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Multiprocessor softwarep

Performance analysis of multiprocessor software

Middleware and software services

Design verification of multiprocessor software

Multiprocessor: true concurrency
Single processor: virtual concurrency

H d l d d bHard to analyze and debug
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Topicsp

Performance analysis of multiprocessor 
software.

Models.

Analysis.Analysis.

Simulation.
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What is different about embedded 
multiprocessor software?

How does it differ from general-purpose g p p
multiprocessor software?

How does it differ from a uniprocessor?How does it differ from a uniprocessor?
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Heterogeneityg y

Hardware platforms are heterogeneous
Heterogeneity presents several types of problems

Getting SW form several types of processors to work 
together can present challenges.together can present challenges.

endianness
Development environments for heterogeneous 
multiprocessors are often loosely coupledmultiprocessors are often loosely coupled.

Programmers may have a hard time learning all the tools for 
all the component processors
It may be hard to debug problems that span multiple CPUIt may be hard to debug problems that span multiple CPU 
types.

Different processors may offer different types of resources 
and interfaces to those resourcesand interfaces to those resources.

Not only does this complicate programming but it also makes 
it harder to decide certain things at runtime.
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Delay variationsy

D l i ti h d t di t i ltiDelay variations are harder to predict in multiprocessors:
Subtle timing bugs are more likely to be exposed.
Makes it harder to efficiently use system resources.Makes it harder to efficiently use system resources.
Long memory access times complicate algorithm design and 
programming.

Sched ling a m ltiprocessor is hard information abo tScheduling a multiprocessor is hard---information about 
the state of the processors costs time, energy.
Optimal scheduling algorithm do not exist for the mostOptimal scheduling algorithm do not exist for the most 
realistic multiprocessor configurations.

Heuristics must be used.
Due to communication delay, state information of other 
processors takes too long to get. So scheduling decision must be 
made with full information about other processor states.
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Resource allocation

Resources must be allocated dynamically to ensure that 
they are used efficiently.

J t k i hi h il bl iJust knowing which resource are available in a 
multiprocessor is hard enough.

Determining on the fly which resources are available in aDetermining on-the-fly which resources are available in a 
multiprocessor is hard too.

Figuring out how to use those resources to satisfyFiguring out how to use those resources to satisfy 
requests is even harder.

Middleware takes up the task of managing systemMiddleware takes up the task of managing system 
resources across the multiprocessor.

High Performance Embedded Computing 7

Role of the multiprocessor operating p p g
system

Simple m ltiprocessor OS has one master one orSimple multiprocessor OS has one master, one or 
more slaves.

Simple to implement.p p
Suitable for symmetric multiprocessor systems
Heterogeneous processors limit resource allocation options.

E h h it k lEach processor has its own kernel
Responsible for managing purely local resources such as 
the devices that are visible to other processors.
The PE kernel selects the processes to run next and 
switches contexts as necessary. 

But the PE kernel may not decide entirely on its own which y y
process runs next. 

It may receive instruction from a kernel running on another 
processor
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Kernels in the multiprocessorp
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Limited scheduling informationg

The master kernel gathers information from the slave PEsg
Based on the current state of the slaves and the 
processes that want to run on slaves, the master kernel 
th i d t th l b t th i h d lthen issues commands to the slaves about their schedules.
One challenge in designing distributed schedulers is that

communication is not free andcommunication is not free and 
any processor that makes scheduling decisions about other PEs 
usually will have incomplete information about the state of that PE.

When a kernel schedules its own processor, it can easily 
check on the state of that processor. 
When a kernel must perform a remote read to check theWhen a kernel must perform a remote read to check the 
state of another processor, the amount of information the 
kernel requests needs to be carefully budgeted. 
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Kernel architecture (Vercauteren)( )

A kernel architecture forA kernel architecture  for 
custom heterogeneous 
processors includes 
scheduling and Service ISR

Communication

scheduling and 
communication layers.
Basic communication 
operations implemented by

Service
task

g 
la

ye
r

Communication 
layer

operations implemented by 
interrupt service routines.
Kernel channel used only 
for kernel to kernel

Application
task S

ch
ed

ul
in

for kernel-to-kernel 
communication.

