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6.3.3 Scheduling with dynamic tasks

Can’t guarantee that all tasks can be handled.
o Can't guarantee start time for a process.
o Unless the source of the tasks limits itself

In a real time system, once we start a process, we
want to guarantee its completion time.

Admission control determines what processes can
execute based on resources, load.

For dynamic systems with more than one
processors and/or tasks that have exclusion
constraints, an optimal solution does not exists
o Use heuristics
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Ramarithram et al. myopic scheduling

Assumptions:

o Tasks are nonperiodic.

o Tasks are executed non-preemptively.
o No data dependencies between tasks.
Task characterized by

o arrival time: Ta

o Deadline: Td

o worst-case processing time: Tp

o resource requirements {Tr}

Original heuristic algorithm: O(n?)

o At each step, it checks whether the current partial schedule
is strongly-feasible and if so, it applies the H heuristics
function to all the remaining tasks.
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Myopic scheduling algorithm

Partial schedule is strongly feasible if the schedule
itself is feasible and every possible next choice for a
task also gives a feasible schedule.

O(nk) version: myopic (short-sighted) scheduling
algorithm

o Constructs partial schedules.

Check strongly feasibility by evaluating an H (search metric)
function

o Shortest deadline first, shortest processing time, ..
Search includes backtracking.

o Add atask to a partial schedule.

Searches only first k tasks of the remaining tasks pre-
sorted by deadlines.
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Myopic scheduling algorithm

{tasks_remaining}: arranged in the order of increasing
deadlines

Nr: # of tasks in {tasks_remaining}

K: maximum number of tasks in tasks_remaining
considered by myopic algorithm

Nk: actual number oftasks in tasks_remaining considered
by the myopic algorithm at each step of scheuling

o Nk =min (k,Nr)

{tasks_considered}: the first Nk tasks in {taks_remaining}
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Load balancing

It is a form of dynamic task allocation

Move tasks to new processing element during
execution.

Task migration moves an executing task:

o Homogeneous MP with shared memory: Just move the
task’s activation record from the old PE to the new PE

o Heterogeneous MP with shared memory:Two versions of
code should be available in both old and new PEs. Harder
on heterogeneous multiprocessor.

MP with non-shared memory

o Need to copy all program data. Harder still if memory is not
shared.
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Load balancing scheduling

Shin and Chang: schedule using a buddy list
for each processing element.

o List of other processing elements with which it can
share tasks.

o Subdivided into preferred list, ordered by
communication distance to the buddy.

When moving a job, search the buddy list in

order, checking load until a satisfactory node

Is found.

High Performance Embedded Computing 8




Load balancing scheduling

Abstract—If task arrivals are not uniformly distributed over
the nodes in a distributed real-timie system, some nodes may
become overloaded while others are underloaded. Consequently,
some tasks cannot be completed before their deadlines, even if
the overall system has the capacity (0 meet all deadlines. Load
sharing (LS) is one way to alleviate this problem.

In this paper, we propose a decentralized, dvnamic LS method
for a distributed real-time system. Whenever the state of a node
changes from underloaded to fully-loaded and vice versa, the
node broadcasts this change to a set of nodes, called a huddy set,
in the system. An overloaded node can select, without probing
other nodes, the first available node from its preferred list, an
ordered set of nodes in its buddy set. Preferred lists are so
constructed that the probability of morc than one overloaded
node *‘dumping’’ their loads on a single underloaded node may
be made very small.
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6.4 Middleware and software services

Operating systems provide services for shared
resources in uniprocessors.

Must generalize this notion for multiprocessors.
o Need distributed information about resource state.

Middleware provides services in distributed systems.

o Generic services such as data transport.
o Application-specific services such as signal processing.
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Uses of middleware

Middleware: coined for general-purpose systems to
describe software that provides services for
applications in distributed systems and
multiprocessors.

o Itis not the application for itself, nor does it describe
primitive services provided by the operating system.

o Provides fairly generic data services such as data transport
among the processor that may have different endianness
or other data formatting issues.

o It can also provide application-specific services
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Purposes of middleware

Services allow applications to be developed more
quickly.
o Which may be tied to a particular PE or an I/O device.

o Alternatively, they may provide high-level communication
services.

