
Chapter 4-1: Processes and
O i SOperating Systems

Soo Ik ChaeSoo-Ik Chae

High Performance Embedded Computing 1

Topicsp

Processes and threads

Real-time scheduling.g

High Performance Embedded Computing 2

Why processes? Simplicity

Many things going on in system

y p p y

y g g g y

gccemacsnfsd
emacsnfsd

lls

wwwOS

g

lpr
lswww

lprls

OS

How to make it simple?
Separate each in isolated process. OS deals with one thingSeparate each in isolated process. OS deals with one thing
at a time, they just deal with OS
The universal trick for managing complexity: decomposition
(“reductionism”)

High Performance Embedded Computing 3

(reductionism)

Why processes? Speed

I/O parallelism:

y

emacs (Wait for input) (Wait for input)

gcc
Overlap execution: make 1 CPU into many
(Real parallelism: > 1 CPU (multiprocessing))

gcc

(Real parallelism: > 1 CPU (multiprocessing))

Completion time:
A B

20 s80 s

B’s completion time = 100s (A + B) So overlap
A B

AA

B
10 s10 s

What is a thread?

What’s needed to run code on CPU
“execution stream in an execution context”

Execution stream: a sequence of instructionsExecution stream: a sequence of instructions

CPU execution context (1 thread)
State stack heap registersState: stack, heap, registers

Position: program counter register add r1, r2, r3
sub r2 r3 r10sub r2, r3, r10
st r2, 0(r1)

…

High Performance Embedded Computing 5

What is a process?What is a process?

Process: threads + address spacep
or, abstraction representing what you need to run thread on
OS (open files, etc)

Add l iAddress space: encapsulates protection
address state passive, threads active

Wh t th d ?Why separate thread, process?
Many situations where you want multiple threads per address
space (servers, OS, parallel program)space (servers, OS, parallel program)

High Performance Embedded Computing 6

Process != Program
int c;
int main() {

Process ! Program

printf(“hello”);
}

Program: code + dataProgram: code + data
passive

stack

P i

stack

Process: running program
state: registers, stack, heap…

iti P t

heap
data int a;position: Program counter data
code

int a;
main()

High Performance Embedded Computing 7

Process statesProcess states

Processes in three states: i dProcesses in three states: running ready

blocked
Running: executing now
Ready: waiting for CPU
Blocked: waiting for another event (I/O lock)

blocked

Blocked: waiting for another event (I/O, lock)

Which ready process to pick?
0 ready processes: run idle loop0 ready processes: run idle loop
1 ready process: easy!
> 1: what to do?

High Performance Embedded Computing 8

Picking a process to runPicking a process to run

Scan process table for first runnable?
Expensive. Weird priorities (small pid’s better)
Divide into runnable and blocked processesDivide into runnable and blocked processes

FIFO?
Put threads on back of list, pull them off from frontp

Priority?
Give some threads a better shot at the CPUGive some threads a better shot at the CPU
problem?

High Performance Embedded Computing 9

Scheduling policiesScheduling policies

Scheduling issues
Fairness: don’t starve process
P i iti i t t fi tPrioritize: more important first
Deadlines: must do by time ‘x’ (car brakes)
Optimization: some schedules >> faster than othersOptimization: some schedules >> faster than others

No universal policy:
Many variables, can’t maximize them allMany variables, can t maximize them all
Conflicting goals

More important jobs vs starving others
I want my job to run first, you want yours.

Given some policy, how to get control? Switch?

High Performance Embedded Computing 10

Real-time scheduling terminologyg gy

P i ti fProcess: unique execution of a program
Context switch: operating system switch from one
process to anotherprocess to another.
Time quantum: time between OS interrupts.
Schedule: sequence of process executions orSchedule: sequence of process executions or
context switches.
Thread: process that shares address space withThread: process that shares address space with
other threads.
Task: a collection of processes.Task: a collection of processes.
Subtask: one process in a task.

High Performance Embedded Computing 11

Real-time scheduling algorithmsg g

Static scheduling algorithms determine the schedule
off-line before the system begins to operate.

Constructive algorithms don’t have a complete schedule
until the end of the scheduling algorithm.

Iterative improvement algorithms build a schedule thenIterative improvement algorithms build a schedule, then
modify it.

Dynamic scheduling algorithms build the scheduleDynamic scheduling algorithms build the schedule
during system operation.

Priority schedulers assign priorities to processes.y g p p

Priorities may be static or dynamic.

High Performance Embedded Computing 12

Timing requirementsg q

Real-time systems have timing requirements.
H d i i d dli t f ilHard: missing a deadline causes system failure.