Optimized for performance
D t h l i d b

task
ISR

S

CPU
Data channel is used by 
applications

More general purpose

CPU
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Multiprocessor systemsp y
No tool support for heterogeneous embedded 

t hit tsystem architecture

Should provide real-time kernel support for 
i th t ft t k th tmanaging the current software tasks that are 

distributed over several processors
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Target architecture modelg
Communication channels

Semantics: Hoare’s CSP Se a t cs oa e s CS
rendezvous
Explicit send and receive , 
or
Shared memory

Hardware components
ParameterizedParameterized 
communication 
components
Hardware processorsp
Memory components

Software components
Processor + Icache+Processor + Icache+ 
Dcache + I/O units 
(wrappers)
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Basic kernel architecture
Kernel is responsible for

Scheduling application tasks

Handling communication between application tasks

Synchronizing the application tasks with each other and 
with external eventswith external events

Preemptive, priority-driven scheduling

High Performance Embedded Computing 14



Basic kernel architecture
Kernel also provides a subroutine interface to 
each predefined kernel service task

Resource protection

Memory (de)allocation

C i ti d h i ti b t li tiCommunication and synchronization between application 
tasks.
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Basic kernel architecture

Kernel channele e c a e

Data channel
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OMAP lower layers including HW and OS y g
The main unifying structure in OMAP is the DSPBridge, 
which allows the DSP and RISC processors to communicatewhich allows the DSP and RISC processors to communicate. 
The bridge includes a set of hardware primitives that are 
abstracted by a layer of software. 
The bridge is organized as a master/slave system in which 
the ARM is the master and the C55x is the slave. 
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OMAP lower layers including HW and OS y g
This master/slave system fits the nature of most 
multimedia applications, where pp ,

DSP is used to efficiently implement certain key functions 

while RISC processor runs the higher levels of the application. 

The DSPBridge API implements several functions: 
initiates and controls DSP tasks, 

Sexchanges messages with the DSP, 

streams data to and from the DSP, and 

checks the status of the DSPchecks the status of the DSP. 

OMAP hardware provides mailbox primitives - separate 
addressable memories that can be accessed by both. y

In the OMAP 5912, two mailboxes can be written only by the C55x 
but read by both, 
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other two can be written only by the ARM and read by both.



Mailbox primitivesp

send (A, message)
send a message to mailbox Asend a message to mailbox A

receive (A, message)
receive a message from mailbox Areceive a message from mailbox A.

High Performance Embedded Computing 19

OMAP C5510 performance/power for p p
AAC decoding (from TI)

Rate Mcycles/ mA @ 1 5V mA @ 1 2VRate Mcycles/ 
sec

mA @ 1.5V mA @ 1.2V

64K 22 1 8 0 6 464K 22.1 8.0 6.4

48K 16.2 5.8 4.748K 16.2 5.8 4.7

32K 11.4 4.1 3.3
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Multiprocessor scheduling (Stone)p g ( )

It i th ll ti blIt is rather allocation problem 
Schedule tasks on two CPUs.

A t ll ll t t k t th CPU t ti f h d liActually allocates tasks to the CPUs to satisfy scheduling 
constraint.

General scheduling problem is NP-completeGeneral scheduling problem is NP complete
By using information  of the multiprocessor structure, 
or by simplification, this problem can be solved in y p , p
polynomial time.

Exact solution for two processors.
Heuristics for more processors.

Solve using network flow algorithms.
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Multiprocessor modeling (Stone)p g ( )
Execution time table provides execution time of 
processes on the two CPUsprocesses on the two CPUs.
Intermodule connection graph describes the time cost of 
communication between two processes when they run y
on different CPUs.

Communication time within a CPU is zero.

Modify intermodule communication graph:Modify intermodule communication graph:
Add two additional nodes:

source node for CPU 1 and sink node for CPU 2.

Add edges from each non-sink node to source and sink.
Edge weight to source is cost of executing on CPU 2 (sink).
Edge weight to sink is cost of executing on CPU 1 (source)Edge weight to sink is cost of executing on CPU 1 (source).

