
Chapter 6-2:
M l i S fMultiprocessor Software

Soo-Ik ChaeSoo Ik Chae

High Performance Embedded Computing 1

Topicsp

Multiprocessor scheduling.

Middleware and software services.

Design verification.

High Performance Embedded Computing 2

6.3.3 Scheduling with dynamic tasksg y

C ’t t th t ll t k b h dl dCan’t guarantee that all tasks can be handled.
Can’t guarantee start time for a process.
Unless the source of the tasks limits itselfUnless the source of the tasks limits itself

In a real time system, once we start a process, we
want to guarantee its completion time.g p
Admission control determines what processes can
execute based on resources, load.
For dynamic systems with more than one
processors and/or tasks that have exclusion

t i t ti l l ti d t i tconstraints, an optimal solution does not exists
Use heuristics

High Performance Embedded Computing 3

Ramarithram et al. myopic schedulingy p g
Assumptions:

Tasks are nonperiodic.
Tasks are executed non-preemptively.
No data dependencies between tasksNo data dependencies between tasks.

Task characterized by
arrival time: Taarrival time: Ta
Deadline: Td
worst-case processing time: Tp
resource requirements {Tr}

Original heuristic algorithm: O(n2)
At each step, it checks whether the current partial schedule
is strongly-feasible and if so, it applies the H heuristics
function to all the remaining tasks.

High Performance Embedded Computing 4

g

Myopic scheduling algorithmy p g g

Partial sched le is strongl feasible if the sched lePartial schedule is strongly feasible if the schedule
itself is feasible and every possible next choice for a
task also gives a feasible schedule.g
O(nk) version: myopic (short-sighted) scheduling
algorithm

C t t ti l h d lConstructs partial schedules.
Check strongly feasibility by evaluating an H (search metric)
function

Sh t t d dli fi t h t t i tiShortest deadline first, shortest processing time, ..
Search includes backtracking.

Add a task to a partial schedule.
Searches only first k tasks of the remaining tasks pre-
sorted by deadlines.

High Performance Embedded Computing 5

Myopic scheduling algorithmy p g g

{tasks_remaining}: arranged in the order of increasing
deadlines

Nr: # of tasks in {tasks_remaining}

K: maximum number of tasks in tasks remainingK: maximum number of tasks in tasks_remaining
considered by myopic algorithm

Nk: actual number oftasks in tasks remaining consideredNk: actual number oftasks in tasks_remaining considered
by the myopic algorithm at each step of scheuling

Nk = min (k,Nr)Nk min (k,Nr)

{tasks_considered}: the first Nk tasks in {taks_remaining}

High Performance Embedded Computing 6

Load balancingg

It is a form of dynamic task allocation y

Move tasks to new processing element during
execution.

Task migration moves an executing task:
Homogeneous MP with shared memory: Just move the g y
task’s activation record from the old PE to the new PE

Heterogeneous MP with shared memory:Two versions of
code should be available in both old and new PEs. Harder
on heterogeneous multiprocessor.

MP with non shared memoryMP with non-shared memory
Need to copy all program data. Harder still if memory is not
shared

High Performance Embedded Computing 7

shared.

Load balancing schedulingg g

Shin and Chang: schedule using a buddy list
for each processing element.

List of other processing elements with which it can
share tasks.

Subdivided into preferred list, ordered by
communication distance to the buddy.y

When moving a job, search the buddy list in
order checking load until a satisfactory nodeorder, checking load until a satisfactory node
is found.

High Performance Embedded Computing 8

Load balancing schedulingg g

High Performance Embedded Computing 9

6.4 Middleware and software services

Operating systems provide services for shared
resources in uniprocessors.resources in uniprocessors.

Must generalize this notion for multiprocessors.
Need distributed information about resource stateNeed distributed information about resource state.

Middleware provides services in distributed systems.
Generic services such as data transportGeneric services such as data transport.

Application-specific services such as signal processing.

High Performance Embedded Computing 10

Uses of middleware

Middl i d f l t tMiddleware: coined for general-purpose systems to
describe software that provides services for
applications in distributed systems andapplications in distributed systems and
multiprocessors.

It is not the application for itself nor does it describeIt is not the application for itself, nor does it describe
primitive services provided by the operating system.

Provides fairly generic data services such as data transport y g p
among the processor that may have different endianness
or other data formatting issues.

It l id li ti ifi iIt can also provide application-specific services

High Performance Embedded Computing 11

Purposes of middlewarep

S i ll li ti t b d l dServices allow applications to be developed more
quickly.

Which may be tied to a particular PE or an I/O deviceWhich may be tied to a particular PE or an I/O device.

Alternatively, they may provide high-level communication
services.services.

