
Processes and ThreadsProcesses and Threads
(Topic 2(Topic 2--1)1)

홍 성수

서울대학교공과대학전기공학부

Real-Time Operating Systems Laboratory

1

Processes and Threads Processes and Threads
• Question: What is a process and why is it useful?
• Why?

With many things happening at once in a system,
need some way of separating them all out cleanly.
– Important concept: Decomposition

Solve a hard problem by chopping it into several simpler

problems that can be solved separately.

2

Processes (1)Processes (1)

• What? Definition of a process:
– An execution stream in the context of a particular process state.

• What is an “execution stream” and what is a “process
state”?

• Process state is everything that can affect, or be affected
by the process:
– code, data values, open files, etc.

3

Processes (2)Processes (2)
• Execution stream is a sequence of instructions

performed in a process state.

• Key simplifying feature of a process:
– Only one thing happens at a time within a process.

• System classifications:
– Uniprogramming: Only one process at a time.

Mostly personal computers.
Makes some parts of OS easier, but others hard.

– Multiprogramming: Multiple processes at a time.
Most systems support multiprogramming.

4

• With multiprogramming, OS must keep track of the
processes:
– For each process, a process control block (PCB) holds:

Execution state (saved registers, etc.).

Scheduling information (priority).

Accounting and other misc. information (open files).

– System-wide table of PCB: Process table.

– Unix: Fixed-size array of PCB’s

Processes (3)Processes (3)

5

Processes (4): PCBProcesses (4): PCB

6

Processes (5): State TransitionProcesses (5): State Transition
• As a process executes, it changes state.

– New: The process is being created.
– Running: Instructions are being executed.
– Waiting: The process is waiting for some event to occur.
– Ready: The process is waiting to be assigned to CPU.
– Terminated: The process has finished execution.

7

Processes (6): State TransitionProcesses (6): State Transition

8

Processes (7): Scheduling QueuesProcesses (7): Scheduling Queues
• Job queue

– Set of all processes in the system.

• Ready queue
– Set of all processes residing in main memory, ready and

waiting to execute.

• Device queues
– Set of processes waiting for an I/O device.

• Process migration between the various queues.

9

Processes (8): SchedulingProcesses (8): Scheduling

10

Processes (9): SchedulingProcesses (9): Scheduling

11

• For several processes to share a CPU, the OS must
have:
– Fair scheduling

Make sure each process gets a chance to run.

– Protection
Making sure processes don’t trash each other.

Process Scheduling (1)Process Scheduling (1)

12

Process Scheduling (2)Process Scheduling (2)

• Dispatcher: Inner-most portion of the OS that runs

processes:

loop forever {

1)Run the process for a while.

2)Process and save its state.

3)Load state of another process.

}

13

• Dispatcher policies and mechanisms:

– How does the dispatcher keep control?

CPU can only be doing one thing at a time.

User process running means that dispatcher isn’t.

– Which process is executed next?

Need to locate runnable processes efficiently.

Process Scheduling (3)Process Scheduling (3)

14

Process Scheduling (4)Process Scheduling (4)

• How does the dispatcher regain control?

(1)Trust the process to wake the dispatcher up.

Problem: Sometimes processes misbehave.

(2) Provide the dispatcher with an alarm clock.

Timer hardware and interrupts.

15

• Control returns to OS on:
– Traps: Events internal to the user processes:

System calls.

Errors (illegal instructions, address error, etc).

Page faults.

– Interrupts: Events external fro the user process:
Character typed at a terminal.

Completion of a disk transfer.

Timer: to make sure OS eventually gets control.

Process Scheduling (5)Process Scheduling (5)

16

• Once dispatcher gets control how to decide who’s next?

Possibilities:

(1) Scan process table for first runnable process:

– Might spend much time searching.

– Results in weird priorities: Small PIDs better.

Question: How do you know a process is runnable?

Process Scheduling (6)Process Scheduling (6)

17

Process Scheduling (7)Process Scheduling (7)

(2) Link together the runnable processes into a queue.

– Dispatcher takes from the head of the queue.

– Runnable processes are inserted at back of queue.

Called “Ready list” or “Run queue.”

(3) Assign priorities to processes.

– Keep queue sorted by priority.

– Separate queue per priority.

18

Process Scheduling (8)Process Scheduling (8)

• Who decides priorities and how are priorities chosen?

– Who? A separate part of the OS: the scheduler

Question: Why not by the dispatcher?

Concept: Separation of mechanism and policy.