Simplifies porting application to a new platform.
o Middleware standards are particularly useful
Ensures that key functions are correct and efficient.

o Rather than rely on users to directly implement all functions,
a vendor may provide middleware that showcases the
features of the platform.
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Middleware vs. libraries

Traditional software libraries may provide functions
but don’t manage resources like OS.

Middleware need to know global state, have
privileges to manage resources by giving request to
the OS on each processor to implement those
decisions.

Resources must be managed dynamically when
requests come in dynamically.

o Statically designing the system for worst-case costs too
much.
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Embedded vs. general-purpose middleware

Embedded middleware must be very efficient:

o Small software footprint.

o Low latency.

o Predictable performance.

Embedded middleware may reside entirely within a
chip or may communicate with other systems-on-
chips.

Middleware makes use of general standards:

o Internet protocol (IP): often used

o CORBA: widely used for distributed embedded services
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CORBA

Common Object Request Broker Architecture is
widely used in business-oriented software.

It is not a specific protocol

o Rather meta-model using an object-oriented services.
CORBA services are provided by objects that
combine functional interfaces as well as data.

An interface to an object is defined in an interactive
data language (IDL)

o Itis language independent

o Can be implemented in any programming language.

Objects and their variables are typed.
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What is the purpose / goals of CORBA?

Enable the building of plug and play component
software environment

Enable the development of portable, object oriented,
interoperable code that is hardware, operating
system, network, and programming language
independent

How to meet the goals
o Interface Definition Language (IDL)
o Object Request Broker (ORB)
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Interface Definition Language (IDL)

Language Independence
Defines Object Interfaces
Hides underlying object implementation

Language mappings exist for C, C++, Java,
Cobol, Smalltalk, and Ada
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Interface Detinition Language (IDL)

module <identifier> < Defines a container

{ (namespace)
interface <identifier> [:inheritance]

<type declarations>; Defines a

<constant declarations>; CORBA object
<exception declarations>;
<attribute declarations>;

[<op_type>] <identifier>(<parameters>)
[raises exception][context];

} \ Defines a

} method
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‘ IDL. Compiler

Define objects using
IDL

Run IDL file through
IDL compiler

Compiler uses language
mappings to generate
programming language
specific stubs and
skeletons
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What is ORB?

= Implementation of CORBA
specification

= Middleware product

= Conceptual Software Bus

= Hides location and

implementation details .

sboutobects v |
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‘ ORB Architecture

Object (servant)

]
Skeleton
e

Object Adapter

GIOP/IIOP ORB Core
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'CORBA requests

= Requests handled by object
request broker (ORB).

= Client and object may be on
different machines.

o ORBs may communicate. Thread pool

o Arequest to a remote
machine can invkoe
multiple ORBs Client

= The stub on the client-side
provides the interface for the Stun
client while the skeleton is the
interface to the object.

= A given service appears as an
object but may be
implemented with a thread
pool.

= Each object instance has a
unigue object reference

request | 2

High Performance Embedded Computing
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ORB-to-ORB communication

* Provides mechanism for transparently
communicating client requests to target object
implementations

» Makes client requests appear to be local procedure
calls

 GIOP - General Inter-ORB Protocol
e [IOP - Internet Inter-ORB Protocol

ClientJ ObjectJ ‘ Client ‘ ‘ Ob}ect|
| , X

* Theclient’s ORB and o7 ] Sk;ﬂ ESERE]
object’s ORB must L o
agree on a common ORB 1 =t — ORE 2
protocol : IIOP

Figure 2: Interoperability uses ORE -to-ORE communication
Copyright @ 2000 Object Manazemert Groap
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IDI. Stub

Static invocation
Client interface (SllI)

Marshals (encode)
application data into a
common packet-level
representation

o Network byte order (little-
endian or big-endian)

o Size of data types
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‘ IDIL. Skeleton

* Demarshals (decode) the

packet-level representation

back into typed data that is

meaningful to an
application

— Network byte order (little-

endian or big-endian)
— Size of data types

Object (servant)

IDL
Skeleton
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Dynamic Invocation Interface

* Dynamically issue requests to objects
without requiring IDL stubs to be
linked in

e Clients discover interfaces at run-

time and learn how to call them

Steps:

1. Obtain interface name

2. Obtain method description (from
interface repository)

3. Create argument list

4. Create request

5. Invoke request
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Dynamic Skeleton Interface

« Server side analogue to DIl

« Allows an ORB to deliver
requests to an object
Implementation that does

not have compile-time
knowledge of the type of -
object it is implementing

Object (servant)
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ARMADA

Motivated by the requirements of large embedded
application such as command and control,
automated flight, shipboard computing, and radar
data processing.