Minimize total time by finding a minimum-cost cutset of 
the modified intermodule connection graph.
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Stone multiprocessor example 1p p

Execution time table
Intermodule connection graph
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Stone multiprocessor example 1p p

5+5+5+12+2+2+1+3+3+4=42

? (B C F G)(A D E) 5+5+5+8+5+2+1+3+3+4 41
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? (B,C,F,G)(A,D,E): 5+5+5+8+5+2+1+3+3+4=41



Stone multiprocessor example 2p p
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Why static tasks?y

Many embedded systems statically allocate processes toMany embedded systems statically allocate processes to 
processing elements.
We can efficiently find bounds on the execution time ofWe can efficiently find bounds on the execution time of 
the processes in those multiprocessor systems.
Static task allocation determines allocation to CPU at 
design time.
Static task allocation reduces OS overhead, allows more 
analysisanalysis.
Dynamic task allocation can choose the CPU for a task 
at run time.
Dynamic task allocation helps manage dynamic loads.
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Synchronous Data Flow (SDF)y ( )

In SDF a program is represented as a directed graph in 
which vertices, which are called actors, represent 

t ti d th d if FIFO h l fcomputations, and the edges specify FIFO channels for 
communication between actors.

The term “synchronous” refers to the requirement thatThe term synchronous  refers to the requirement that 
the number of data values produced (consumed) by 
each actor onto (from) each of its output (input) edges iseach actor onto (from) each of its output (input) edges is 
a fixed value for each firing of that actor and is known at 
compile time.

It should not be confused with the use of “synchronous” 
in the synchronous languages.
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Synchronous languagesy g g

A change in the state of one module is simultaneous 
with receipt of inputs.p p

Outputs from a module are simultaneous with 
changes in state.g

Communication between modules is synchronous 
and instantaneous.

Output behavior of the modules is entirely 
determined by the interleaving of input signals.y g p g
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Synchronous languagesy g g

Imperative:  Esterel, SyncCharts
P id t t t h t l d i t dProvide constructs to shape control-dominated programs 
as hierarchical synchronous automata.

Declarative: Lustre SignalDeclarative: Lustre, Signal
Shape applications based on intensive data computation 
and data-flow organization, with the control flow operatingand data flow organization, with the control flow operating 
under the form of (internally generated) activation clocks.
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Synchronous hypothesis

Is really a collection of assumptions of a common 
nature, sometimes adapted to the frameworknature, sometimes adapted to the framework
considered.
Instants and reactions: In each instant, input signals 

ibl (f i t b b i l d)possible occur (for instance by being sampled), 
internal computation take place, and control and 
data are propagated until output values are p p g p
computed and a new global system state is reached.

This execution cycle is called reaction of the system to the 
input signals Reactions converge and computations areinput signals. Reactions converge and computations are 
entirely performed before the current execution instant 
ends and a new one begins.
This empowers the obvious conceptual abstraction thatThis empowers the obvious conceptual abstraction that 
computations are infinitely fast (instantaneous, zero-time),
and take place only at discrete points in (physical) time. 
With no duration.
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With no duration.



Synchronous hypothesisy yp

Signals: broadcast signals are used to propagate 
informationinformation. 

At each execution instant, a signal can either be present or 
absent. A signal must be consistent for all read operations 
during any given instantduring any given instant.

Causality: an important part of the theoretical body 
behind the Synchronous Hypothesis. y yp

The presence status and value of a signal should be 
defined before they are read ( and tested).
“before” refers to here to causal dependency in thebefore  refers to here to causal dependency in the 
computation of the instant, and not to physical or even 
logical time between successive instant.

The Synchronous Hypothesis ensures that allThe Synchronous Hypothesis ensures that all 
possible schedules of operations amounts to the 
same result (convergence).
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Homogeneous SDG = DFGg

Homogeneous SDF: the numbers of data values 
produced or consumed are identically unity.
Data flow graph (DFG) : homogeneous SDFData flow graph (DFG) : homogeneous SDF
By scheduling, we collectively refer to the tasks of

Assigning actors in DFG to processorsAssigning actors in DFG to processors
Ordering execution of these actors on each processor
And determining when each actor fires

such that data precedence constraints are met.
In the fully static scheduling strategy, all three scheduling 
tasks are performed at compile timetasks are performed at compile time.

