
Chapter 7-1:
H rd r /S ft r C D si nHardware/Software Co-Design

S Ik ChSoo-Ik Chae

High Performance Embedded Computing 1

Topicsp

Platforms.

Performance analysis.y

Design representations.

High Performance Embedded Computing 2

Embedded computing systemp g y

Requirements: tight three constraints
L tLow cost

Low power

High performanceHigh performance

These three constraints must be met simultaneously

C d i l ti H d S ftCo-design as a solution: Hardware + Software

High Performance Embedded Computing 3

Design platformsg p

Different levels of integration:
PC + board: very low volumey

Custom board with CPU + FPGA or ASIC: lower
cost and lower-power.p

Platform FPGA: more expensive than custom
chips.p

System-on-chip.

High Performance Embedded Computing 4

CPU/accelerator architecture/

CPU is sometimes called host.
Talk to the accelerator through data
and control registersand control registers

The registers on the accelerator
allows the CPU to monitor the

memory

allows the CPU to monitor the
accelerator’s operation and to give it
commands

CPU

accelerator

Accelerator communicate via
shared memory

If a large volume of data is needed.

May use DMA to communicate.

High Performance Embedded Computing 5

Example: Xilinx Virtex-4p

System-on-chip:
FPGA fabric.

PowerPC.

On-chip RAM.On chip RAM.

Specialized I/O devices.

FPGA fabric is connected to PowerPC busFPGA fabric is connected to PowerPC bus.

MicroBlaze CPU can be added in FPGA
fabric.

High Performance Embedded Computing 6

Virtex-5
SoC Challenge:

Create High speed frequency designg p q y g
Use very High speed communication links
Keep flexibility for modification

Xilinx response:Xilinx response:
FPGA provides hardware structure that enables integrated
high speed design (up to 550Mhz)
FPGA offers integrated differential solution (LVDS) for DDR
high speed communication + Hard IP Transceiver (Up to
3.2Gbps)p)
FPGA is by default the best hardware flexible solution
offered through hardware reconfiguration (even partial
reconfiguration)g)
FPGA can implement processor core as

Soft IP core (Microblaze)
Hard IP core (PowerPC)

High Performance Embedded Computing 7

Hard IP core (PowerPC)

Virtex 5: high Speed communication links
Components interconnection:

Data width may be large and may require a huge number

g p

Data width may be large and may require a huge number
of IOBs

PCB Integrity signal
Xilinx Sparse Chevron + LVDS
Power consumption

LVDSLVDS

System communication
Ethernet

Xilinx includes Tri-mode MAC Hard IP (10/1000/1000Mbps)
in Virtex4 FX and Virtex5 LXT

PCI ExpressPCI Express
Xilinx includes PCI Express Hard IP in the newest Virtex5
LXT family.

PCI 1 2 4 d 8

High Performance Embedded Computing 8

PCIe x1,x2,x4 and x8

MicroBlaze-Based Embedded Design
(Soft IP)

Flexible Soft IPMicroBlaze™
32-Bit RISC Core

BRAM
Local Memory

Bus

I-Cache
BRAM

Configurable
32-Bit RISC Core

Fast Simplex

Bus
D-Cache
BRAM

Sizes

Instruction Data

PowerPC
405 Core

Dedicated Hard IP

Instruction Data

PowerPC
405 Core

Dedicated Hard IP

PowerPC
405 Core

Dedicated Hard IP

PowerPC
405 Core

Dedicated Hard IPPossible in
Virtex-II Pro

r OPBp
Link

0,1….7 A
rb

ite
r

Processor Local Bus

PLB
Bus

Bridge A
rb

ite
r

Processor Local Bus

PLB
Bus

Bridge
Bus

Bridge

Hi-Speed GB
e.g.

MHi-SpeedHi-Speed GBGB
e.g.

M
e.g.