Simplifies porting application to a new platform.
Middleware standards are particularly usefulMiddleware standards are particularly useful

Ensures that key functions are correct and efficient.
Rather than rely on users to directly implement all functionsRather than rely on users to directly implement all functions,
a vendor may provide middleware that showcases the
features of the platform.

High Performance Embedded Computing 12

Middleware vs. libraries

Traditional software libraries may provide functions
but don’t manage resources like OS.but don t manage resources like OS.
Middleware need to know global state, have
privileges to manage resources by giving request to p g g y g g q
the OS on each processor to implement those
decisions.
Resources must be managed dynamically when
requests come in dynamically.

Statically designing the system for worst case costs tooStatically designing the system for worst-case costs too
much.

High Performance Embedded Computing 13

Embedded vs. general-purpose middleware

Embedded middleware must be very efficient:
Small software footprint.

Low latency.

Predictable performance.

E b dd d iddl id ti l ithiEmbedded middleware may reside entirely within a
chip or may communicate with other systems-on-
chipschips.

Middleware makes use of general standards:
I t t t l (IP) ft dInternet protocol (IP): often used

CORBA: widely used for distributed embedded services

High Performance Embedded Computing 14

CORBA
Common Object Request Broker Architecture is
widely used in business oriented softwarewidely used in business-oriented software.

It is not a specific protocol
Rather meta model sing an object oriented ser icesRather meta-model using an object-oriented services.

CORBA services are provided by objects that
combine functional interfaces as well as datacombine functional interfaces as well as data.

An interface to an object is defined in an interactive
data language (IDL)data language (IDL)

It is language independent

Can be implemented in any programming languageCan be implemented in any programming language.

Objects and their variables are typed.

High Performance Embedded Computing 15

What is the purpose / goals of CORBA?p p g

Enable the b ilding of pl g and pla componentEnable the building of plug and play component
software environment
Enable the development of portable, object oriented,Enable the development of portable, object oriented,
interoperable code that is hardware, operating
system, network, and programming language
independentindependent
How to meet the goals

Interface Definition Language (IDL)Interface Definition Language (IDL)
Object Request Broker (ORB)

High Performance Embedded Computing 16

Interface Definition Language (IDL)Interface Definition Language (IDL)

Language Independence

Defines Object Interfacesj

Hides underlying object implementation

L i i t f C C JLanguage mappings exist for C, C++, Java,
Cobol, Smalltalk, and Ada

High Performance Embedded Computing 17

Interface Definition Language (IDL)g g ()

module <identifier> Defines a container
{
interface <identifier> [:inheritance]

{

e es co e
(namespace)

{
<type declarations>;
<constant declarations>;

Defines a
CORBA object

<exception declarations>;
<attribute declarations>;

[<op_type>] <identifier>(<parameters>)
[raises exception][context];
} D fi}

}
Defines a
method

High Performance Embedded Computing 18

IDL Compilerp

IDL
Definitions 1. Define objects using

IDLIDL
2. Run IDL file through

IDL compiler
3 Compiler uses languageIDL

Compiler

3. Compiler uses language
mappings to generate
programming language
specific stubs andspecific stubs and
skeletons

Stubs Skeletons

High Performance Embedded Computing 19

What is ORB?

Implementation of CORBA

Application

specification

Middleware product pp
Conceptual Software Bus

Hides location and Middleware

implementation details

about objects H d

OS Drivers

about objects Hardware

High Performance Embedded Computing 20

ORB Architecture

Interface IDL Compiler Implementation
Repository Repository

Client Object (servant)OBJ
Ref

IDL
DSI

Skeleton
DSI

ORB
Interface

IDL Stub DII
Object Adapter

ORB CoreGIOP/IIOP

High Performance Embedded Computing 21

CORBA requestsq
Requests handled by object
request broker (ORB).q ()
Client and object may be on
different machines.

ORBs may communicate. Thread pooly
A request to a remote
machine can invkoe
multiple ORBs Client

Object
Object

Thread pool

The stub on the client-side
provides the interface for the
client while the skeleton is the
interface to the object

Stub Stubrequest

interface to the object.
A given service appears as an
object but may be
implemented with a thread

Object request broker

implemented with a thread
pool.
Each object instance has a
unique object reference

High Performance Embedded Computing 22

q j

ORB-to-ORB communication
• Provides mechanism for transparently

communicating client requests to target objectcommunicating client requests to target object
implementations

• Makes client requests appear to be local procedure q pp p
calls

• GIOP – General Inter-ORB Protocol
• IIOP – Internet Inter-ORB Protocol

• The client’s ORB and
object’s ORB must
agree on a commonagree on a common
protocol : IIOP

High Performance Embedded Computing 23

IDL Stub

Static invocationStatic invocation
interface (SII)
Marshals (encode)