Assumes that exact execution times of actors are known
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Self-timed scheduling strategyg gy

Assumes that good estimates for the execution times ofAssumes that good estimates for the execution times of 
the actors can be obtained.
Each processor executes the actors assigned to it in the p g
order specified at compiled time.
Before firing an actor, a processor wait for the data 

d d b th t t t b il blneeded by that actor to become available.
Thus, in self-timed synchronization processors are 
required to perform run-time synchronization when theyrequired to perform run-time synchronization when they 
communicate data.
As a result, the self-timed strategy incurs greater run-gy g
time cost than the fully static case because of the 
synchronization overhead.
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SDF scheduling (Bhattacharyya)g ( yy )

InterprocessorInterprocessor 
communication modeling 
(IPC) graph has the same 

d SDF ll SDFnodes as SDF, all SDF 
edges, plus additional edges.

Added edges modelAdded edges model 
sequential schedule.

Dashed lines in the figure

Edges that cross processor 
boundaries are called IPC 
edgesedges.

Must use an interprocessor 
communication mechanism
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Strongly connected component (SCC)g y p ( )
A DFG (V,E) is strongly connected if for each pair of 
distinct vertices x,y there is a path directed from x to y 
and there is a path directed from y to x.
A strongly connected component (SCC) of (V,E) is a 
strongly connected subset V’ ⊆ V such that V properlystrongly connected subset V  ⊆ V such that V properly 
contains V’.
If V is an SCC, its associated subgraph is also called as , g p
SCC.
An SCC V’ of a DFG (V,E) is a source SCC
if ∀e ∈ Ε, (sink(e) ∈ V’) ⇒ (src(e) ∈ V’)

Source가 V’에 있는 edge중 밖으로 나가는 것이 있다

An SCC V’ of a DFG (V E) is a sink SCCAn SCC V  of a DFG (V,E) is a sink SCC
if ∀e ∈ Ε, (src(e) ∈ V’) ⇒ (sink(e) ∈ V’)

Sink가 V’에 있는 edge중 밖에서 들어오는 것이 있다
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Sink가 V 에 있는 edge중 밖에서 들어오는 것이 있다.

Self-time schedule
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Self-time schedule
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Self-time schedule
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IPC graphg p
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IPC graphg p
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IPC graphg p

Th IPC h h th ti DFG dThe IPC graph has the same semantics as a DFG, and 
its execution models the execution of the corresponding 
self-time schedule. 
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Cycle Meany
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Maximum cycle mean & Critical Cycley y
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Scheduling and graph analysisg g p y
Edges  represent buffers

Edges not in a strongly connected component are notEdges not in a strongly connected component are not 
bounded.

Simpler protocols can be used on bounded edgesSimpler protocols can be used on bounded edges.

An edge is redundant if another path between the 
source/sink pair has a longer delay.source/sink pair has a longer delay.
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Bounding Buffer Synchronization (BBS)g y ( )
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Deriving a strongly connected g g y
synchronization graph
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Determine delaysy

High Performance Embedded Computing 47

Determine delaysy

We need to add delays to the edges, corresponding to e eed to add de ays to t e edges, co espo d g to
buffer memory, 

that ensure the system will not deadlock y

That we can minimize the sum of the buffer bounds 
over all the IPC edges.

We can use the added edges to help us determine these 
delays. 

The added edges can be divided into disjoint sets that 
help organize the graph.

We can determine the minimum delay on each edge that 
ensures that the graph’s cycle mean is not exceeded.
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Complete Algorithm
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Conclusions
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Data dependency + Rate-monotonicp y

Assume that there is a set of processes with data 
dependencies between them; in general, they can form 
one or more subtasksone or more subtasks.

Also assume that each CPU schedules processes rate-
monotonic schedulingmonotonic scheduling.

The combination of data dependencies and rate-
monotonic scheduling makes the problem more o o o c sc edu g a es e p ob e o e
challenging, although tractable.
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Bounds of the response times for  a set of p
independent processes (Lehoczky)

Suppose P1, P2, … are a set of  priority-ordered  
processes allocated on the same CPU.

F Pi it i i i d i i d itFor a process Pi, its  minimum period is pi, and its 
longest computation time is ci.