Soft: missing a deadline does not cause failure.

D dli ti t hi h t ti t fi i hDeadline: time at which computation must finish.

Release time: first time that computation may start.

Period (T): interval between deadlines.

Relative deadline: release time to deadline.

High Performance Embedded Computing 13

Timing behaviorg

Initiation time: time when process actually starts
executing.

Completion time: time when process finishes.

Response time = completion time – release time.p p

Execution time (C): amount of time required to run
the process on the CPU.p

High Performance Embedded Computing 14

Utilization

Total execution time C required to execute
processes 1 n is the sum of the C s for theprocesses 1..n is the sum of the Cis for the
processes.
Given available time t, utilization U = C/t.Given available time t, utilization U C/t.

Generally expressed as a percentage.
CPU can’t deliver more than 100% utilization.

High Performance Embedded Computing 15

Classification of scheduling algorithmsg g

High Performance Embedded Computing 16

Preemptive/non-preemptive schedulingp / p p g

Non-preemptive schedulers:p p

Tasks are executed until they are done.

Response time for external events may be quite long.

Preemptive schedulers: To be used if
- some tasks have long execution times or
- if the response time for external events to be short

High Performance Embedded Computing 17

if the response time for external events to be short.

Dynamic/online schedulingy / g

D i / li h d liDynamic/online scheduling:
Processor allocation decisions (scheduling) at
run-time; based on the information about the
tasks arrived so far.

High Performance Embedded Computing 18

Static scheduling algorithmsg g

Often take advantage of data dependencies.
Resource dependencies come from the implementation.

As-soon-as-possible (ASAP): schedule each
process as soon as data dependencies allow.

As-late-as-possible (ALAP): schedule each process
as late as data dependencies and deadlines allow.

High Performance Embedded Computing 19

List schedulingg

A common form of constructive scheduler.

High Performance Embedded Computing 20

Priority-driven schedulingy g

Each process has a priority.

Processes may be ready or waiting.

Highest-priority ready process runs in the current
quantum.

Ass me that lo er n mbered processes ha e higher prioritAssume that lower-numbered processes have higher priority

Priorities may be static or dynamic.

High Performance Embedded Computing 21

Periodic schedulingg

T1

T2

For periodic scheduling the best that we can do is to designFor periodic scheduling, the best that we can do is to design

an algorithm which will always find a schedule if one exists.

A h d l i d fi d t b ti l iff it ill fi dA scheduler is defined to be optimal iff it will find a

schedule if one exists.

High Performance Embedded Computing 22
05/06/27

Periodic schedulingg
Let

b th i d f t k Tpi be the period of task Ti,
ci be the execution time of Ti,
di be the deadline interval, that is, the time between a job of Ti

becoming available and the time after which the same job Ti has to
finish execution.
li be the laxity or slack, defined as li = di - cii y , i i i

High Performance Embedded Computing 23

Schedulabilty test

High Performance Embedded Computing 24

Rate-monotonic scheduling (RMS)g ()

Liu and Layland: proved properties of static
priority scheduling.

No data dependencies between processes.

Process periods may have arbitrary relationships.

Ideal (zero) context switching time.Ideal (zero) context switching time.

Release time of process is start of period.

Process execution time is fixedProcess execution time is fixed.

High Performance Embedded Computing 25

Independent tasks:p
Rate monotonic (RM) scheduling

Most well-known technique for scheduling independent

periodic tasks [Liu, 1973].

Assumptions:Assumptions:
All tasks that have hard deadlines are periodic.

All tasks are independent.

di=pi, for all tasks.

ci is constant and is known for all tasks.

The time required for context switching is negligibleThe time required for context switching is negligible.

For a single processor and for n tasks, the following equation holds
for the accumulated utilization µ:

6931.02ln)12(/1

1

≅≤−≤= ∑
=

n
n

i i

i n
p

cμ

High Performance Embedded Computing 26

Rate monotonic (RM) scheduling() g
- The policy -

RM policy: The priority of a task is a monotonically decreasing function of
its period At any time a highest priority task among all those that areits period. At any time, a highest priority task among all those that are
ready for execution is allocated.

Theorem: If all RM assumptions are met, schedulability is guaranteed.

High Performance Embedded Computing 27

Schedulability test for RMy

High Performance Embedded Computing 28

Example of RM-generated schedulep g

T1 preempts T2 and T3T1 preempts T2 and T3.
T2 and T3 do not preempt each other.