Client
()

application data into a
common packet-level

t tirepresentation
Network byte order (little-
endian or big-endian)

IDL
St b endian or big endian)

Size of data types
Stub

High Performance Embedded Computing 24

IDL Skeleton

• Demarshals (decode) the
packet level representation

Object (servant)

packet-level representation
back into typed data that is
meaningful to an Object (servant)meaningful to an
application

Network byte order (little

IDL
Skeleton

– Network byte order (little-
endian or big-endian)

– Size of data types SkeletonSize of data types

High Performance Embedded Computing 25

Dynamic Invocation Interfacey

• Dynamically issue requests to objects
without requiring IDL stubs to be
linked in

Client

• Clients discover interfaces at run-
time and learn how to call them

Client
Steps:
1. Obtain interface name

2. Obtain method description (from
interface repository)

3 Create argument list
DII

Object Adapter

3. Create argument list

4. Create request

5. Invoke request

High Performance Embedded Computing 26

Dynamic Skeleton Interfacey

Object (servant)

• Server side analogue to DII

• Allows an ORB to deliver Object (servant)
requests to an object
implementation that does

DSI
not have compile-time
knowledge of the type of

Object Adapter
object it is implementing

High Performance Embedded Computing 27

ARMADA

Motivated by the requirements of large embedded
application such as command and control,application such as command and control,
automated flight, shipboard computing, and radar
data processing.
Traditionally constructed from special-purpose
hardware and software.
A recent trend: build embedded systems using
commercial-over-the-shelf (COTS) components

High Performance Embedded Computing 28

ARMADA

Middleware system for fault tolerance and QoS.
Low-level real-time communication support

Middleware for group communication and fault tolerance.

Dependability evaluation and validation tools

High Performance Embedded Computing 29

A command and control applicationpp

High Performance Embedded Computing 30

General service implementation approachp pp

High Performance Embedded Computing 31

General service implementation approachp pp

High Performance Embedded Computing 32

Real-time communication service architecture

High Performance Embedded Computing 33

Real-time communication service architecture

Architectural requirements for QoS
Performance isolation between connections such that
errors in one channel does not starve another channel.

S i diff ti ti (i it)Service differentiation (priority)

Graceful degradation in the presence of overload.

CLIPS a comm nication librar for implementingCLIPS: a communication library for implementing
priority semantics

Provide resource management mechanismProvide resource management mechanism

A clip is an object that guarantees a certain throughput in
terms of the number of packets sent via it per period. Andterms of the number of packets sent via it per period. And
implements a configurable buffer to accommodate bursty
sources.

High Performance Embedded Computing 34

Real-time communication service architecture

RTCOP: real-time connection ordination protocol
Manages requests to create and destroy connections.

A clip is created for each end of the channel.

Each clip includes a message queue at the interface to the
objects, a communication handler that schedules
operations and a packet queue at the interface to theoperations, and a packet queue at the interface to the
channel.

The communication handler is scheduled is scheduled
using an EDF policy.

High Performance Embedded Computing 35

MPI (multiprocessor interface)(p)
A specification for middleware interface for multiprocessor
communication.
Widely used in scientific clusters.
Decouples architectural parameters (# PEs) from algorithmic
parameters (# data elements)parameters (# data elements).
Six basic MPI functions:

MPI_Init().
MPI_Comm_rank(): get the index of this node
MPI_Comm_size(): get the total number of nodes
MPI Send()MPI_Send().
MPI_Recv().
MPI_Finalize(): clean up

The basic MPI communication functions (MPI_send(), MPI_recv())
Point-to-point, blocking communication

High Performance Embedded Computing 36

Software stacks in MPSoCs

MPS C lt d i ti f t iddl th tMPSoC resulted in a new generation of custom middleware that
relies less on standard services and models.
SoC middleware has been designed from scratch for several
reasons.

Often power or energy constrained. Any services must be
implemented very efficiently.p y y
Although SOC may be committed with outside standard services,
they are not constrained to use standards within the chip.
Today’s SoC are composed of a relatively small number ofToday s SoC are composed of a relatively small number of
processors. (simple yet)

Software stack manages resources, abstracts hardware details.
P f i di h k h iPerformance, power requirements dictate a shorter stack than in
general-purpose systems.

High Performance Embedded Computing 37

Typical MPSoC stackyp

Application layer providesApplication layer provides
user function.
Application-specific libraries

t il d t idare tailored to provide
utilities for computation or
communication specific to
the application

Applications

Application-specific
librariesthe application

Interprocess communication
provides services across
multiprocessor

Interprocess communication

libraries

multiprocessor.
RTOS controls basic
system functions.
HAL if l b t t

Real-time operating system

HAL uniformly abstracts
basic hardware services. Hardware abstraction layer

High Performance Embedded Computing 38

Multiflex programming env (Paulin)p g g ()

Paulin et al.: uses hardware accelerators plus
ft t id lti i tisoftware to provide multiprocessor communication.

