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G.28) = oty = aX g ket G.2p

Replacing k by —k in the summation, we Five®™
_j((f) = Z‘ aikejkw(}!,
k=—o

which, by comparison with eq. (3.25), requires that ay = a* , or equivalently, that
a2 = Qo (329)

Note that this is the case in Example 3.2, where the a;’s are in fact real and ay = a_y.
To derive the alternative forms of the Fourier series, we first rearrange the summation
in eq. (3.25) as

x(r) = ay+ z[akej-’(wﬂf + a_kekjkw()l’].
k=1
Substituting a; for a_; from eq. (3.29), we obtain
£ ay q
)((1‘) = qap + Z[akejkwuf i azeﬁjkw.)!]l
k=1

Since the two terms inside the summation are complex conjugates of each other, this can
be expressed as

xX(1) = ag + > 2Ref{aget (3.30)
k=1

If ay is expressed in polar form as
ap = A;(eje‘,

then eq. (3.30) becomes

x(t) = ag + Z 2@e{AReM‘”“'+”“}.

k=1

That is,

X(1) = ap + 2> Ay cos(kwot + 6;). (3.31)

k=1

Equation (3.31) is one commonly encountered form for the Fourier series of real periodic
signals in continuous time. Another form is obtained by writing a; in rectangular form as

@y = By + jCy,
where By and C; are both real. With this expression for ay, eq. (3.30) takes the form
x(r) = ap + 22 [By cos kwor — Cy sin kwqt]. (3.32)
k=1

In Example 3.2 the a;’s are all real, so that ap = Ay = By, and therefore, both represen-
tations, eqs. (3.31) and (3.32), reduce to the same form, eq. (3.28).
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X(t)
i k | | 3
— *lI 0 1 é t
(@
x(t)
% 1 2 t
(b)

Figure 3.8 Signals that violate the

Dirichlet conditions: (a) the signal

x(t) = 1/tfor0 <t =< 1, a peri-
x(t) odic signal with period 1 (this signal
violates the first Dirichlet condition);
(b) the periodic signal of eq. (3.57),
which violates the second Dirichlet
condition; (c) a signal periodic with
1 period 8 that violates the third Dirichlet
condition [for 0 = t < 8, the value of
x(t) decreases by a factor of 2 when-

;
L. [F3 l | ever the distance from ¢ to 8
|7 decreases by a factor of 2; that is,
8 16 t X()=1,0=t<4 x(t) =1/
4 =t<b x(t) =14 6 =t<7,
() x() =1/8, 7 = t <75, etc].

where except at the isolated points of discontinuity, at which the series converges to the
average value of the signal on either side of the discontinuity. In this case the difference
between the original signal and its Fourier series representation contains no energy, and
consequently, the two signals can be thought of as being the same for all practical pur-
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Xn(t) Xn(t)
PN ol lVa\
pg
N=1 N=3
Foes
S T 0 T NG NS -1, 0 T Nl
(a) (b)
xn() xn(t)
v \/ V VVVV\rvvvv
N=7 N=19
- N P o vva A AvAv‘.v-.v
~ONT, 0 EACK e Y-, 0 TV
(© (d)
xn(t)

79

“‘—n 0 T1F
(e)
Figure 3.9 Convergence of the Fourier series representation of a square

wave: an illustration of the Gibbs phenomenon. Here, we have depicted the
finite series approximation xy(t) = >V, a.ek! for several values of N.
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property Section Periodic Signal Fourier Series Coefficients
x(t) | Periodic with period T and ax
¥(t) | fundamental frequency wy = 2mw/T b,
Linearity 35.1 Ax(t) + By(r) Aa; + Bb,
Time Shifting 352 x(t — tpy) age TRt = g, o iK2aIT
Frequency Shifting eMel x(1) = eM27/T) (1) T
Conjugation 356 x() a,
Time Reversal 353 x(—1) a_;
Time Scaling 3.54 x(at), a > 0 (periodic with period T/a) ay
Periodic Convolution J x(T)y(t — n)dt Ta.b,;
T
Multiplication 355 x(t)y(1) > abi
I=-=
Differentiation dX(I) jkwua,( = jkzja;\
dt T
x finite valued and | I
Integration — = | —— |
J L,,Dxm dr(periodic only if @y = 0) (jkwu )a; (J kQ2m/T) )a‘
a. = a’ P
Rela,} = Rela_,}
Conjugate Symmetry for 3.5.6 x(r) real Im{a,} = —9mla_}
Real Signals lay| = la_
da;, = —4a_,
Real and Even Signals 3.5.6 x(1) real and even a, real and even
Real and Odd Signals 3.5.6 x(1) real and odd a, purely imaginary and odd
Even-Odd Decomposition {x?(r) = &v{x(r)} [x(r) real] Refa,}
of Real Signals x,(1) = Od{x(n)}  [x(r) real] jdmia,}