High Performance Embedded Computing 29

Case of failing RM schedulingg g

Task 1: period 5 execution time 2Task 1: period 5, execution time 2
Task 2: period 7, execution time 4
µ=2/5+4/7=34/35 ≈ 0.97

2(21/2-1) ≈ 0.828

!

Missed
deadline

Missing computations scheduled in the next
period

High Performance Embedded Computing 30

dead e p

Proof of RM optimalityp y

D fi iti A iti l i t t f t k i th ti t hi hDefinition: A critical instant of a task is the time at which
the release of a task will produce the largest response
time (worst-case response time)time (worst case response time).

L F t k th iti l i t t if th tLemma: For any task, the critical instant occurs if that
task is simultaneously released with all higher priority tasks.

Proof: Let T={T1, …,Tn}: periodic tasks with ∀i: pi ≦ pi +1.

High Performance Embedded Computing 31

Critical instant

The worst case combination of process executions
that ill ca se the longest dela for the initiation of athat will cause the longest delay for the initiation of a
process

Th iti l i t t f i h llThe critical instant of process i occurs when all
higher priority processes are ready to execute

That is when the deadlines of higher priority processesThat is , when the deadlines of higher priority processes
have just expired and new period have begun.

High Performance Embedded Computing 32

Critical instant
Critical instant for process 4 occurs when processes 1,2, and 3
become ready.; the first three processes must run to completion y p p
before process 4 can start executing.

High Performance Embedded Computing 33

Critical instances (1)()

Response time of Tn is delayed by tasks Ti of higher priority:

Tn

c +2c
Ti

tcn+2ci t

Delay may increase if Ti starts earlier

Tn

cn+3ci

Ti

t

High Performance Embedded Computing 34

Maximum delay achieved if Tn and Ti start simultaneously.

Critical instances (2)()

R ti th t f ll i 1 1Repeating the argument for all i = 1, … n-1:

The worst case response time of a task occurs when it is
released simultaneously with all higher priority tasksreleased simultaneously with all higher-priority tasks.
q.e.d.

Schedulability is checked at the critical instants.

If all tasks of a task set are schedulable at their criticalIf all tasks of a task set are schedulable at their critical
instants, they are schedulable at all release times.

High Performance Embedded Computing 35

Proof of the RM theorem

Let T={T1 T2} with p1 < p2Let T {T1, T2} with p1 < p2.

Assume RM is not used priority(T2) is highest:

p
T1

c

p1

T2 t

c1

t

Schedule is feasible if c1+c2 ≦ p1 (1)

c2

1 2 p1 ()

Define F= ⎣p2/p1⎦: # of periods of T1fully contained in T2

High Performance Embedded Computing 36

Proof of the RM theorem (2)()

Assume RM is used priority(T1) is highest:

Case 1: c1 ≤ p2 – Fp1

(c1 small enough to be finished before 2nd instance of T2)

T1

T2 t
p2Fp1

Schedulable if (F+1) c1 + c2 ≤ p2 (2)

High Performance Embedded Computing 37

Proof of the RM theorem (3)()

Not RM: schedule is feasible if c +c ≤ p (1)Not RM: schedule is feasible if c1+c2 ≤ p1 (1)

RM: schedulable if (F+1) c1 + c2 ≤ p2 (2)
From (1): Fc +Fc ≤ FpFrom (1): Fc1+Fc2 ≤ Fp1

Since F ≥ 1: Fc1+c2 ≤ Fc1+Fc2 ≤ Fp1

Adding c : (F+1)c +c ≤ Fp +cAdding c1: (F+1)c1+c2 ≤ Fp1 +c1

Since c1 ≤ p2 – Fp1 (case 1): (F+1)c1+c2 ≤ Fp1 +c1 ≤ p2

H if (1) h ld (2) h ld llHence: if (1) holds, (2) holds as well

For case 1: Given tasks T1 and T2 with p1 < p2, then if
the schedule is feasible by an arbitrary (but fixed) prioritythe schedule is feasible by an arbitrary (but fixed) priority
assignment, it is also feasible by RM.

High Performance Embedded Computing 38

Case 2: c1 > p2 – Fp11 p2 p1

Case 2: c1 > p2 – Fp1

(c1 large enough not to finish before 2nd instance of T2)

T1

TT2 t
p2Fp1

Schedulable if F c1 + c2 ≤ F p1 (3)
c1+c2 ≤ p1 (1)

Multiplying (1) by F yields F c + F c ≤ F pMultiplying (1) by F yields F c1+ F c2 ≤ F p1

Since F ≥ 1: F c1+ c2 ≤ F c1+ Fc2 ≤ F p1

Same statement as for case 1.

