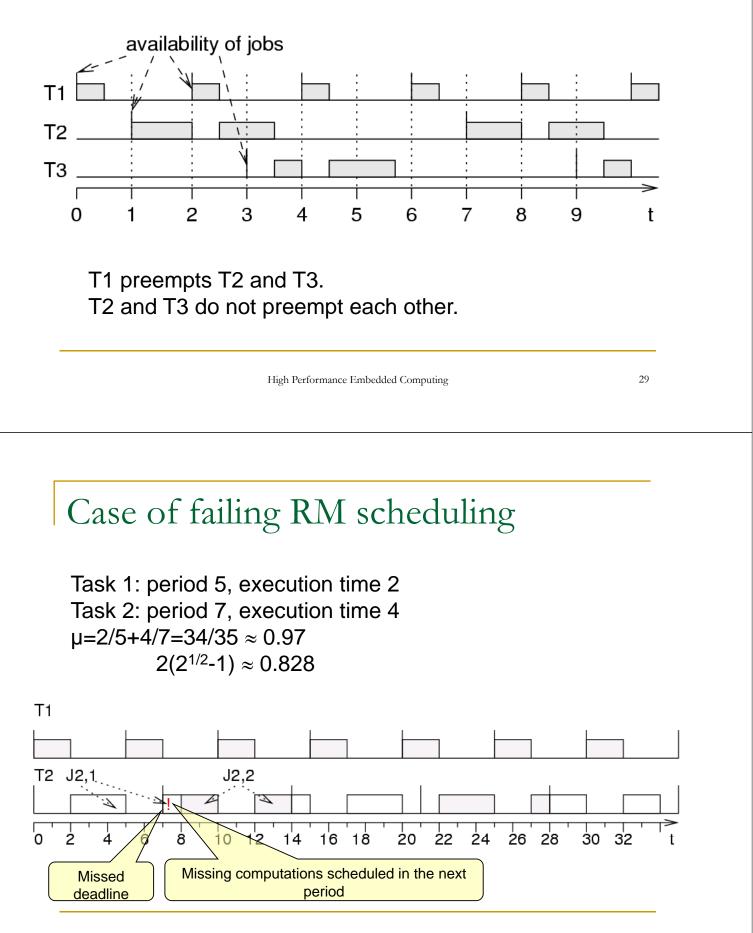
High Performance Embedded Computing

27

Schedulability test for RM

- Approximate: n tasks are guaranteed schedulable if $U \leq n(2^{1/n} 1)$.
- Precise: n tasks are guaranteed schedulable iff, for all 1 ≤ i ≤ n, we have R_i ≤ T_i, where R_i is the worstcase response time.

Example of RM-generated schedule



Proof of RM optimality

 Definition: A critical instant of a task is the time at which the release of a task will produce the largest response time (worst-case response time).

Lemma: For any task, the **critical instant** occurs if that task is simultaneously released with all higher priority tasks.

Proof: Let $T = \{T_1, ..., T_n\}$: periodic tasks with $\forall i: p_i \leq p_{i+1}$.

High Performance Embedded Computing

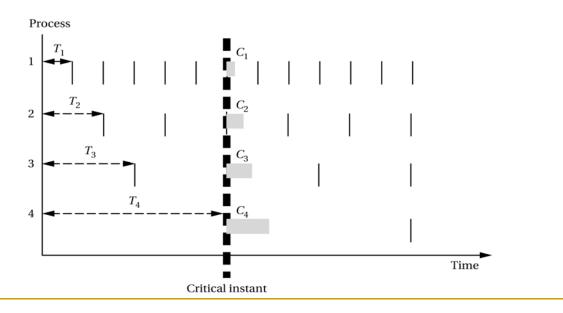
31

Critical instant

- The worst case combination of process executions that will cause the longest delay for the initiation of a process
- The critical instant of process i occurs when all higher priority processes are ready to execute
 - That is, when the deadlines of higher priority processes have just expired and new period have begun.