Traditionally constructed from special-purpose
hardware and software.

A recent trend: build embedded systems using
commercial-over-the-shelf (COTS) components
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ARMADA

EVALUATION MIDDLEWARE \
TOCLS SERVICES \ \
(N
N |
\ L APT \u
(. REAL-TIME | )
Microkemnel CHANNELS
\ A

= Middleware system for fault tolerance and QoS.
o Low-level real-time communication support
o Middleware for group communication and fault tolerance.
o Dependability evaluation and validation tools
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‘ General service implementation approach

‘S—
Server Application Application
(and protocol stack) Library Library
P Stub : Stub
Application Application user
Library \‘ f( Library
Stub Stub
sser A _—— #" | Colocated
: [ : icrokerne
T Server
e NS
‘ |
Microkernel device driver
| device driver
P! L
i T . |
network N network P
1 1 1 1
(a) User-level server configuration (b) Co-located server

Figure 3. Service implementation.
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‘ General service implementation approach

The microkernel has to support kernel threads. The priority of threads executing in kernel
space is, by default, higher than that of threads executing in user space. As a result, threads
run in a much more predictable manner, and the service does not get starved under overload.
Furthermore, the in-kernel mmplementation of a-kernel on our platform replaces some of
the threads in the device driver by code running in interrupt context. This feature reduces
communication latencies and makes the server less preemptable when migrated into the
microkernel. However, since code executing in intermpt confext is kept to a minimum, the

reduction in preeptability has not been a concern in our experiences with co-located code.

Figure 3-a and 3-b illustrate the configurations of user-level servers and co-located
ervers respectivelv. An example of server mieration into the kernel is given in the context

hf the RTCAST service in Section 4. The RTCAST server was developed in user space
as in Figure 3-a). then reconfigured to be integrated the into the kernel (as in Figure 3-b).
Whether the server runs in user space or is co-located in the microkernel, client processes
15¢ the same service API to communicate with it. If the service is co-located in the kernel, an
sxtra context switch to/from a user-level server process is saved. Automatically-generated

stubs interface the user library (implementing the service API) to the microkernel or the
server process. These stubs hide the details of the kernel’s local communication mechanism

g e
LELILLSY L

i amay e T

Frmann +1 S A 1 A
Liwvrill e lJJ.U:l CALLIIICL Wl LL ITCal=LlllG >el vViIvc,

specifics of the underlying microkernel.
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Real-time communication service architecture
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Figure 4. Real-time communication service architecture: Our implementation consists of four primary
architectural components: an application programming interface (RTC API). a signaling and resource reservation
protocol (RTCOP), support for resource management and run-time data transfer (CLIPS), and execution profiling
support. Dashed lines indicate interactions on the control path while the data path is denoted by the solid lines.
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Real-time communication service architecture

Architectural requirements for QoS

o Performance isolation between connections such that
errors in one channel does not starve another channel.

o Service differentiation (priority)
o Graceful degradation in the presence of overload.

CLIPS: a communication library for implementing
priority semantics
o Provide resource management mechanism

o Aclip is an object that guarantees a certain throughput in
terms of the number of packets sent via it per period. And
implements a configurable buffer to accommodate bursty
sources.
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Real-time communication service architecture

RTCOP: real-time connection ordination protocol
o Manages requests to create and destroy connections.
o Aclip is created for each end of the channel.

o Each clip includes a message queue at the interface to the
objects, a communication handler that schedules
operations, and a packet queue at the interface to the
channel.

o The communication handler is scheduled is scheduled
using an EDF policy.
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MPI ( multiprocessor intertace)

A specification for middleware interface for multiprocessor
communication.

Widely used in scientific clusters.

Decouples architectural parameters (# PEs) from algorithmic
parameters (# data elements).

Six basic MPI functions:

o MPIL_Init().

o MPI_Comm_rank(): get the index of this node

MPI1_Comm_size(): get the total number of nodes

MPI1_Send().