High Performance Embedded Computing 39

Calculation of the least upper utilization bound

Let T={T1, T2} with p1 < p2.

Proof procedure: compute least upper bound Ul as followsProof procedure: compute least upper bound Ulup as follows

Assign priorities according to RM

Compute upper bound U by setting computation times toCompute upper bound Uup by setting computation times to
fully utilize processor

Minimize upper bound with respect to other taskMinimize upper bound with respect to other task
parameters

As before: F= ⎣p2/p1⎦p2 p1

c2 adjusted to fully utilize processor.

High Performance Embedded Computing 40

Case 1: c1 ≤ p2 – Fp11 p2 p1

T11

T2 t

Largest possible value of c2 is c2= p2 – c1 (F+1)

p2Fp1

Largest possible value of c2 is c2 p2 c1 (F 1)

Corresponding upper bound is

⎫⎧

⎭
⎬
⎫

+−
⎩
⎨
⎧

+=
+

−+=
+−

+=+=)1(1
)1(

 1
)1(

1

2

2

1

2

1

1

1

2

12

1

1

2

2

1

1 F
p

p

p

c

p

Fc

p

c

p

F cp

p

c

p

c

p

c
Uub

{ } is <0 Uub monotonically decreasing in c1

Minimum occurs for c1 = p2 – Fp1 (when c1 is maximum)

High Performance Embedded Computing 41

1 p2 p1 ()

Case 2: c1 ≥ p2 – Fp11 p2 p1

T1

TT2 t
p2Fp1

Largest possible value of c2 is c2= (p1-c1)F

Corresponding upper bound is:p g pp

⎭
⎬
⎫

−
⎩
⎨
⎧

+=−+=
−

+=+= F
p

p

p

 c
F

p

p
F

p

 c

p

c
F

p

p

p

 F c p

p

c

p

c

p

c
Uub

1

2

2

1

2

1

2

1

1

1

2

1

2

11

1

1

2

2

1

1
)(

{ } is ≥ 0 Uub monotonically increasing in c1 (independent of c1 if {}=0)

Minimum occurs for c = p Fp (h 1 i i i) as before

High Performance Embedded Computing 42

Minimum occurs for c1 = p2 – Fp1, (when c1 is minimum) as before.

Utilization as a function of G=p2/p1-Fp2/p1
For c1 = p2 – Fp1 :

() ⎪⎧ ⎫⎞⎛⎞⎛⎞⎛⎞⎛ ()
⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= F

p

p
F

p

p
F

p

p
F

p

p

p

Fpp
F

p

p
F

p

p

p

c
F

p

p
Uub

1

2

1

2

2

1

1

2

2

12

2

1

1

2

2

1

2

1

p
⇒−= ; Let

1

2 F
p

p
G

() () () () () GGGFGFGFGF
GF

p
U

−−+
=

+
=

+
=

+
=+=

)(2222
21

F: integer part, G: fractional part

() () ()
()

()

()
GF

GG

GFGFFFpppp
GF

p
Uub

−
−=

+
=

+
=

+−
==+=

1
1

// 12122

GF +

Since 0 ≤G< 1: G(1-G) ≥ 0 Uub increasing in F
Mi i f U f i (F) F 1 G1 2Minimum of Uub for min(F): F=1

G

G
Uub +

+
=

1

1 2

High Performance Embedded Computing 43

Proving the RM theorem for n=2g

1 2+
=ub

G
U

: of minimum find to derivative Using
1

22

+

ub

ub

U
G

U

0
)1(

12

)1(

)1()1(2
2

2

2

2

=
+

−+
=

+
+−+

=ub

G

GG

G

GGG

dG

dU

 :10 since ,only gConsiderin

;21 ;21

2

21

<≤

+−=−−=

GG

GG

83.0)12(2)12(2
2

224

)12(1

)12(1 2

12

≅−=−=
−

=
−+
−+

=lubU

This proves the RM theorem for the special case of n=2

High Performance Embedded Computing 44

Properties of RM schedulingp g

From the proof it is obvious that no idle capacity isFrom the proof, it is obvious that no idle capacity is
needed if p2=F p1. In general: not required if the period of
all tasks is a multiple of the period of the highest priorityall tasks is a multiple of the period of the highest priority
task, that is, schedulability is then also guaranteed if µ ≤ 1.

RM scheduling is based on static priorities This allowsRM scheduling is based on static priorities. This allows
RM scheduling to be used in standard OS, such as
Windows NT.

A huge number of variations of RM scheduling exists.

I th t t f RM h d li f l f i tIn the context of RM scheduling, many formal proofs exist.

High Performance Embedded Computing 45

