
Chapter 4-3: Processes and
O i SOperating Systems

Soo-Ik Chae

High Performance Embedded Computing 1

Topicsp

Priority ceiling protocol (PCP)

Performance estimation and Scheduling g

Languages and scheduling

O ti t h i dOperating systems mechanisms and
overhead.

Embedded file systems.

High Performance Embedded Computing 2

Priority ceiling protocoly g p

High Performance Embedded Computing 3

PCP Protocol Definition (1)()

High Performance Embedded Computing 4

PCP Protocol Definition (2)()

High Performance Embedded Computing 5

PCP Example (1)p ()

High Performance Embedded Computing 6

PCP Example (2)p ()

High Performance Embedded Computing 7

PCP Example (3)p ()

High Performance Embedded Computing 8

PCP Propertiesp

High Performance Embedded Computing 9

Performance Estimation (1)()

Assumption that the computation time of a process is
fixed is not very realistic
Execution time depends on

D t d d t thData dependent path
Cache

Strong interests on effects of multiple tasks on the cacheStrong interests on effects of multiple tasks on the cache
A segmented locked cache

A program can lock a part of the cache so that no other program
could modify those cache locations.
This would allow the program to certain parts of itself in the cache
after a preemption.p p
It reduces the cache size not only for the program with the lock
bust also for other programs in the system.

High Performance Embedded Computing 10

Performance Estimation
Compiler support for software-based cache partitioning
[Mueller][Mueller]

High Performance Embedded Computing 11

Software-based cache partitioningp g

High Performance Embedded Computing 12

Software-based cache partitioningp g
Partitioning the cache for use by multiple processes.

High Performance Embedded Computing 13

Software-based cache partitioningp g

High Performance Embedded Computing 14

Software-based cache partitioningp g

High Performance Embedded Computing 15

Software-based cache partitioningp g

High Performance Embedded Computing 16

Cache modeling and schedulingg g
Li and Wolf developed a model for multitasking in caches.

h h t bl f t i t i th heach process has a stable footprint in the cache.

Each process was modeled with a two-state model:
Process is in the cacheProcess is in the cache.

Process is not in the cache.

Total state of the cache is given by the union of all the models for g y
the processes that use the cache.

The performance of a process is modeled by two major
d bmeasured numbers

The worst-case execution time when the process is not in the
cachecache

The average-case execution time when the process is in the
cache.

High Performance Embedded Computing 17

Cache modeling and schedulingg g

Given the cache model and the performance
characteristics of each process, they constructed an
abstract schedule that approximated the execution time
of the multitasking systemof the multitasking system.

Fig. 10: accuracy
Average error: less than 10%Average error: less than 10%

High Performance Embedded Computing 18

Languages and schedulingg g g

Programming languages can capture information about
tasks and inter-process communication.

C il ti t i li d i l t tiCompilation can generate specialized implementations,
implement static schedules.

Let look at languages that provide task level models forLet look at languages that provide task-level models for
system activity.

High Performance Embedded Computing 19

Codesign finite state machines (CFSMs)g ()

A control model explicitly designed to be implemented as
combinations of hardware and softwarecombinations of hardware and software.
A CFSM repeatedly executes a four-phase cycle:

IdleIdle.
Detect input events.
Go to new state based on current state and inputsGo to new state based on current state and inputs.
Emit outputs.

A CFSM is modeled by an automaton with one-input y p
buffers for each input and one-input buffers for each
output.

High Performance Embedded Computing 20

Static scheduling using Petri netsg g

Lin and Zhu developed an algorithm for statically
scheduling processes using Petri nets.

Given a Petri net model for a process, find maximal
li f t f th h d l ti iacyclic fragments of the process, schedule operations in

each fragment.

Expansion of a Petri net: acyclic Petri net in whichExpansion of a Petri net: acyclic Petri net in which
every transition has one input or output place,

at least one place with no input transitions (initial places)at least one place with no input transitions, (initial places)

at least one place with no output transitions (cut-off places)

High Performance Embedded Computing 21

Static scheduling using Petri netsg g

Maixmal expansion of G with respect to m, E is p p
an acyclic Petri net with the following properties

The initial place correspond to m (initial marking)p p (g)

The cut-off places correspond to the set of places
encountered when a cycle has been reached

E is transitively closed: for each transition or place in E,
all preceding places and transitions reachable form m

l i Eare also in E

Code is generated form maximally expanded
fragment by pre-ordering operations.