Parseval’s Relation for Periodic Signals

4

7 | opdi = S jaup

k=-=

three examples, we illustrate this. The last example in this section then demonstrates how
properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(r) with a fundamental period of 4, shown in Figure 3.10. We
could determine the Fourier series representation of g(r) directly from the analysis equa-
tion (3.39). Instead, we will use the relationship of g(1) to the symmetric periodic square
wave x(r) in Example 3.5. Referring to that example, we see that, with T = 4 and
T| o ].

g) = x(t—1) = 112 (3.69)

e 44T
f X)) 49 = ﬂxc.?) JT @L X< J7~:o©/(/o d.c.
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(2-) (3\ 71- ) '% (3‘ ?{‘) P Dyuerve  Discrate - Tome. %‘U“e_"‘
Similarly, if k ranges from 1 to N, we obtain Senses
x[n] = aypiln] + axpo[n] + ... + andy(nl. (3.97)

From eq. (3.86), ¢o[n] = ¢dn[n], and therefore, upon comparing eqs. (3.96) and (3.97),
we conclude that ag = ay. Similarly, by letting k range over any set of N consecutive
integers and using eq. (3.86), we can conclude that

(.;) CJ’ 7f) = G = dn- oy 2 qk = 65&+M/ (3.98)

Thatis, if we consider more than N sequential values of &, the values a; repeat periodically
with period N. Itis important that this fact be interpreted carefully. In particular, since there
are only N distinct complex exponentials that are periodic with period N, the djscrete-
time Fourier series representation is a finite series with N terms. Therefore, if we fix the
N consecutive values of k over which we define the Fourier series in eq. (3.94), we will
obtain a set of exactly N Fourier coefficients from eq. (3.95). On the other hand, at times
it will be convenient to use different sets of N values of k, and consequently, it is useful
to regard eq. (3.94) as a sum over any arbitrary set of N successive values of k. For
this reason, it is sometimes convenient to think of ay as a sequence defined for all values
of k, but where only N successive elements in the sequence will be used in the Fourier
series representation. Furthermore, since the ¢;[n] repeat periodically with period N as
we vary k [eq. (3.86)], so must the a; [eq. (3.98)]. This viewpoint is illustrated in the next
example.

Example 3.10

Consider the signal
x[n] = sinwgn, (3.99)

which is the discrete-time counterpart of the signal x(1) = sinwgf of Example 3.3. x[n]
is periodic only if 277/wy is an integer or a ratio of integers. For the case when 27wy is
an integer N, that is, when

(1)0:.__

N

X[n] is periodic with fundamental period N, and we obtain a result that is exactly analo-
gous to the continuous-time case. Expanding the signal as a sum of two complex expo-
nentials, we get

Lej(lrr/,’\")rz g ‘]VE*ﬂZFTIJ\')H_ (3.100)

x[n] = 27 3]

Comparing eq. (3.100) with eq. (3.94), we see by inspection that
1 1 e A/ Ahs- i fule ess
@)= z—j, (2 eatore® ?)C Foﬂmé}' (3.101)

2
‘ r:u%(;r (e '?7'?[2{
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and the remaining coefficients over the interval of summation are zero. As described
previously, these coefficients repeat with period N; thus, ay. 1s also equal to (1/2) and
ay- equals (—1/27). The Fourier series coefficients for this example with N = § are
illustrated in Figure 3.13. The fact that they repeat periodically is indicated. However,
only one period is utilized in the synthesis equation (3.94).