M

A
rb

ite
r OPB

On-Chip Peripheral Bus

UART 10/100
E-Net

Memory
Controller

Custom
Functions

Custom
Functions

Hi-Speed
Peripheral

GB
E-Net

Memory
Controller

Hi-Speed
Peripheral
Hi-Speed

Peripheral
GB

E-Net
GB

E-Net
Memory

Controller
Memory

Controller

CacheLink

Off-Chip FLASH/SRAMSRAM

High Performance Embedded Computing 9

Memory

PowerPC-Based Embedded Design
(Hard IP)

RocketIO™

PowerPC
405 Core

Dedicated Hard IP
Flexible Soft IP

DSOCM
BRAM

ISOCM
BRAM

IBM CoreConnect405 Core
DCR Bus

A
rOPBer

Instruction Data

PLB
B

on-chip bus standard
PLB, OPB, and DCR

rbiter

On-Chip Peripheral Bus

OPB

A
rb

ite

Processor Local Bus

PLB
Bus

Bridge

UART GPIO
On-Chip

Peripheral
Hi-Speed

Peripheral
GB

E-Net

e.g.
Memory

Controller

Full system customization to meet
performance, functionality, and
cost goals

Off-Chip
Memory

ZBT SSRAM
DDR SDRAM

SDRAM

High Performance Embedded Computing 10

cost goals

Embedded Development Kitp

What is the Embedded Development Kit
(EDK)?

The Embedded Development Kit is the XilinxThe Embedded Development Kit is the Xilinx
software suite for designing complete embedded
programmable systemsp g y

The kit includes all the tools, documentation, and
IP that you require for designing systems with y q g g y
embedded IBM PowerPC™ hard processor cores,
and/or Xilinx MicroBlaze™ soft processor cores

It enables the integration of both hardware and
software components of an embedded system

High Performance Embedded Computing 11

Embedded System Toolsy
GNU software development tools

C/C++ compiler for the MicroBlaze™ and PowerPC™ processors (gcc)C/C compiler for the MicroBlaze and PowerPC processors (gcc)
Debugger for the MicroBlaze and PowerPC processors (gdb)

Hardware and software development tools
B S t B ild Wi dBase System Builder Wizard
Hardware netlist generation tool: PlatGen
Software library generation tool: LibGeny g
Simulation model generation tool: SimGen
Create and Import Peripheral wizard
Xili Mi D b (XMD)Xilinx Microprocessor Debugger (XMD)
Hardware debugging using ChipScope™ Pro Analyzer cores
Eclipse IDE-based Software Development Kit (SDK)p p ()
Application code profiling tools
Virtual platform generator: VPGen
Flash Writer utility

High Performance Embedded Computing 12

Flash Writer utility

Detailed EDK Design Flowg

Standard Embedded Software Flow Standard Embedded Hardware Flow

MHS File
system.mhs

Source Code
(C code)

MSS File

Source Code
(VHDL/Verilog)

Standard Embedded Hardware Flow

Processor IP
MPD Files

PlatGen
Compile

Object Files LibGen

MSS File
system.mss

EDIF

Synthesis

system.ucf
FPGA Implementation

(ISE/Xflow)
Link

j

Libraries

IP Netlists

Create FPGA Programming
(system.bit)

Data2MEMExecutable

Hardware

download.bit

High Performance Embedded Computing 13

Virtex-5 LXT FPGAs

Built on Virtex 5 LX platform 65nm ExpressFabricBuilt on Virtex-5 LX platform 65nm ExpressFabric
technology

FPGA industry’s first built-in PCIe & Ethernet blocksFPGA industry s first built in PCIe & Ethernet blocks

Compliance tested at PCISIG Plugfest and UNH IOL

Industry’s lowest power 65nm transceivers: <100mW @Industry s lowest power 65nm transceivers: <100mW @
3.2Gbps

Support for all major protocols: PCIe, GbE, XAUI, OC-48, pp j p , , , ,
etc.

Six devices ranging from 30K to 330K logic cells

High Performance Embedded Computing 14

Virtex summaryy
Depending of your Digital system, you may

Xili FPGA th l ti f S tuse Xilinx FPGA as the solution for System
On Chip.

