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Priority ceiling protocol

PCP introduced by Sha, Rajkumar, Lehoczky 1990 as improvement
of PIP

+ Prevents formation of deadlock
« Prevents formation of chained blocking
Idea: extend PIP by a special granting rule for locking
a free semaphore
- rule does not allow a job to enter a critical
section if there are locked semaphores that
could block it
- => once a job enters its first critical section it
can never be blocked by lower-priority jobs.
Method| - assign a priority celling to each semaphore
- priority ceiling = priority of highest-priority
job that can lock it
- job J is allowed to enter a critical section
only if its priority > all priority ceilings of
semaphore currently locked by jobs # J
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PCP Protocol Definition (1)

- Each semaphore S, is assigned a priority ceiling C(S,) equal to
the priority of the highest-priority job that can lock it. Note that
C(S,) is a_static value that can be computed off-line.

run; thus, J; is assigned the processor.

+ Let S* be the semaphore with the highest ceiling among all the
semaphores currently locked by jobs other than J; and let C(S”) be
its ceiling.

+ To enter a critical section guarded by a semaphore S, , J;must
have a priority higher than C(S*) . If P, < C(S*), the lock on S, is
denied and J; is said to be blocked on semaphore S* by the job
that holds the lock on S*
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PCP Protocol Definition (2)

When a job J; is blocked on a semaphore, it transmits its priority to
the job, say J,, that holds that semaphore. Hence, J, resumes and
executes the rest of its critical section with the priority of J,. J, is
said to inherit the priority of J;. In general, a task inherits the
highest priority of the jobs blocked by it.

When J, exits a critical section, it unlocks the semaphore and the
highest-priority job, if any, blocked on the semaphore is
awakened. Moreover, the active priority of J, is updated as
follows: if no other jobs are blocked by J, , p, is set to the nominal
priority P, ; otherwise, itis set to the highest priority of the jobs
blocked by J, .

Priority inheritance is transitive; that is, if a job J, blocks a job J,,
and J, blocks J,, then J; inherits the priority of J, viaJ,.
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PCP Example (1)

Consider: 3 jobs Jg, J;, J, with decreasing priorities

Jp sequentially accesses critical sections
guarded by S;, S,

access to S,

This results in the following priority ceiling of the semaphores:

C(Sp) = Py
C(Sy) = Py
c(Ss,) = P,
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PCP Example (2)

=== normal execution
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+ Attimet,, J, is activated and, since it is the only job ready to run, it starts
executing and later locks semaphore S, .

+ Attimet,,J, becomes ready and preempts J, .

+ Attimet,, J, attempts to lock S,, but it is blocked by protocol because P, it is
not greater than C(S,). Then, J, inherits the priority of J, and resumes is
execution .

+ Attimet,, J, successfully enters its nested critical section by locking S, . Note
that J, is allowed to lock S, because no semaphore are locked by other jobs.
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PCP Example (3)
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« Attimet, , J,attempts to lock S, , which is not locked by any job.
However,J; is blocked by the protocol because its priority is not
higher than C(S,) , which is the highest ceiling among all
semaphores currently locked by the other jobs. Since S, is locked
by J,, J, inherits the priority of J, and resumes its execution.
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PCP Properties

Theorem: The priority Ceiling Protocol prevents deadlocks.

Theorem: (Sha-Rajkumar-Lehoczky) Under the Priority Ceiling
Protocol, a job J; can be blocked for at most duration of one
critical section .
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Pertormance Estimation (1)

Assumption that the computation time of a process is
fixed is not very realistic
Execution time depends on

o Data dependent path
o Cache

Strong interests on effects of multiple tasks on the cache

A segmented locked cache

o A program can lock a part of the cache so that no other program
could modify those cache locations.

o This would allow the program to certain parts of itself in the cache
after a preemption.

o It reduces the cache size not only for the program with the lock
bust also for other programs in the system.
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‘ Performance Estimation

= Compiler support for software-based cache partitioning
[Mueller]

Cache memories have become an essential part of mod-
ern processors to bridge the increasing gap between fast
processors and slower main memory. Until recently,
cache memories were thought to impose unpredictable
execution time behavior for hard real-time systems. But
recent results show that the speedup of caches can be
exploited without a significant sacrifice of predictabil-
ity. These results were obtained under the assumption
that real-time tasks be scheduled non-preemptively.
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' Software-based cache partitioning