Figure 3.13 Fourier coefficients for x[n] = sin(2w/5)n. =

Consider now the case when 27/w is a ratio of integers—that is, when

2'?TM
Wiks g ¥

N

Assuming that M and N do not have any common factors, x[n] has a fundamental period
of N. Again expanding x[n] as a sum of two complex exponentials, we have

x[n] = iejM(l‘n'fN)n _ i.e—jM(ZTrfN]n' ? 9{0% @D;J’qu

2j 2j

from which we can determine by inspection that ayy = (1/2)), a_» = (—1/2j), and the
remaining coefficients over one period of length N are zero. The Fourier coefficients
for this example with M = 3 and N = 5 are depicted in Figure 3.14. Again, we have
indicated the periodicity of the coefficients. For example, for N = 5, a; = a_3, which
in our example equals (— 1/2 ). Note, however, that over any period of length 5 there are
only two nonzero Fourier coefficients, and therefore there are only two nonzero terms in
the synthesis equation.

= el P o
M=3, ~M==3 = 4=h, Mm%
W')zo}' C&TIJ& dﬁbﬁ 1 /%&J) 2,3 e <ty u){\\baa
2 UIHJE % ,V . 2] Py Loy

Figure 3.14 Fourier coefficients for x[n] = sin 3(2w/5)n.

N x(mJ:-:./_Cilczj%h)”
= Xt=

- X
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Example 3.12

In this example, we consider the discrete-time periodic square wave shown in Fig-
ure 3.16. We can evaluate the Fourier series for this signal using eq. (3.95). Because
x[n] = 1 for =N = n = Ny, it is particularly convenient to choose the length-N
interval of summation in eq. (3.95) so that it includes the range —N; = n = N,.In this
case, we can express eq. (3.95) as

/ E ~TKQm 1 L
@‘ff) 7, S x[nl e ap = N 2 g JMEmINn (3.102)
; n=-N
K™ N vecn> |
1
-N -N; 0 N, N n

Figure 3.16 Discrete-time periodic square wave.

Letting m = n + N, we observe that eq. (3.102) becomes

1 2N,
— 7k - !
s T e JKQ2aIN)m—N|)

m=0 (3103)
1 2N
= 2aINNy N7 k27N )m
= —¢’ ' € .
ey
N m=0

The summation in eq. (3.103) consists of the sum of the first 2N; + 1 terms in a geometric
series, which can be evaluated using the result of Problem 1.54. This yields

_ o JK2m2N 1IN
an = lejk(Zm’N]Nl l—e” ’
Y] 1 — ¢ jk2aiN)

| e IKRTRNI[IR2TN 1IN _ JR2TN) 1IN (3.104)
N e~ JKQTIN) [ JK2HI2N) — o= jK2TI2N)]
1 sin[27k(N| + 1/2)/N]
= — - , k#0 =N x2N, ...
N sin(mk/N)
and
+ 1
a; = Z{F’;V . k=0,%=N, +2N, .. .. (3.105)

The coefficients a; for 2N, + 1 = 5 are sketched for N = 10, 20, and 40 in Figures
3.17(a), (b), and (c), respectively.

In discussing the convergence of the continuous-time Fourier series in Section 3.4,
we considered the example of a symmetric square wave and observed how the finite sum in
eq. (3.52) converged to the square wave as the number of terms approached infinity. In par-
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Figure 3.17  Fourier series coefficients for the periodic square wave of Ex-
ample 3.12; plots of Na, for 2N; + 1 = 5 and (a) N = 10; (b) N = 20; and

(c) N = 40.
/V, = f/’XM{

ticular, we observed the Gibbs phenomenon at the discontinuity, whereby, as the number
of terms increased, the ripples in the partial sum (Figure 3.9) became compressed toward
the discontinuity, with the peak amplitude of the ripples remaining constant independently
of the number of terms in the partial sum. Let us consider the analogous sequence of partial
sums for the discrete-time square wave, where, for convenience, we will assume that the
period N is odd. In Figure 3.18, we have depicted the signals

M
inl = D agelt@miNm (3.106)
k=-M

for the example of Figure 3.16 with N = 9, 2N, + | = 5, and for several values of M.
For M = 4, the partial sum exactly equals x[n]. We see in particular that in contrast to the
continuous-time case, there are no convergence issues and there is no Gibbs phenomenon.
In fact, there are no convergence issues with the discrete-time Fourier series in general.
The reason for this stems from the fact that any discrete-time periodic sequence x[n] is
completely specified by a finite number N of parameters, namely, the values of the se-
quence over one period. The Fourier series analysis equation (3.95) simply transforms this
set of N parameters into an equivalent set—the values of the N Fourier coefficients—and

xX(o), ~y x-/] &—> oy 7. S Wy

2
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x>
ey
=l

M=1

M JkGTADN
- RmI=> %<

=M Gorog)