Today Xilinx can provide in 1 component
(Virtex4 or Virtex5):

Embedded PowerPC 405

Embedded Ethernet MAC 10/100/1000

Embedded MAC DSP

Embedded High Speed Transceivers

E b dd d PCI E (Vi t 5 l)Embedded PCI Express (Virtex5 only)

Programmable Logic Cells

High Performance Embedded Computing 15

….

Example: WILDSTAR II Prop

High Performance Embedded Computing 16

Performance analysisy

Must analyze accelerator performance to determine
s stem speed psystem speedup.

High-level synthesis helps:
Use as estimator for accelerator performance.

Use to raise the level of abstraction for hardware designers
In implementing acceleratorIn implementing accelerator.

High Performance Embedded Computing 17

High-level synthesisg y

High level synthesis createsHigh-level synthesis creates
register-transfer description
from behavioral description.
S h d l d ll tSchedules and allocates:

Operators
Functional unit
On a particular clock cycle

Variables: registers
Connections: muxes

Control step or time step is
one cycle in system
controller.controller.
Components may be
selected from technology
library.

High Performance Embedded Computing 18

library.

Data path/controller architecturep /

Data path performs
regular operations,
t d t i i t

controller
stores data in registers.

Controller provides
i d irequired sequencing.

Data pathData path

High Performance Embedded Computing 19

Multiplexersp

S fSharing functional units and registers

Controlled by a control FSM, which supplies the select signals
to the muxesto the muxes.

In most cases, we don’t need demuxes at the outputs of
shared units because the hardware is generally designed to g y g
ignore values that aren’t used on any given clock cycle.

Muxes add three types of costs to the implementation
Delay

Logic

WiringWiring

Sharing isn’t always a win
Adders get smaller and faster by not sharing

High Performance Embedded Computing 20

Adders get smaller and faster by not sharing

Models

Model computation as a
data flow graph.

Critical path is set of
nodes on path that
d t i h d ldetermines schedule
length.

High Performance Embedded Computing 21

Simple p
example

High Performance Embedded Computing 22

Schedules

As-soon-as-possible
(ASAP) pushes all

d t t t f l knodes to start of slack
region.

A l t ibl
ASAPALAP

As-late-as-possible
(ASAP) pushes all
nodes to end of slacknodes to end of slack
region.

Useful for boundingUseful for bounding
schedule length.

High Performance Embedded Computing 23

First-come first-served, critical path, p

FCFS scheduling walks through data flow graph
from sources to sinksfrom sources to sinks.

Schedules each operator in first available slot based
on available resourceson available resources.

Because it chooses nodes at equal depth arbitrarily, it may
delay a critical operation.delay a critical operation.

Critical-path scheduling walks through critical nodes
first.first.

High Performance Embedded Computing 24

List schedulingg

An effective heuristic that tries to improve on critical-
path scheduling by providing a more balanced

id ti f ff iti l th dconsideration of off-critical-path nodes.
Improvement on critical path scheduling.

E ti t i t f d ff th iti l thEstimates importance of nodes off the critical path.
Estimates how close a node is to being critical by
measuring D number of descendantsmeasuring D, number of descendants.

Node with fewer descendants is less likely to become
critical.

Traverse graph from sources to sinks.
For nodes at a given depth, order nodes by criticality.

High Performance Embedded Computing 25

For nodes at a given depth, order nodes by criticality.

Force-directed schedulingg
Tries to minimize the hardware
cost by balancing the use of
functional units across cycles
Forces model the connections to
other operatorsother operators.

Forces on operator change as
schedule of related operators
hchange.

Forces are a linear function of
displacement.p
Predecessor/successor forces
relate operator to nearby
operatorsoperators.
Place operator at minimum-force
location in schedule.

High Performance Embedded Computing 26

Distribution graphg p

Bound schedule using
ASAP, ALAP.

Count number of
operators of a given
t t h i t itype at each point in
the schedule.

W i ht b h lik lWeight by how likely
each operator is to be at
that time in the schedule.