MPI1_Recv().

o MPI_Finalize(): clean up

The basic MPI communication functions (MPI_send(), MPI_recv())
o Point-to-point, blocking communication

O

O

O
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‘ Software stacks in MPSoCs *

= MPSoC resulted in a new generation of custom middleware that
relies less on standard services and models.

= SoC middleware has been designed from scratch for several
reasons.

o Often power or energy constrained. Any services must be
implemented very efficiently.

o Although SOC may be committed with outside standard services,
they are not constrained to use standards within the chip.

o Today’s SoC are composed of a relatively small number of
processors. ( simple yet)

= Software stack manages resources, abstracts hardware details.

= Performance, power requirements dictate a shorter stack than in
general-purpose systems.
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‘ Typical MPSoC stack

= Application layer provides
user function.

= Application-specific libraries
are tailored to provide
utilities for computation or

communication specific to Application-specific
the application libraries
= Interprocess communication
provides services across Interprocess communication

multiprocessor.

= RTOS controls basic
system functions.

= HAL uniformly abstracts
basic hardware services.
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Multitlex programming env (Paulin)

Paulin et al.: uses hardware accelerators plus
software to provide multiprocessor communication.
Supports two parallel programming models:

o DSOC: Distributed system object component

o SMP: Symmetric multiprocessing

DSOC is an object-oriented model.

o Itis a message-passing model and it supports a very
simple CORBA-like interface definition (dubbed SIDL)

o Client marshals data for call.

o Server side unmarshals data for use.

SMP engine uses memory-mapped reads/writes.
o Supports concurrent threads accessing shared memory

o The implementation performs scheduling, and includes
support for threads, monitors, conditions and semaphores.
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MultiFlex platform

Figure 1 depicts the StepNP flexible multi-processor SoC
architecture platform, which was described in detail in [7]. The
StepNP platform includes models of standard or configurable
processors. a network-on-chip. configurable H/W processing
elements, as well as networking-oriented I/O’s. Aside from these
domain-specific I/O’s, this 1s a general-purpose platform.

P
}) Processor 1 Processor N _
Proc. Proc.
it e 8
e AsIC
]j eSoG |eRAM eSoG |eRAM
:|5 Packeti-
QbR Network-on-Chip _ phadd ] zation
Mem I,'O—b [ L)
1 ]
Gen-puerB u | uH!w pE|" " " ||[AWPE
vo [TLJH| eMEM |1 (esoc) [eFPGA)

Figure 1. StepNP MP-SoC Platform
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MultiFlex platform

Our mmplementation of the DSOC programming model relies on
two key services. As we are targeting this platform at high
performance applications. a key design choice 1s the
implementation of these services in hardware.

e  The hardware Message Passing Engine (MPE) 1s used to
optimize mnter-process communication. It translates outgoing
messages mnto a portable representation. formats them for
transmission on the network-on-chip, and provides the
reverse function on the receiving end.

e  The hardware Object Request Broker (ORB) engine 1s used
to coordinate object communication. As the name suggests,
the ORB 1s responsible for brokering transactions between
clients and servers.
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MultiFlex platform mapping

[

Datatype
conver-
sion

Host GPP H/W J HW-M

[1s] [ps| |Proc. ElementH |Risc [i$ Message
Passing
Engine

NOUL M-

[Out]| wmeEm (’ DSOC H/W Object
\ Request Broker
\ e —

Fig. 2. DSOC model to platform mapping.
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MultiFlex concurrency engine
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Hardware concurrency engine

SMP functionality in the MultiFlex system is implemented by a
combination of a lightweight software layer and a hardware
Concurrency Engine (CE). The SMP access functions to the
concurrency engine are provided by a C++ APL It defines classes
and methods for threads, monitors (with enter/exit methods),
condition variables (with methods for signal and wait), etc.

The CE appears to the processors as a memory-mapped device,

which controls a number of concurrency objects. For example, a
special address range mn the concurrency engine could correspond
to a monitor, and operations on the monitor are achieved by
reading and writing addresses within this address range. Most
operations associated with hundreds or thousands of instructions
on a conventional SMP operating system are accomplished by a
single read or write operation to a location in the concurrency
engine.
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Hardware concurrency engine

To motivate the need for a hardware concurrency engine, consider
the traditional algorithm for entering a monitor. This usually
consists of the following:

1. Acquire lock for monitor control data structures. This 1s
traditionally done with some sort of atomic test and set
instruction, with a spin and back-oft mechanism for heavily
contested locks.