Supports two parallel programming models:
DSOC: Distributed system object componentDSOC: Distributed system object component
SMP: Symmetric multiprocessing

DSOC is an object-oriented model.j
It is a message-passing model and it supports a very
simple CORBA-like interface definition (dubbed SIDL)
Client marshals data for call.Client marshals data for call.
Server side unmarshals data for use.

SMP engine uses memory-mapped reads/writes.
Supports concurrent threads accessing shared memory
The implementation performs scheduling, and includes
support for threads, monitors, conditions and semaphores.

High Performance Embedded Computing 39

pp , , p

MultiFlex platformp

High Performance Embedded Computing 40

MultiFlex platformp

High Performance Embedded Computing 41

MultiFlex platform mappingp pp g

High Performance Embedded Computing 42

MultiFlex concurrency enginey g

High Performance Embedded Computing 43

Hardware concurrency enginey g

High Performance Embedded Computing 44

Hardware concurrency enginey g

High Performance Embedded Computing 45

Monitor

High Performance Embedded Computing 46

Example: OMAP software platformp p

MM services, plug-ins, protocols
CSL: chip support library
DDK: driver development kit

MM OS server

MM services, plug ins, protocols

Multimedia APIs

DDK: driver development kit

High-
DSP

Gateway components DSP SW components

App-
specific

High
Level
OS

Device

DSP
RTOS

DeviceDSP/BIOS

DSP Bridge
APIDDAPI DDAPI

Device
Drivers

Device
Drivers

DSP/BIOS
Bridge

CSLAPI

ARM CSL (OS-independent) DSP CSL (OS-independent)

High Performance Embedded Computing 47

OMAP software architecture

High Performance Embedded Computing 48

DSPBridgeg

Abstracts the DSP software architecture for the
general-purpose software environment.

APIs include driver interfaces and application
interfaces:

Initiate and control DSP tasks.

Exchange messages with DSP.

St d t t /f DSPStream data to/from DSP.

Check status.

High Performance Embedded Computing 49

Resource managerg

Provide API interface to the DSP.
Loads, initiates, and controls DSP applications.

Keeps track of resources:
CPU time, memory pool, utilization, etc.

Controls:
Tasks.

Data streams between DSP and CPU.

Memory allocation.

High Performance Embedded Computing 50

Multimedia messaging serviceg g

Mi i i t fMinimum requirement from spec:
JPEG, MIME text with SMS, GSM AMR, H.263, SVG for
graphicsgraphics.

Optional: AAC, MP3, MIDI, MP4, and GIF.
Must provide: MM presentation user notificationMust provide: MM presentation, user notification,
MM message retrieval.
Additional functions: MM composition, MM p ,
submission, MM message storage,
encryption/decryption, user profile management.

High Performance Embedded Computing 51

Quality-of-serviceQ y

QoS must be measured system-wide.
One component can destroy system QoS characteristicsOne component can destroy system QoS characteristics.

QoS modeling:
Contract specifies resources that will be providedContract specifies resources that will be provided.

Protocol manages the contract.

Scheduler implements the contract.Scheduler implements the contract.

Resources must be available to deliver on the
contract.contract.

High Performance Embedded Computing 52

Design verificationg

Verifying multiprocessors is hard:
Observe and control data.

Drive part of the system into a desired state.

Generate and test timing effects.Generate and test timing effects.

CoMET simulator
H ll t dHellestrand

High Performance Embedded Computing 53

High Performance Embedded Computing 54

High Performance Embedded Computing 55

High Performance Embedded Computing 56

High Performance Embedded Computing 57

CoMET simulator
A new, fast, and accurate processor model
Two parts

M d l f th b h i f i t ti tiModels for the behavior of instruction execution
Models for the dynamic parts of the processor

Virtual processor model (VPM) describes function of the
application running on the processorapplication running on the processor.

The code executed by a VPM may be C or C++ code
Very fast, like static timing analysis

I/O parts that communicate between the processor and theI/O parts that communicate between the processor and the
hardware

Interrupts, cache, virtual memory, DMA, bus signals.
Speed is limited by the level of detail modeled and by the speed ofSpeed is limited by the level of detail modeled and by the speed of
the hardware simulator effecting communication

Simulation backplane connects processor models and hardware
models.

Many VPMs and a single HDL simulator
The back plane kernel mediates the maintenance of causality
between the domains that defines their own relative frames of space
and time

High Performance Embedded Computing 58

and time

High Performance Embedded Computing 59

High Performance Embedded Computing 60

High Performance Embedded Computing 61