High Performance Embedded Computing 22

Static scheduling using Petri netsg g

Constructing a Petri net model from a program of
communicating processes.

High Performance Embedded Computing 23

Static scheduling using Petri netsg g

High Performance Embedded Computing 24

Maximal expansionsp

High Performance Embedded Computing 25

Software thread integrationg

Dean: schedule multiple p
threads statically in a single
program.
Primary thread has real-timePrimary thread has real time
requirements.
Secondary thread does not
have real-time requirementshave real time requirements.
STI copies portions of the
primary thread into the
secondary thread so that thesecondary thread so that the
primary thread execute
correctly and meets its
deadlinesdeadlines.

No context switching
Reduce execution time

High Performance Embedded Computing 26

Software thread integration and CDGsg

Each thread is represented as
l d d hcontrol dependence graph

(CDG).
Node: basic block/ conditional
test

Edge: each control decision

Annotated with executionAnnotated with execution
times of each blocks.

Code from primary thread must
be replicated in secondary
thread to be sure that it is
executed along every path.

Insertion points must meet
primary thread deadlines.

High Performance Embedded Computing 27

General-purpose vs. real-time OSp p

S h d l h diff t l i l ti dSchedulers have very different goals in real-time and
general-purpose operating systems:

Real-time scheduler must meet deadlines.Real time scheduler must meet deadlines.
General-purpose scheduler tries to distribute time equally among
processes. (fairness and avoid starvation)

Early real time operating systems:Early real-time operating systems:
Hunter/Ready OS for microcontrollers was developed in early
1980s.
Mach ran on VAX, etc., provided real-time characteristics on
large platforms.

High Performance Embedded Computing 28

Memory managementy g

Memory management allows RTOS to run outside
applications. (protection)

C ll h d l d d i t ll dCell phones run downloaded, user-installed programs.

Memory management helps the RTOS manage a large
virtual address spacevirtual address space.

Flash may be used as a paging device.

High Performance Embedded Computing 29

Windows CE memory managementy g

Flat 32-bit address space.

Top 2 GB for kernel.

Statically mapped.

Bottom 2 GB for user processes.

High Performance Embedded Computing 30

WinCE user memory spacey p

64 l t f 32 MB h64 slots of 32 MB each.
Slot 0 is currently running
process

Slot 63: resource mappings
process.
Slots 1-33 are the
processes.

Slots 34-62: object store,
memory mapped filesp

32 processes max.
Object store, memory

d fil
Slot 3: process

…

mapped files, resource
mappings.

Slot 1: DLLs

Slot 2: process

Slot 0: current process

Slot 1: DLLs

High Performance Embedded Computing 31

Mechanisms for real time operationp

T k h i f l tiTwo key mechanisms for real time:
Interrupt handler.
Scheduler.Scheduler.
Interrupt must be carefully handled to avoid destroying the real-
time properties of the OS.

Interr pt handler is part of the priorit s stem Interr ptsInterrupt handler is part of the priority system. Interrupts
have priorities set in hardware. These priorities
supersede process priorities of the processes.p p p p

Can be seen as a distinct set of processes that are separate form
the operating system’s regular processes.
Should spend as little time as possible in the interrupt handlersShould spend as little time as possible in the interrupt handlers
that are dispatched by the hardware interrupt system.

High Performance Embedded Computing 32

Interrupt handling in RTOSsp g

But many real devices need a significant amount of
computation to be done somewhere.

As a result, device oriented processing is often divided
into two sections: an interrupt service routine (ISR) and
an interrupt service thread (IST)an interrupt service thread (IST).

ISR is dispatched by the hardware interrupt system while
IST is a user-mode processIST is a user-mode process

Scheduler determines ability to meet deadlines.

High Performance Embedded Computing 33

Windows CE interruptsp

Two types of ISRs:
Static ISRs are built into kernel, one-way y
communication to IST.