High Performance Embedded Computing 27

Distribution graphg p

High Performance Embedded Computing 28

Distribution graphg p

High Performance Embedded Computing 29

Distribution
For each DG, the distribution in c-step i is given by

Σ DG(i) = Σ Probability (operation, i) (1)

We assume that each operation has a uniform
for all operation

We assume that each operation has a uniform
probability of being assigned to any feasible control
step.
A distribution graph shows the expected value of the
number of operators of a given type being assigned
to each c-stepto each c step.
As shown in Figure 7, some operation in different
branches are mutually exclusive
Th f ti it b h d b thThe same function unit can be shared by those
operation as they will never execute concurrently

High Performance Embedded Computing 30

Distribution graphg p

High Performance Embedded Computing 31

Calculation of self-forces
Each operation of the CDFG will have a self force
associated with each c step i of its time frameassociated with each c-step i of its time frame.
This is a quantity which reflects the effect of an
attempted control step assignment on the overallattempted control step assignment on the overall
operation concurrency.
It is positive if the assignment causes an increase of p g
operation concurrency, and negative for a decrease.
The force is much like that exerted by a spring that
obeys Hooke’s law.

Force = K * x, x: displacement

E h DG b t d i f iEach DG can be represented as a series of springs
(one for each c-step)

High Performance Embedded Computing 32

Calculation of self-forces
The constant of each spring K is given by the value
of DG(i), where i is the c-step number for which the
f i l l t dforce is calculated.
The displacement of the spring x is given by the
increase (or decrease) of the probability of theincrease (or decrease) of the probability of the
operation in each c-step due to a rescheduling of
the operation.
F i ti h i iti l ti fFor a given operation whose initial time frame spans
c-steps t to b (t <=b), the force in c-step i is given by

Force(i) = DG(i) * x(i)Force(i) DG(i) x(i)
The total self force associated with the assignment
of an operation to c-step j (t <= j <= b)

Self Force(j) = Σ Force(i) (2)
i = t

b

High Performance Embedded Computing 33

i = t

Calculation of self-forces

High Performance Embedded Computing 34

Calculation of self-forces

We will attempt to schedule the circled multiply
operation in c-step 1 as depicted in Fig. 8(b)

High Performance Embedded Computing 35

Calculation of self-forces

S lf F (1) 2 833*0 5 2 333*(0 5) 0 25Self Force(1) = 2.833*0.5 +2.333*(-0.5)=0.25
The force is positive

Thi ill h d ff t th ll di t ib tiThis will have an adverse effect on the overall distribution

Self Force(2)= 2.833*(-0.5)+2.333*0.5= -0.25
A modification ill be propagated to the time framesA modification will be propagated to the time frames
of the predecessor and/or successor operations
Predecessor forces and successor forcesPredecessor forces and successor forces
Succ Force(3) = 2.333*(-0.5) + 0.833*0.5 = -0.75
Total Force(2)= Self Force(2) + Succ Force(3) = 1 0Total Force(2)= Self Force(2) + Succ Force(3) = -1.0

Even better

High Performance Embedded Computing 36

Summary of force-directed schedulingy g

High Performance Embedded Computing 37

Path-based schedulingg
Minimizes the number of control states in
controller.

Schedules each path independently, then p p y,
combines paths into a system schedule.

Schedule path combinations using minimumSchedule path combinations using minimum
clique covering.

Al k f t ibl (AFAP)Also known as as-fast-as-possible (AFAP)
scheduling

High Performance Embedded Computing 38

Path-based schedulingg

High Performance Embedded Computing 39

Path-based schedulingg

High Performance Embedded Computing 40

Path-based schedulingg

High Performance Embedded Computing 41

AFAP Schedulingg

High Performance Embedded Computing 42

AFAP scheduling of a pathg p

The ideaThe idea
Find all longest paths
Then compute the constraints for each pathe co pute t e co st a ts o eac pat
Schedule each path AFAP independently.

A path corresponds to one possible execution
sequence
So, the number of different paths is a measure of
how many different functions a design can performhow many different functions a design can perform.
Although the number of paths in a graph can grow
worse than exponentially, in practice we have found

th d f 1000 th f th ti it fon the order of 1000 paths for the execution unit of a
microprocessor.