2. Look at busy flag of monitor. If clear, the thread can enter
the monitor. If the busy flag is set, the thread must: a) link
itself into a list of threads trying to enter the monitor, b)
release the lock for the monitor, ¢) save the state of the
calling thread (e.g., CPU registers) and switch to another
thread.
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Monitor
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‘ Example: OMAP software platform

CSL.: chip support library
DDK: driver development kit

Multimedia APIs

DSP Bridgd
API

CSLAPI
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‘ OMAP software architecture
Al ol il

MEDIA APls
MPEG4 MP3 AMR

Node Data Base,

y RESOURCE MANAGER

0S kernel MCU Bridge Kernel DSPIBIOS KERNEL
& drivers

video audio speech

DAIS Algorithms
encapsMNgted in socket nodes

0% adapter LINK driver LINK driver ot/ ier drivers

GENERAL-URPOSE PROCESSOR TMS320 JSP

Figure 5-5. OMAP multi-processor software architecture
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DSPBridge

Abstracts the DSP software architecture for the
general-purpose software environment.

APIs include driver interfaces and application
interfaces:

o Initiate and control DSP tasks.

o Exchange messages with DSP.

o Stream data to/from DSP.

o Check status.
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Resource manager

Provide API interface to the DSP.

o Loads, initiates, and controls DSP applications.
Keeps track of resources:

o CPU time, memory pool, utilization, etc.

Controls:

o Tasks.

o Data streams between DSP and CPU.
o Memory allocation.

High Performance Embedded Computing
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Multimedia messaging service

Minimum requirement from spec:

o JPEG, MIME text with SMS, GSM AMR, H.263, SVG for
graphics.

Optional: AAC, MP3, MIDI, MP4, and GIF.

Must provide: MM presentation, user notification,
MM message retrieval.

Additional functions: MM composition, MM
submission, MM message storage,
encryption/decryption, user profile management.
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Quality-of-service

QoS must be measured system-wide.

o One component can destroy system QoS characteristics.
QoS modeling:

o Contract specifies resources that will be provided.

o Protocol manages the contract.

o Scheduler implements the contract.

Resources must be available to deliver on the
contract.
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Design veritication

Verifying multiprocessors is hard:

o Observe and control data.

o Drive part of the system into a desired state.
o Generate and test timing effects.

CoMET simulator

o Hellestrand
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Engineering Systems on a Chip:

The Bloody Revolution in Tools, Methodologies
and Power

Graham R. Hellestrand

13 s b b [ R |
IIQ[IL I_IN;' LIIC Hiad,

where Greek's ﬂercely and intermittently battled Trojans for ten long years, the outcome
of the systems engineering battle is certain. Unlike the complete destruction of the city of
Troy, the resulting realignment will be a triumvirate between — hardware, software and
mechanical designers. The sooner the battle is won the sooner the potential of the three
powerful potentates will yield novel systems and architectures to dazzle the techno-
enervated masses. Like all power-sharing structures, it is unstable but ultimately
governable by the dour and pragmatic economics of survival. Already fleet-footed start-
up companies are demonstrating the fecundity of the new godhead — carpe diemi
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Figure 3: Architectural and Engineering Assessment
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CoMET simulator

A new, fast, and accurate processor model

Two parts

o Models for the behavior of instruction execution

o Models for the dynamic parts of the processor

Virtual processor model (VPM) describes function of the

application running on the processor.

o The code executed by a VPM may be C or C++ code

o Very fast, like static timing analysis

I/O parts that communicate between the processor and the

hardware

o Interrupts, cache, virtual memory, DMA, bus signals.

o Speed is limited by the level of detail modeled and by the speed of
the hardware simulator effecting communication

Simulation backplane connects processor models and hardware

models.

o Many VPMs and a single HDL simulator

o The back plane kernel mediates the maintenance of causality
between the domains that defines their own relative frames of space
and time
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Figure 4. A Hardware-Software System Simulator Model
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Figure 5. Components of a Typical System
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Figure 6. Multi-processor System Model
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