Installable ISR can be dynamically loaded, uses y y
shared memory to communicate with IST.

High Performance Embedded Computing 34

Static ISR

Built into the kernel.
SHx and MIPS must be written in assembler, limited
register availabilityregister availability.

One-way communication from ISR to IST.
C h b ff b t l ti t b d fi dCan share a buffer but location must be predefined.

Nested ISR support based on CPU.

Stack is provided by the kernel.

High Performance Embedded Computing 35

Installable ISR

Can be dynamically loaded into kernel.

Loads a C DLL (dynamically linked library).

Can use shared memory for communication.

ISRs are processed in the order they were installed.

Limited stack size.

High Performance Embedded Computing 36

Interrupt latencyp y

ISR
Amount of time that interrupts are turned off

Time required to visit ISR save registers etcTime required to visit ISR, save registers, etc.

IST
Time spent in ISRTime spent in ISR

Time spent in Kernel call

Thread scheduling time

High Performance Embedded Computing 37

WinCE 4.x interruptsp

th
I

hreadIST processing

O
I-IS

RISR ISR

k
O

A
LISR ISR

kernel

ISH Set event Enable ID

All higher
enabled

H
WAll enabled

Except ID
All enabled

device

High Performance Embedded Computing 38

Operating system overheadp g y

Rhodes and Wolf studied context switching overhead
using simulation.

T CPU t ith bTwo-CPU system with bus.

100 random task graphs.

V i t f l k 10% 20% 40%Varying amounts of slack: none, 10%, 20%, 40%.

High Performance Embedded Computing 39

OS overhead results

High Performance Embedded Computing 40[Rho99] © 1999 IEEE Computer Society

Interprocess communicationp

IPC often used for large-scale communication in general-
purpose systems.

M ilb i li d i d f ll f tMailboxes are specialized memories, used for small, fast
transfers.

A writer and many readersA writer and many readers

Multimedia systems can be supported by quality-of-
service (QoS) oriented inter-process communication se ce (QoS) o e ed e p ocess co u ca o
services.

Streaming and large transfers

High Performance Embedded Computing 41

Power managementg

Advanced Configuration and Power Management (ACPI)
standard defines power management levels:

G3 mechanical offG3 mechanical off.

G2 soft off: OS need to be rebooted when leaving the state

G1 sleeping.p g

G0 working.

Legacy state: NON-ACPI power modes.

High Performance Embedded Computing 42

Embedded file systemsy

Generally means flash memory storage.

Many embedded file systems need to be compatible with
PCPCs.

Some file systems are primarily for reading, others for
reading and writingreading and writing.

High Performance Embedded Computing 43

Flash memory characteristicsy

Flash is electrically erasable.

Two types of flash:
NOR flash operates similar to RAM.

Used to store executable code

More reliable, faster read, random access capability, , p y

NAND is block oriented, gives more transient failures.
Higher density, lower cost, faster write and erase time

L i lifLonger re-write life expectancy

Prone to single bit errors

NAND gets faster, may dominate in future.g , y

High Performance Embedded Computing 44

Flash memory characteristicsy

Block writing
Flash cannot be written word-by-word as with RAM.

Fl h t fi t b d i l bl k d thFlash memory must first be erased in large blocks and then
written

Block size may be as large as 64KBy g

Erasing a block is considerably larger than a typical magnetic
disc sector.

Flash memory wears out during writing.
Early memories lasted for 10,000 cycles.

M d i l t f 1 illi lModern memories last for 1 million cycles.

High Performance Embedded Computing 45

Flash Memory CharacteristicsFlash Memory Characteristics

O tiOperations
Read

Write or Program 1 1 1 1 1 1 1 1Write or Program

Changes state from 1 to 0

Erase
write

1 1 1 1 1 1 1 1

Changes state from 0 to 1

Unit
erase

1 0 1 1 0 0 1 0

Page (sector)

Read/Write unit (in NAND)

Bl k

erase

1 1 1 1 1 1 1 1

Block

Erase unit

High Performance Embedded Computing 46

Comparison of NOR and NAND Flashp

High Performance Embedded Computing 47

Comparison of NOR and NAND Flashp

High Performance Embedded Computing 48

Wear levelingg

Flash memory systems move data to equalize wear
during writes.