High Performance Embedded Computing 43

Path

Path1 = {1 2 3 4 5 6 7 8 9 10}Path1 = {1,2,3,4,5,6,7,8,9,10}
Path2 = {1,2,3,4,6,7,8,9,10}
Path3 = {7 8 9 10}Path3 {7,8,9,10}
Note that path that starts at loop beginning vF must
also be considered.

High Performance Embedded Computing 44

Constraints

Variables can be assigned only once in one control
t tstate.

IO ports can be read or written only once in one
control statecontrol state
Functional units can be used only once in a control
state
The maximal delay within one control state limits the
number of operations that can be chained.
The amount of storage and communication (busesThe amount of storage and communication (buses,
muxes) is not constrained presently.
Obviously storage and communication can beObviously storage and communication can be
optimized during allocation.
Constraints are kept as sets of operation {vi}

High Performance Embedded Computing 45

Constraints and Interval graphg p
Variables can be assigned only once in one control state.
IO ports can be read or written only once in one controlIO ports can be read or written only once in one control
state
Functional units can be used only once in a control stateFunctional units can be used only once in a control state
The maximal delay within one control state limits the
number of operations that can be chained.p
The amount of storage and communication (buses,
muxes) is not constrained presently.
Obviously storage and communication can be optimized
during allocation.
Constraints are kept as sets of operation {vi}

If any v in {vi} is the first operation in the next state, the
constraint is met

High Performance Embedded Computing 46

constraint is met.

Interval graph and Clique g p q

Th i t l h f th t f t i t f hThe interval graph for the set of constraints of each
path is formed

A d i i li i i dAnd a minimum clique covering is computed.

In the interval graph each node corresponds to an
interval and edges indicate that the corresponding
tow intervals overlaps. A clique is a complete

b h ith ll ibl dsubgraph with all possible edges.

A minimum clique covering (NP-complete in general)
i i i l b f li th t h d iis a minimal number of cliques, so that each node is
in one clique.

High Performance Embedded Computing 47

Constraints and Interval graphg p

High Performance Embedded Computing 48

Cut

A cut corresponds to the set of nodes overlapped in
each cliqueeach clique.

It represents possible point where a state starts.

St t d d l th thStates are ordered along the path.

In addition, a cut of the first state is added.

The cuts give the minimum number of control states
to execute this path.

A state starts at a cut corresponding to a clique

High Performance Embedded Computing 49

A minimum clique coveringq g

High Performance Embedded Computing 50

Overlapping of paths pp g p

To find the minimum number of states for all paths,
the schedule for each path must be overlappedthe schedule for each path must be overlapped.

Define another graph
Nodes: cutsNodes: cuts

Edges: join nods corresponding to overlapping cuts

Find a minim clique of this new graphFind a minim clique of this new graph
Gives the minimum set of cuts that fulfills the fastest
schedule for each path and thus the minimum number ofschedule for each path, and thus the minimum number of
control states.

High Performance Embedded Computing 51

Minimum number of control states

High Performance Embedded Computing 52

Control finite state machine

High Performance Embedded Computing 53

Buidling CFSM with no area constraintg

Since states are mutually exclusive, scheduling one
operation in more than one state.

High Performance Embedded Computing 54

p

Accelerator estimation

E ti ti th h d t f l tEstimating the hardware cost of an accelerator
requires balancing accuracy and efficiency.

E ti ti t b d h t idEstimation must be good enough to avoid
misguiding the overall synthesis process.

B t th ti t t b t d i klBut the estimates must be generated quickly
enough that co-synthesis can explore a large
number of candidate designsnumber of candidate designs.

They just rely on scheduling and allocation to
measure execution time and hardware sizemeasure execution time and hardware size.

High Performance Embedded Computing 55

Accelerator estimation

How do we use high-level synthesis, etc. to estimate
the performance of an accelerator?the performance of an accelerator?

We have a behavioral description of the accelerator
functionfunction.

Need an estimate of the number of clock cycles.

Need to evaluate a large number of candidateNeed to evaluate a large number of candidate
accelerator designs.

Can’t afford to synthesize them allCan t afford to synthesize them all.