-9 0 9 18 n
(b)
x[n] M=3
-9 0 9 18 n
(©)
2 M=4 XMm)= >xCn)
¥ M=¢ 347
Figure 3.18 Partial sums of eqgs.
(3.106) and (3.107) for the periodic
square wave of Figure 3.16 with
= s 3 8 0 N _gand2N +1=5(@@)M=1:
@ by M =2, (c)M=3;(d) M= 4.

the synthesis equation (3.94) tells us how to recover the values of the original sequence in
terms of a finite series. Thus, if N is odd and we take M = (N — 1)/2 in eq. (3.106), the
sum includes exactly N terms, and consequently, from the synthesis equations, we have
x[n] = x[n]. Similarly, if N is even and we let

M
iMnl= > ape/t@miion (3.107)
k=-M+1

then with M = N/2, this sum consists of N terms, and again, we can conclude from
eq. (3.94) that x[n] = x[n].

In contrast, a continuous-time periodic signal takes on a continuum of values over
a single period, and an infinite number of Fourier coefficients are required to represent it.
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Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(1),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property Periodic Signal Fourier Series Coefficients
x[n] ] Periodic with period N and a; | Periodic with
v[n] | fundamental frequency wy = 27/N by | period N

Linearity Ax[n] + By[n] Aa, + Bb,

Time Shifting x[n = ngl age METNImg

Frequency Shifting MmN ([ 1] ag y

Conjugation x'[n] a,

Time Reversal x| —n] a g

(/) Time Scaling

Periodic Convolution
Multiplication
First Difference

(.2.) Running Sum

Conjugate Symmetry for
Real Signals

Real and Even Signals

Real and Odd Signals

Even-Odd Decomposition
of Real Signals

(n] x[n/m], if nis a multiple of m

Xomlh] = : : :

Homtit 0, if nis not a multiple of m
(periodic with period mN)

Z x[r]v[n = r]

r=(N)

x[n]y[n]

x[n] = x[n - 1]

i V4] (ﬁnitc valued and periodic on]y)
Fe ifa, =0

x[n] real

x[n] real and even

x[n] real and odd
xn] = &{xlnl}  [x[n] real]
x.[n] = Od{x[n]} [x[n]real

1 viewed as periodic
a,
m"*\with period mN

N(l;bg

Z aib;

f=(N}
(1 o E--;i‘!lnﬁ\"l)a‘_

1

ap = a’,
Refa,} = Rela ;)
Infa;} = —Imla_ )

lax| = la4]

ko

{m = —du fa

ay real and even

a; purely imaginary and odd
Refa}

JIma,}

Parseval’s Relation for Periodic Signals

| N s peas )
=S Il = Sl

N N k=(N)
I mAN =7 - L 7 r‘v’ J'l ,_\_)-.:é‘. K
G e = il 7 S > xtkle M

mt+A
(2) S xkd = 57 xrk]& S *k) =o

k=-00

k= -oo

=— %mlnle

n+A

K=2+

my/

k=o (M? 'n:’??k)
<_-'7> ao-f-'nw':"O
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To calculate the Fourier series coefficients of the output y(r), we first compute the fre-

quency response: ? z(;b = /+ :l. Q,;w + Co ﬁﬂ**-f-:?%:(?of{ﬂ*

H(jw) = J e Te T dr
0

Sec. 3.8 Fourier Series and LTI Systems 4
d_,_ —_— "‘T.__l — Q

N (3.125)
I+ jo 0
e
1+ jo

Therefore, using egs. (3.124) and (3.125), together with the fact that wy = 2 in this
example, we obtain

y(1) = i bye/t™, (3.126)
k=-3
with by = a;H(jk27r), so that
bo = 1,
i clt(ilez_qr) b = ?lx(l glqur)'
By %(ﬁ) hoee %(]__1777) (3.127)
S

Note that y(7) must be a real-valued signal, since it is the convolution of x(t) and h(1),
which are both real. This can be verified by examining eq. (3.127) and observing that
b} = b_. Therefore, y(r) can also be expressed in either of the forms givenineqs. (3.31)
and (3.32); that is,