Fil ll ti t bl t th t it t bFile allocation table gets the most writes---must be
moved as well.

Formatting avoids multiple writes to file allocation tableFormatting avoids multiple writes to file allocation table.

High Performance Embedded Computing 49

Virtual mappingpp g

Virtual mapping system stands
between file API and physical
file system:

File system
file system:

Schedules erasures.

Consolidates data to empty an

Virtual address

p y
entire block

Identifies bad blocks.

M d t f l li

Virtual mapping system

Physical address
Moves data for wear leveling.

Virtual mapping system keeps a
table to translate virtual to

Flash memory

y

table to translate virtual to
physical addresses.

High Performance Embedded Computing 50

Log-structured file systemg y

Stores log of changes to file, not the original file.
Also known as journaling.

Developed for general purpose systems useful for flashDeveloped for general-purpose systems, useful for flash.

Journaling Flash File System (JFFS) maintains
consistency during power lossesconsistency during power losses.

Yet Another Flash Filing System (YAFFS) is log-
structured file system for NAND flash.s uc u ed e sys e o as

High Performance Embedded Computing 51

Flash Translation Layer (FTL)Flash Translation Layer (FTL)

A ft l l ti t d d bl k d iA software layer emulating standard block device
interface

Read/WriteRead/Write

Features
Sector mappingSector mapping

Garbage collection

Power-off recovery

Bad block management

Wear-leveling

E ti d (ECC)Error correction code (ECC)

High Performance Embedded Computing 52

FTL Mapping Scheme (1)FTL Mapping Scheme (1)

Page mapping
Flash

Block 0 Page 0

Page 1

Page 2

(-1,-1)

(1,2)

(1,0)

0

1

2

Logical Sector Number

sector 6

(1,3) Block 1

Page 3

Page 0

(0,0)

(-1,-1)

3

4

5

Physical
Sector

N b
(0,2)

(1,3)

Page 1

Page 2

Page 3

(-1,-1)

6

7

Number

g

High Performance Embedded Computing 53

FTL Mapping Scheme (2)FTL Mapping Scheme (2)

Bl k iBlock mapping

10

Logical
Block

Physical
Block

N b

Block 0 Page 0

Flash
-10

1

Block
Number

Number

sector 6 10

0

0 1=
I lPage 1

Page 2

Page 3

sector 6

Logical
offset

Physical
offset

In-place

Out-of-place

Block 1 Page 0

Page 1

20

1 3

02
Page 2

Page 3

0

1

2

3

High Performance Embedded Computing 54

Flash Aware File SystemFlash-Aware File System

File systems manage raw flash memory directly.
More opportunities to optimize the performanceMore opportunities to optimize the performance.
File system comprises in some FTL functionalities.

Sector mapping, garbage collection, wear-leveling, power-off pp g, g g , g, p
recovery, etc.

Example:
JFFS JFFS2 YAFFSJFFS, JFFS2, YAFFS

Limitation
Need to change the host operating system or special device driverNeed to change the host operating system or special device driver
to access flash-aware file system

High Performance Embedded Computing 55

Flash Aware Demand Paging (1)Flash-Aware Demand Paging (1)

Problems with flash memory

Write cost is much higher than read.

Time and energy consumption of a write operation
is about six times higher than a read operation in
NAND flashNAND flash.

Write operations accompany potential erase
operationsoperations.

Lifetime of flash memory is limited by write/erase.

Replacement policy for flash memoryReplacement policy for flash memory

Should reduce the number of write operations on flash
memory

High Performance Embedded Computing 56

memory

Replacement Policy: Clean first LRUReplacement Policy: Clean first LRU
Dividing LRU list into two regionsg g

Working region is suspected to have high cache hit rate

Clean-first region preserve dirty pages to reduce flash write
tioperations

First, it evicts clean pages in clean-first region.

If it does not satisfy, evicts dirty pages.

In this example,
the order of victim candidates is P7 P5 P8 and P6

High Performance Embedded Computing 57

the order of victim candidates is P7, P5, P8, and P6.