– How? Subject of the next topic (Topic 3).

19

Context Switching (1)Context Switching (1)

• How does the dispatcher save and restore state?

Mechanism — Context switch

• What must get saved?

– Everything that next process could or will damage:

Program counter,

Processor status word (condition codes, etc.),

General purpose registers, floating-point registers.

All of memory?

20

• Memory could be large so saving it could be expensive

Possibilities:

(1) Don’t save memory — Trust next process.
Multiprogramming on PC and Mac.

Called threads or lightweight-processes.

Context Switching (2)Context Switching (2)

21

Context Switching (3)Context Switching (3)

(2) Save all memory to disk.

Also, an early personal computer/ workstation.

Assume disk transfers at one megabyte/ second.

How long does saving a 4 megabyte process take?

(3) Protection memory from next process:
Memory management — Topic 6.

22

• Context switching implementation:

– Machine dependent: Different for MIPS, SPARC, 386, etc.

– Tricky:

• OS must execute code to save state without changing the

process’ state.

• Requires some special hardware support.

Example: Save PC and PSR on trap or interrupt.

Context Switching (4)Context Switching (4)

23

StkPtr

OS-PCB

PSW
SEG task
OFF task

AX
CX
DX
BX
SP
BP
SI
DI
ES

HICH Memory

INT call

PUSHA instruction

LOW MEMORY

after

before

OSPCBCur
StkPtr

OS-PCB

PSW
SEG task
OFF task

AX
CX
DX
BX
SP
BP
SI
DI
ES

HICH Memory

INT call

PUSHA instruction

LOW MEMORY

after

before

OSPCBCur

CPU’s SP

<Lower priority proc> <Higher priority proc>

Stack frames during a context Switch (80186/80188 Small)

Context Switching (5)Context Switching (5)

24

StkPtr

void * data
SEG task
OFF task

PSW
SEG task
OFF task

AX
CX
DX
BX
SP
BP
SI
DI
ES

OS-PCB
HICH Memory

Simulation of call to ‘far’ function with an argument

PSW = 0x0200 (Interrupt enabled)
INT call

PUSHA instruction

LOW MEMORY

Stack frame when procs are created (80186/80188 Small)

Context Switching (6)Context Switching (6)

25

Short Short vs vs Long Term SchedulerLong Term Scheduler

26

• Creating new processes:

– Build one from scratch; (e.g. Unix Process 0).

– Clone an existing one; (e.g. Unix fork() syscall).

Process Creation (1)Process Creation (1)

27

Process Creation (2)Process Creation (2)

• From scratch:

1) Load code and data into memory.

2) Create (empty) call stack.

3) Create and initialize a process control block.

4) Put process on ready list.

28

Process Creation (3)Process Creation (3)

• Cloning: Unix fork() system call.

1) Stop current process and save its state.

2) Make a copy of code, data, stack, and PCB.

3) Add new PCB to ready list.

Not quite right. What’s missing?

–– Return to the child and the parent.

• Process creation in Unix with fork() and exec():

29

Process Creation in Unix (4)Process Creation in Unix (4)
Swapper (Process 0)

Pagedaemont (Process 2)Init (Process 1)

/etc/rc /etc/ttys

getty

login

sh

30

Process Creation (5)Process Creation (5)

• Shell example:
for(;;) {

cmd = readcmd();
pid = fork();
if(pid == 0) {

// Child – Setup environment.
exec(cmd);
exit(1);

} else {
//Parent – Wait for command to finish.
wait(pid);

}
}

31

Process TerminationProcess Termination
• Process executes last statement and asks the

operating system to decide it (exit).
– Output data from child to parent (via wait).
– Process’ resources are deallocated by operating system.

• Parent may terminate execution of children
processes (abort).
– Child has exceeded allocated resources.
– Task assigned to child is no longer required.
– Parent is exiting.

• Operating system does not allow child to continue if its parent
terminates.

• Cascading termination.

32

Process Characteristics (1)Process Characteristics (1)

• Unit of resource ownership - process is allocated:

- a virtual address space to hold the process image

- control of some resources (files, I/O devices...)