Let the worst case response time form a request of Pi toLet the worst-case response time form a request of Pi to 
its finish be wi

Lehoczky showed that wi is the smallest nonnegativeLehoczky showed that wi is the smallest nonnegative 
root of the equation

x=g(x)=ci + Σ cj • ⎡x/pj ⎤
i-1

x=g(x)=ci + Σ cj • ⎡x/pj ⎤
It can be solved with a fixed-point iteration technique.

j=1
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Fixed-point iteration technique andp q
an example 

The fixed-point iteration technique

(1) w = ⎡ ci /(1- Σ cj/pj)⎤
(2) while (w <g(w) ) w = g(w)

(example) Suppose p1=5, c1=1, p2=37, c2=3, p3=51, 
3 16 4 134 4 42c3=16, p4=134, c4=42.

Fixed-point iteration tells us that we only need four steps 
to know that w4= 128; the x values during iterations are

i-1

to know that w4= 128;  the x values during iterations are 
104, 120, 126, and 128. j=1
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Rate analysis (Gupta)y ( p )

G l id tif tiGoal: identify execution 
rates at which processes 
can run while satisfying

Control 
dependency

can run while satisfying 
the min-max bounds of 
delays
Model includes multiple 
processes with control 
d d idependencies.

A CDFG-style model within 
each process

process1 process2
each process.
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Process model

Edges are labeled with 
(min,max) delays from 

ti ti i l t t t [min max]activation signal to start 
of execution.

P t t

[3,4]

[min,max]

Process starts 
executing after all its 
enables signals have

P1 P2

enables signals have 
been ready. [1,5]
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Rate analysisy

Delay around a cycle in the graph is Σ δi.

Maximum mean cycle delay is λ.y y

In a strongly connected graph all nodes 
execute at the same rate λexecute at the same rate λ.

Given a producer and consumer, bounds on 
rates of consumer is:
[ min{rl(P),rl(C)}, min{ru(P),ru(C)} ]
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Rate analysis exampley p
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Rate analysis example
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Rate analysis example
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Distributed system performance

Performance analysis using longest path algorithmsPerformance analysis using longest-path algorithms 
don’t work under preemptive scheduling.

Several algorithms unroll the schedule to the length ofSeveral algorithms unroll the schedule to the length of 
the least common multiple of the periods:

produces a very long schedule;p y g ;

doesn’t work for non-fixed periods.

Schedules based on upper bounds may give inaccurate 
results.

Simulation does not provide guarantees.
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Using worst case delay in unrolled schedulesg y

Changing the computation time for Px changes the response time of P3Changing the computation time for Px changes the response time of P3
Even though they run on different processors.

High Performance Embedded Computing 61

Using worst case delay in unrolled schedulesg y

P3 deadline: 45 !
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A task graph and
its implementation
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Preemptive execution hurtsp

Two subtasks are divided into three processors

Worst combination of events for P5’s response time:
P2 of higher priority

P i iti t d b f PP2 initiated before P4

causes P5 to wait for finishing P2 and P3.

Independent tasks can interfere can’t use longestIndependent tasks can interfere—can t use longest 
path algorithms.

P1

P

P2

P

P3

M1

P5

M2

P4

M3
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Data dependencies helpp p
P3 cannot preempt both P1 and P2.
P t t PP1 cannot preempt P2.
If we ignore data dependencies, the 
worst response times are

P1 P3

worst response times are
35 for P2
45 for P3

But the worst case total delay along 
the path from P2 to P3 is 45 instead 
of 80 (35+45)

P2

of 80 (35+45)

Period Computation time
P1 80 15
P2 50 20
P3 50 10
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Separation analysisp y

P5, P6 : on the same PE
Cases 1&2: P5 will not preempt P6 
because they are separatedy p
Cases 3&4: P5 will preempt P6.
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Period shifting exampleg p

task period
τ1 150

process CPU time
P1 30

τ1 τ2 τ3

τ1 150
τ2 70
τ3 110

1

P2 10
P3 30
P4 20

P1 P2 P4

CPU 1 (P1,P2) P1 P2 P2

P3

( )

CPU 2 (P3,P4) P3 P4 P3 P4

P2 delayed 30 on CPU 1 due to P1

data dependency delays P3 20 more

( )

p y y 3 

priority of P3 delays P4 by preemption. 
Worst case delay of task 3 is  30+30+20=80, but 30+20=50
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Period shiftingg

The delay for the preprocessors may vary fromThe delay for the preprocessors may vary from 
period to period, making the request period of a 
process different form the period of the taskprocess different form the period of the task.
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