Critical instant

Critical instant for process 4 occurs when processes 1,2, and 3 become ready.; the first three processes must run to completion before process 4 can start executing.

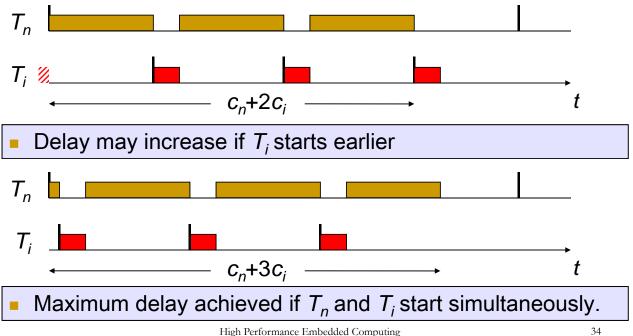


High Performance Embedded Computing

33

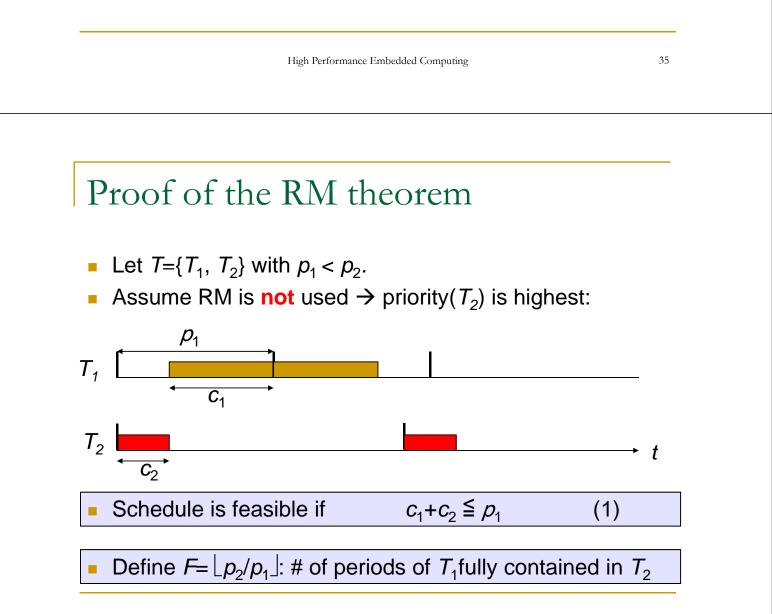
Critical instances (1)

Response time of T_{n} is delayed by tasks T_{i} of higher priority:



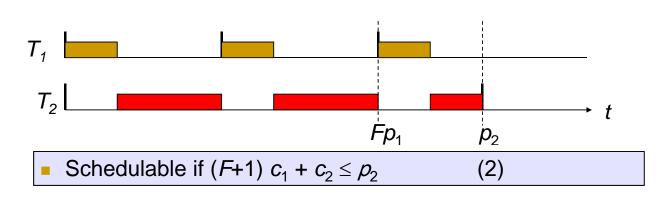
Critical instances (2)

- Repeating the argument for all $i = 1, \dots n-1$:
- The worst case response time of a task occurs when it is released simultaneously with all higher-priority tasks.
 q.e.d.
- Schedulability is checked at the critical instants.
- If all tasks of a task set are schedulable at their critical instants, they are schedulable at all release times.