This paper introduces a method to maintain pre-
dictability of execution time within preemptive,
cached real-time systems and discusses the impact on
compilation support for such a system. Preemptive sys-
tems with caches are made predictable via software-
based cache partitioning. With this approach, the cache
1s divided into distinct portions associated with a real-
time task, such that a task may only use 1ts portion.
The compiler has to support instruction and data par-
titioning for each task. Instruction partitioning involves
non-linear control-flow transformations, while data par-
titioning involves code transformations of data refer-
ences. The impact on execution time of these transfor-
mations is also discussed.
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' Software-based cache partitioning

= Partitioning the cache for use by multiple processes.
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Figure 1: Indexing into a Direct-Mapped Cache
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' Software-based cache partitioning

The code and the data of a task have to be restricted
to only those memory portions that map into the cache
lines assigned to the task. If the code/data size of a task
exceeds its cache partition size, the code/data has to be
scattered over the address space. In the above example,
consider 7y with 10k instructions. The instruction space
will be divided into 32 portions of 320B each, since 7
was given the first 20 lines (320B) in the cache. Thus,
the first 320B within each 1kB page in main memory
contain instructions of 7, up to page 32. (In the context
of this paper, the memory page size i1s given by the
cache size, which does not have to match the system
page size.)
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' Software-based cache partitioning
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Cache modeling and scheduling

Li and Wolf developed a model for multitasking in caches.
o each process has a stable footprint in the cache.

Each process was modeled with a two-state model:

o Process is in the cache.

o Process is not in the cache.

o Total state of the cache is given by the union of all the models for
the processes that use the cache.

The performance of a process is modeled by two major

measured numbers

o The worst-case execution time when the process is not in the
cache

o The average-case execution time when the process is in the
cache.
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Cache modeling and scheduling

Given the cache model and the performance
characteristics of each process, they constructed an
abstract schedule that approximated the execution time
of the multitasking system.

Fig. 10: accuracy

o Average error: less than 10%
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Languages and scheduling

Programming languages can capture information about
tasks and inter-process communication.

Compilation can generate specialized implementations,
implement static schedules.

Let look at languages that provide task-level models for
system activity.
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Codesign finite state machines (CFSMs)

A control model explicitly designed to be implemented as
combinations of hardware and software.

A CFSM repeatedly executes a four-phase cycle:

o ldle.

o Detect input events.

o Go to new state based on current state and inputs.
o Emit outputs.

A CFSM is modeled by an automaton with one-input
buffers for each input and one-input buffers for each
output.
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Static scheduling using Petri nets

Lin and Zhu developed an algorithm for statically
scheduling processes using Petri nets.

Given a Petri net model for a process, find maximal
acyclic fragments of the process, schedule operations in
each fragment.

Expansion of a Petri net: acyclic Petri net in which

o every transition has one input or output place,

o at least one place with no input transitions, (initial places)
o at least one place with no output transitions (cut-off places)
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Static scheduling using Petri nets

Maixmal expansion of G with respectto m, E is
an acyclic Petri net with the following properties
o The initial place correspond to m (initial marking)

o The cut-off places correspond to the set of places
encountered when a cycle has been reached

o E is transitively closed: for each transition or place in E,
all preceding places and transitions reachable form m
are alsoin E

Code is generated form maximally expanded
fragment by pre-ordering operations.
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Static scheduling using Petri nets

Constructing a Petri net model from a program of
communicating processes.

1l ping (input chan(int) a, output chan(int) b) {
2 int x;

3 for (;;) {

4 X = <-a: /* receive */

5 if(x =« 0) = =10 - x;

& else x = 10 + x;

7 b =-= x; /* send */

g}l

9 pong (input chan(int) <, output chan(int) 4) {
10 int vy, z = 0;

11 for (;;) {

12 d <-= 10;/* send */

132 ¥y = <-0; /* receive */
14 z = (2 + y) % 345;
15 }}

16 system ( ) {
17 chan (int) cl, c2;

18  par {
19 ping (c2, <l);
20 pong (el, e2);
21 } }
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Maximal expansions

{a) Petri net

{c) A cut-off marking (d) Another cut-off marking
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‘ Software thread integration

= Dean: schedule multiple
threads statically in a single
program.

= Primary thread has real-time
requirements.

= Secondary thread does not
have real-time requirements.

= STI copies portions of the
primary thread into the
secondary thread so that the
primary thread execute
correctly and meets its
deadlines.
o No context switching
o Reduce execution time

Primary thread

M

Secondary thread with
integrated primary thread
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Software thread integration and CDGs

Each thread is represented as

control dependence graph

(CDG).

o Node: basic block/ conditional
test

o Edge: each control decision

o Annotated with execution
times of each blocks.