3
(3.39 =2 y(1)=1+2> Dy cos 2wkt + 6,), (3.128)
k=1
or
3
Q. 39.—;- W0y = 142> [Eq cos 2mkt — Fy sin 2mke], (3.129)
k=1
where
by = Dpe’®™ = Ey + jF,, k=123 (3.130)

These coefficients can be evaluated directly from eq. (3.127). For example,

1

Dy =l|b| = ————, 6, = by = —tan 'Q7),
4\,tl + 477'.2
E] . (Rve{b|} = l F] = .‘fm{bl} = - il

A1 + 472y 21 + 42y
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In discrete time, the relationship between the Fourier series coefficients of the input
and output of an LTI system exactly parallels eqs. (3.123) and (3.124). Specifically, let
x[n] be a periodic signal with Fourier series representation given by

_ Z apel TN
k=(N)
If we apply this signal as the input to an LTI system with impulse response h[n], then, as

in eq. (3.16) with z; = ¢/¥C™N) the output is

y[n] . Z akH(ejQ’nk/N)ejk(Zw/N)n‘ (3.131)
k= (N)

Thus, y[n] is also periodic with the same period as x[n], and the kth Fourier coefficient of

y[n] is the product of the kth Fourier coefficient of the input and the value of the frequency
response of the LTI system, H(e/>7"), at the corresponding frequency.

Example 3.17

Consider an LTI system with impulse response A[n] = a"u[n], =1 < @ < 1, and with

\Dz\'n the input
21h
V4 [n] = cos( 5 ) (3.132)
\ NG, l L 60
As in Example 3.10, x[n] can be written in Fourier series form as

N=-0° 1

| P
2mIN = J2mTIN
x[n] = mIN)n g ft 'rrﬂ"\)n.

obh
‘?l\ Also, from eq. (3.122),
v

w

PRy o« Syt =Soes]. e

This geometric spries can be evaluated using the result of Problem 1.54, yielding

H(e'*) = ; (3.134)

1 —ae v

Using eq. (3.131), we then obtain the Fourier series for the output:

BT 5 o SAA)~

Il

[ N Y

] [ b I %)
) / A » N
( j2 7!1’\) 2 NIn U(’ Jom f.\d)(.) j(2aiNn

2

v|[n] H
| 1 . .
J2mINn = J2mwiNmn
(I —ae /2 T”") N 2 (l - aefz"fw)e '

(3.135)
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If we write
1 "
1— ae-72miN re”,
then eq. (3.135) reduces to
2
y[n] = rcos (an + e). (3.136)
For example, if N = 4,
I o 1

_ = o/~ tan”! (@)
1 —aeJ2mH i T ’

and thus,

yln] = : cos (ﬂ - tanl(a))
V1+a? 2 .

We note that for expressions such as eqgs. (3.124) and (3.131) to make sense, the
frequency responses H(jw) and H(e/*) in eqs. (3.121) and (3.122) must be well defined
and finite. As we will see in Chapters 4 and 5, this will be the case if the LTI systems
under consideration are stable. For example, the LTI system in Example 3.16, with impulse
response A(f) = e 'u(t), is stable and has a well-defined frequency response given by
eq. (3.125). On the other hand, an LTI system with impulse response A(f) = e'u(t) is
unstable, and it is easy to check that the integral in eq. (3.121) for H(jw) diverges for
any value of w. Similarly, the LTI system in Example 3.17, with impulse response A[n] =
a”uln], is stable for |a| < 1 and has frequency response given by eq. (3.134). However,
if la| > 1, the system is unstable, and then the summation in eq. (3.133) diverges.

3.9 FITERING — ¢de // Le disreussed ‘jflf% C‘“/“

In a variety of applications, it is of interest to change the relative amplitudes of the fre-
quency components in a signal or perhaps eliminate some frequency components entirely,
aprocess referred to as filtering. Linear time-invariant systems that change the shape of the
spectrum are often referred to as frequency-shaping filters. Systems that are designed to
pass some frequencies essentially undistorted and significantly attenuate or eliminate oth-
ers are referred to as frequency-selective filters. As indicated by eqgs. (3.124) and (3.131),
the Fourier series coefficients of the output of an LTI system are those of the input multi-
plied by the frequency response of the system. Consequently, filtering can be conveniently
accomplished through the use of LTI systems with an appropriately chosen frequency re-
sponse, and frequency-domain methods provide us with the ideal tools to examine this
very important class of applications. In this and the following two sections, we take a first
look at filtering through a few examples.
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