Proof of the RM theorem (2)

- Assume RM is used \rightarrow priority(T_1) is highest:
- Case 1: c₁ ≤ p₂ − Fp₁
 (c₁ small enough to be finished before 2nd instance of T₂)

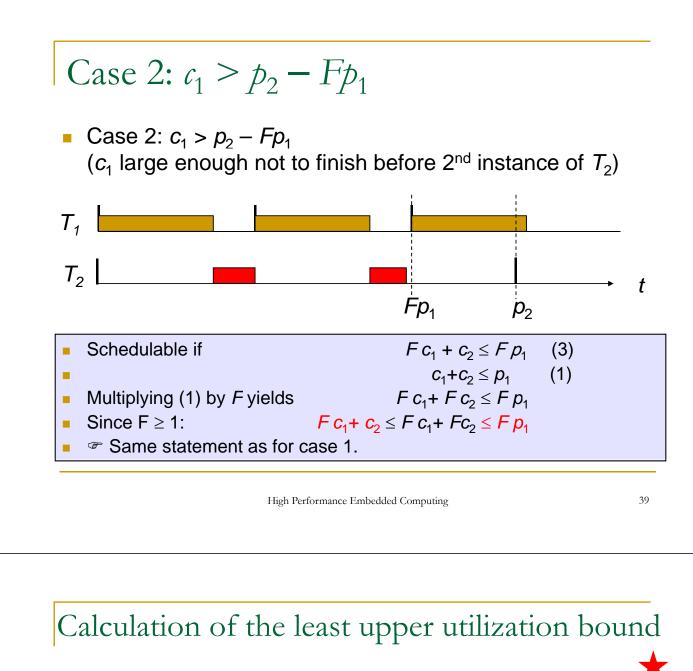


High Performance Embedded Computing

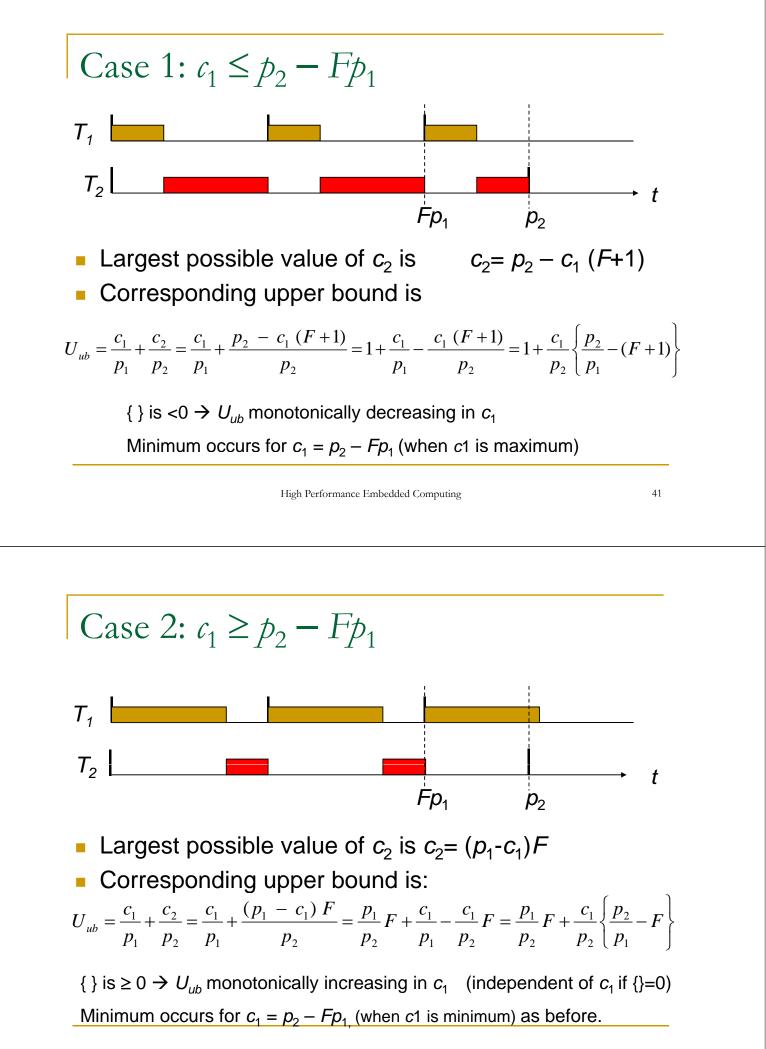
37

Proof of the RM theorem (3)