Code from primary thread must
be replicated in secondary
thread to be sure that it is
executed along every path.

o Insertion points must meet
primary thread deadlines.

CDFG Control dependence graph
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General-purpose vs. real-time OS

Schedulers have very different goals in real-time and

general-purpose operating systems:

o Real-time scheduler must meet deadlines.

o General-purpose scheduler tries to distribute time equally among
processes. (fairness and avoid starvation)

Early real-time operating systems:

o Hunter/Ready OS for microcontrollers was developed in early
1980s.

o Mach ran on VAX, etc., provided real-time characteristics on
large platforms.
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Memory management

Memory management allows RTOS to run outside
applications. (protection)

o Cell phones run downloaded, user-installed programs.

Memory management helps the RTOS manage a large
virtual address space.

Flash may be used as a paging device.

High Performance Embedded Computing 29

Windows CE memory management

Flat 32-bit address space.
Top 2 GB for kernel.

o Statically mapped.
Bottom 2 GB for user processes.
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 WinCE user memory space

= 64 slots of 32 MB each.

= Slot 0 is currently running
process.

= Slots 1-33 are the
processes.

0 32 processes max.

= Object store, memory
mapped files, resource
mappings.
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Mechanisms for real time operation

= Two key mechanisms for real time:
o Interrupt handler.
o Scheduler.
o Interrupt must be carefully handled to avoid destroying the real-

time properties of the OS.

= Interrupt handler is part of the priority system. Interrupts
have priorities set in hardware. These priorities
supersede process priorities of the processes.

o Can be seen as a distinct set of processes that are separate form
the operating system’s regular processes.

o Should spend as little time as possible in the interrupt handlers
that are dispatched by the hardware interrupt system.
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Interrupt handling in RTOSs

But many real devices need a significant amount of
computation to be done somewhere.

As a result, device oriented processing is often divided
into two sections: an interrupt service routine (ISR) and
an interrupt service thread (IST).

ISR is dispatched by the hardware interrupt system while
IST is a user-mode process

Scheduler determines ability to meet deadlines.
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Windows CE interrupts

Two types of ISRs:

o Static ISRs are built into kernel, one-way
communication to IST.

o Installable ISR can be dynamically loaded, uses
shared memory to communicate with IST.
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Static ISR

Built into the kernel.

o SHx and MIPS must be written in assembler, limited
register availability.

One-way communication from ISR to IST.
o Can share a buffer but location must be predefined.

Nested ISR support based on CPU.
Stack is provided by the kernel.
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Installable ISR

Can be dynamically loaded into kernel.
Loads a C DLL (dynamically linked library).
Can use shared memory for communication.

ISRs are processed in the order they were installed.

Limited stack size.

High Performance Embedded Computing
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‘ Interrupt latency

= ISR
o Amount of time that interrupts are turned off

o Time required to visit ISR, save registers, etc.

= IST
o Time spentin ISR
o Time spent in Kernel call
o Thread scheduling time
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‘ WinCE 4.x interrupts

IST processing

A
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‘ Operating system overhead

= Rhodes and Wolf studied context switching overhead
using simulation.

= Two-CPU system with bus.
= 100 random task graphs.
= Varying amounts of slack: none, 10%, 20%, 40%.
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OS overhead results

Failure
rate

Interrupt 60
service

time o 10 80
Context-switching time Context-switching time
Tight deadlines Deadlines relaxed by 10%
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rate rate
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140 300
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T o 100 20

Context-switching time Context-switching time
Deadlines relaxed by 20% Deadlines relaxed by 40%
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Interprocess communication

IPC often used for large-scale communication in general-
purpose systems.

Mailboxes are specialized memories, used for small, fast
transfers.

o A writer and many readers

Multimedia systems can be supported by quality-of-
service (QoS) oriented inter-process communication
services.

o Streaming and large transfers
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Power management

Advanced Configuration and Power Management (ACPI)
standard defines power management levels:

o G3 mechanical off.

G2 soft off: OS need to be rebooted when leaving the state

G1 sleeping.

GO working.

Legacy state: NON-ACPI power modes.

0o O O O
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Embedded file systems

Generally means flash memory storage.

Many embedded file systems need to be compatible with
PCs.

Some file systems are primarily for reading, others for
reading and writing.
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Flash memory characteristics

Flash is electrically erasable.