High Performance Embedded Computing 56

Estimation methods

Hermann et al. used numerical methods.
Estimated incremental costs due to adding blocks g
to the accelerator.

Henkel and Ernst used path-basedHenkel and Ernst used path based
scheduling.

Cut CFDG into subgraphs: reduce loop iterationCut CFDG into subgraphs: reduce loop iteration
count; cut at large joins; divide into equal-sized
pieces.pieces.

Schedule each subgraph independently.

High Performance Embedded Computing 57

Single- vs. multi-threadedg

One critical factor is available parallelism:
single-threaded/blocking: CPU waits for g g
accelerator;

multithreaded/non-blocking: CPU continues to g
execute along with accelerator.

To multithread, CPU must have useful workTo multithread, CPU must have useful work
to do.

But software must also support multithreadingBut software must also support multithreading.

High Performance Embedded Computing 58

Total execution time

Single-threaded: Multi-threaded:

P1 P1

P2 A1 P2 A1

P3 P3

P4 P4

High Performance Embedded Computing 59

Execution time analysisy

Single-threaded:
Count execution time of
all component processes

Multi-threaded:
Find longest path
through executionall component processes. through execution.

High Performance Embedded Computing 60

Hardware-software partitioningp g

Partitioning methods usually allow more than one g y
ASIC.

Typically ignore CPU memory traffic in bus yp y g y
utilization estimates.

Typically assume that CPU process blocks while yp y p
waiting for ASIC.

mem

CPU

ASIC

CPU

ASIC

High Performance Embedded Computing 61

Co-design activities g
Scheduling operations, including communication on
the network and computation on the PEs: make surethe network and computation on the PEs: make sure
that data is available when it is needed.
Allocation computation to PE: make sure thatAllocation computation to PE: make sure that
processes don’t compete for the PE.
Partitioning functional description into computation g p p
units: break operations into separate processes to
increase parallelism; put serial operations in one

t d i tiprocess to reduce communication.
Mapping: take abstract PEs and communication
links onto specific components; mapping selectslinks onto specific components; mapping selects
specific components that can be associated with
more precise cost, performance, and power

High Performance Embedded Computing 62

p , p , p

Scheduling and allocation

Must
schedule/allocate

P1
P2

computation

communication

P1

P3communication

Performance may
vary greatly withvary greatly with
allocation choice.

P1 P3P1 P2 P3

CPU1
ASIC1

High Performance Embedded Computing 63

/Problems in scheduling/allocation
Can multiple processes execute concurrently?

Is the performance granularity of available
components fine enough to allow efficient search of
the solution space?

Do computation and communication requirements
conflict?

How accurately can we estimate performance?
software

custom ASICs

High Performance Embedded Computing 64

Partitioning example

r = p1(a,b);

r=p1(a,b); s=p2(c,d);

r p1(a,b);
s = p2(c,d);

z = r + s;

z = r + s

before
ft

z r s

after

High Performance Embedded Computing 65

Problems in partitioning

At what level of granularity must partitioning
be performed?

How well can you partition the system without
an allocation?an allocation?

How does communication overhead figure
into partitioning?into partitioning?

High Performance Embedded Computing 66

Problems in mapping

Mapping and allocation are strongly
connected when the components vary widely
in performance.

Software performance depends on busSoftware performance depends on bus
configuration as well as CPU type.

Mappings of PEs and communication linksMappings of PEs and communication links
are closely related.

High Performance Embedded Computing 67

Program representationsg p

CDFG: single-threaded, executable, can
extract some parallelism.

Task graph: task-level parallelism, no
operator-level detailoperator level detail.

TGFF (task graph for free) generates random task
graphsgraphs.

UNITY: based on parallel programming
llanguage.

High Performance Embedded Computing 68

Platform representationsp

T h l t blTechnology table
describes PE, channel
characteristics

Type Speed cost

ARM 7 50E6 10characteristics.
CPU time.
Communication time.

MIPS 50E6 8

Cost.
Power.

PE 2
Multiprocessor
connectivity graph
describes PEs

PE 1

describes PEs,
channels. PE 3

High Performance Embedded Computing 69