_	
	Not RM: schedule is feasible if $c_1 + c_2 \le p_1$ (1)
	RM: schedulable if $(F+1) c_1 + c_2 \le p_2$ (2)
	From (1): $Fc_1 + Fc_2 \leq Fp_1$
	Since $F \ge 1$: $Fc_1 + c_2 \le Fc_1 + Fc_2 \le Fp_1$
	Adding c_1 : $(F+1)c_1+c_2 \le Fp_1+c_1$
	Since $c_1 \le p_2 - Fp_1$ (case 1): $(F+1)c_1 + c_2 \le Fp_1 + c_1 \le p_2$
	Hence: if (1) holds, (2) holds as well
	For case 1 : Given tasks T_1 and T_2 with $p_1 < p_2$, then if
	the schedule is feasible by an arbitrary (but fixed) priority
	assignment, it is also feasible by RM.



- Let $T = \{T_1, T_2\}$ with $p_1 < p_2$.
- Proof procedure: compute least upper bound U_{lup} as follows
 - Assign priorities according to RM
 - Compute upper bound U_{up} by setting computation times to fully utilize processor
 - Minimize upper bound with respect to other task parameters
- As before: $F = \lfloor p_2 / p_1 \rfloor$
- c_2 adjusted to fully utilize processor.



Utilization as a function of
$$G = p_2/p_1 - F$$

For c1 = $p2 - Fp1$:
 $U_{ub} = \frac{p_1}{p_2}F + \frac{c_1}{p_2}\left(\frac{p_2}{p_1} - F\right) = \frac{p_1}{p_2}F + \frac{p_2 - p_1F}{p_2}\left(\frac{p_2}{p_1} - F\right) = \frac{p_1}{p_2}\left\{F + \left(\frac{p_2}{p_1} - F\right)\left(\frac{p_2}{p_1} - F\right)\right\}$
Let $G = \frac{p_2}{p_1} - F$; \Rightarrow F: integer part, G: fractional part
 $U_{ub} = \frac{p_1}{p_2}(F + G^2) = \frac{(F + G^2)}{p_2/p_1} = \frac{(F + G^2)}{(p_2/p_1 - F) + F} = \frac{(F + G^2)}{F + G} = \frac{(F + G) - (G - G^2)}{F + G}$
 $= 1 - \frac{G(1 - G)}{F + G}$
Since $0 \le G < 1$: $G(1 - G) \ge 0 \Rightarrow U_{ub}$ increasing in $F \Rightarrow$
Minimum of U_{ub} for min(F): $F = 1 \Rightarrow U_{ub} = \frac{1 + G^2}{1 + G}$

43

Proving the RM theorem for n=2

 $U_{ub} = \frac{1+G^2}{1+G}$ Using derivative to find minimum of U_{ub} : $\frac{dU_{ub}}{dG} = \frac{2G(1+G) - (1+G^2)}{(1+G)^2} = \frac{G^2 + 2G - 1}{(1+G)^2} = 0$ $G_1 = -1 - \sqrt{2};$ $G_2 = -1 + \sqrt{2};$ Considering only G_2 , since $0 \le G < 1$: $U_{lub} = \frac{1 + (\sqrt{2} - 1)^2}{1 + (\sqrt{2} - 1)} = \frac{4 - 2\sqrt{2}}{\sqrt{2}} = 2(\sqrt{2} - 1) = 2(2^{\frac{1}{2}} - 1) \cong 0.83$

This proves the RM theorem for the special case of n=2

Properties of RM scheduling

- From the proof, it is obvious that no idle capacity is needed if p₂=F p₁. In general: not required if the period of all tasks is a multiple of the period of the highest priority task, that is, schedulability is then also guaranteed if µ ≤ 1.
- RM scheduling is based on static priorities. This allows RM scheduling to be used in standard OS, such as Windows NT.
- □ A huge number of variations of RM scheduling exists.
- □ In the context of RM scheduling, many formal proofs exist.

High Performance Embedded Computing