Two types of flash:

o NOR flash operates similar to RAM.
Used to store executable code
More reliable, faster read, random access capability

o NAND is block oriented, gives more transient failures.
Higher density, lower cost, faster write and erase time
Longer re-write life expectancy
Prone to single bit errors

o NAND gets faster, may dominate in future.
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Flash memory characteristics

Block writing
o Flash cannot be written word-by-word as with RAM.

o Flash memory must first be erased in large blocks and then
written

o Block size may be as large as 64KB

o Erasing a block is considerably larger than a typical magnetic
disc sector.

Flash memory wears out during writing.

o Early memories lasted for 10,000 cycles.

o Modern memories last for 1 million cycles.
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Flash Memory Characteristics

Operations
o Read
o Write or Program 1|1(1|1]|1(1|1|1
Changes state from 1to 0 _
o Erase l e
Changes state from 0 to 1 1/0{1(1/0/0/1|0
Unlt l erase
o Page (sector)
Read/Write unit (in NAND) 1]1j1j1j2j1jij1
o Block
Erase unit
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Comparison of NOR and NAND Flash
SLC NAND Flash (x8) MLC NAND MLC NOR Flash
Flash (x8) (x16)
Density 512 Mbits' — 4 Gbits” 1Gbit to 16Gbit 16Mbit to 1Gbit
Read Speed 24 MB/s’ 18.6 MB/s 103MB/s
Write Speed 8.0 MB/s 2.4 MB/s 0.47 MB/s
FErase Time 2.0 mSec 2.0mSec 900mSec
Interface I/O — indirect access I/O — indirect Random access
access
Application Program/Data mass Program/Data eXecutelnPlace
storage mass storage
Figure 4: NAND and NOR Flash Operating Specifications
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Weat leveling

= Flash memory systems move data to equalize wear
during writes.

= File allocation table gets the most writes---must be
moved as well.

= Formatting avoids multiple writes to file allocation table.
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Virtual mapping

= Virtual mapping system stands
between file API and physical
file system:
o Schedules erasures.

o Consolidates data to empty an
entire block

o Identifies bad blocks.
o Moves data for wear leveling.

= Virtual mapping system keeps a

table to translate virtual to
physical addresses.

Virtual address

Physical address
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Log-structured file system

Stores log of changes to file, not the original file.
o Also known as journaling.
o Developed for general-purpose systems, useful for flash.

Journaling Flash File System (JFFS) maintains
consistency during power losses.

Yet Another Flash Filing System (YAFFS) is log-
structured file system for NAND flash.
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Flash Translation Layer (FTL)

A software layer emulating standard block device

interface

o Read/Write [ Applications ]
Features | |
Sector mapping
Garbage collection
Power-off recovery

Bad block management

Error correction code (ECC)

I I N N
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FTL Mapping Scheme (1)

= Page mapping

Flash
Logical Sector Number o |¢+-D Block0 | Fage 0
1 1@2 Page 1
2 (1,0) »| Page 2
3 1.0 Page 3
4 (-1,-1) | Physical
Sector Block 1 | Pageo
> @3 Number
—— o) (0'2) Page 1
7 |¢1-1) Page 2
Page 3
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= Block mapping
Physical
Logical Block
Block 0 -1 Number
Number Flash
» Block O Page 0
| sector 6 | = | 0 1|| 0 1|
| > Page 1 In-place
Page 2
Logical Physical
offset offset * Page 3 Out-of-place
0 2
Block 1 Page O
— 1 3
Page 1
2 0
Page 2
1
3 Page 3
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Flash-Aware File System

File systems manage raw flash memory directly.
More opportunities to optimize the performance.

File system comprises in some FTL functionalities.

o Sector mapping, garbage collection, wear-leveling, power-off
recovery, etc.

Example:

o JFFS, JFFS2, YAFFS

Limitation

o Need to change the host operating system or special device driver
to access flash-aware file system
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Flash-Aware Demand Paging (1)

Problems with flash memory
o Write cost is much higher than read.

Time and energy consumption of a write operation
is about six times higher than a read operation in
NAND flash.

Write operations accompany potential erase
operations.

o Lifetime of flash memory is limited by write/erase.
Replacement policy for flash memory

o Should reduce the number of write operations on flash
memory
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Replacement Policy: Clean first LRU

Dividing LRU list into two regions
o Working region is suspected to have high cache hit rate

o Clean-first region preserve dirty pages to reduce flash write
operations

First, it evicts clean pages in clean-first region.
If it does not satisfy, evicts dirty pages.

Warking region Clean-first ragion
P1 P2 P3 P4 P5 P& P7 P8
Ut p—wC—DH—HCHCEDBHCHSD
WRU ER
| |
! Window, w |
[C ] Cleanpage In this example,
[D] Dirty page the order of victim candidates is P7, P5, P8, and P6.
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