• Unit of dispatching - process is an execution path
through one or more programs

- execution may be interleaved with other process

- the process has an execution state and a dispatching priority

33

Process Characteristics (2)Process Characteristics (2)

• These two characteristics are treated independently
by some recent OS

• The unit of dispatching is usually referred to a thread
or a lightweight process

• The unit of resource ownership is usually referred to
as a process or task

34

Multithreading vs. Single threadingMultithreading vs. Single threading

• Multithreading: when the OS supports multiple threads
of execution within a single process

• Single threading: when the OS does not recognize the
concept of thread

• MS-DOS support a single user process and a single
thread

• UNIX supports multiple user processes but only
supports one thread per process

• Solaris supports multiple threads

35

Threads and ProcessesThreads and Processes

36

ProcessesProcesses

• Have a virtual address space which holds the process
image

• Protected access to processors, other processes, files,
and I/O resources

37

ThreadsThreads

• Has an execution state (running, ready, etc.)

• Saves thread context when not running

• Has an execution stack and some per-thread static
storage for local variables

• Has access to the memory address space and
resources of its process
– all threads of a process share this
– when one thread alters a (non-private) memory item, all other

threads (of the process) sees that
– a file open with one thread, is available to others

38

Single Threaded and Multithreaded Single Threaded and Multithreaded
Process ModelsProcess Models

Thread Control Block contains a register image, thread priority and
thread state information

39

Benefits of Threads Benefits of Threads vs vs ProcessesProcesses

• Takes less time to create a new thread than a
process

• Less time to terminate a thread than a process

• Less time to switch between two threads within the
same process

40

Benefits of ThreadsBenefits of Threads

• Example 1: a file server on a LAN

• It needs to handle several file requests over a short
period

• Hence more efficient to create (and destroy) a single
thread for each request

• On a SMP machine: multiple threads can possibly be
executing simultaneously on different processors

• Example 2: one thread displays menu and reads user
input while the other thread execute user commands

41

Application Benefits of ThreadsApplication Benefits of Threads

• Consider an application that consists of several
independent parts that do not need to run in sequence

• Each part can be implemented as a thread

• Whenever one thread is blocked waiting for an I/O,
execution could possibly switch to another thread of
the same application (instead of switching to another
process)

42

Benefits of ThreadsBenefits of Threads

• Since threads within the same process share memory
and files, they can communicate with each other
without invoking the kernel

• Therefore necessary to synchronize the activities of
various threads so that they do not obtain inconsistent
views of the data

43

Example of Inconsistent ViewExample of Inconsistent View

• 3 variables: A, B, C which are shared by thread T1
and thread T2

• T1 computes C = A+B

• T2 transfers amount X from A to B
– T2 must do: A = A -X and B = B+X (so that A+B is unchanged)

• But if T1 computes A+B after T2 has done A = A-X but
before B = B+X

• then T1 will not obtain the correct result for C = A + B

44

Threads StatesThreads States

• Three key states: running, ready, blocked

• They have no suspend state because all threads
within the same process share the same address
space
– Indeed: suspending (ie: swapping) a single thread involves

suspending all threads of the same process

• Termination of a process, terminates all threads within
the process

45

UserUser--Level Threads (ULT)Level Threads (ULT)

• The kernel is not aware of the
existence of threads

• All thread management is done
by the application by using a
thread library

• Thread switching does not
require kernel mode privileges
(no mode switch)

• Scheduling is application
specific

46

Threads LibraryThreads Library

• Contains code for:
– creating and destroying threads

– passing messages and data between threads

– scheduling thread execution

– saving and restoring thread contexts

47

Kernel Activity for Kernel Activity for ULTsULTs

• The kernel is not aware of thread activity but it is still
managing process activity

• When a thread makes a system call, the whole
process will be blocked

• but for the thread library that thread is still in the
running state

• So thread states are independent of process states

48

Advantages and Inconveniences of Advantages and Inconveniences of
ULTULT

• Advantages
Thread switching does not
involve the kernel: no mode
switching

Scheduling can be
application specific: choose
the best algorithm.

ULTs can run on any OS.
Only needs a thread library

• Inconveniences
Most system calls are
blocking and the kernel
blocks processes. So all
threads within the process
will be blocked

The kernel can only assign
processes to processors.
Two threads within the same
process cannot run
simultaneously on two
processors

49

KernelKernel--Level Threads (KLT)Level Threads (KLT)

• All thread management is done by
kernel

• No thread library but an API to the
kernel thread facility

• Kernel maintains context
information for the process and the
threads

• Switching between threads
requires the kernel

• Scheduling on a thread basis

• Ex: Windows NT and OS/2

50

Advantages and inconveniences of Advantages and inconveniences of
KLTKLT

• Advantages

the kernel can simultaneously
schedule many threads of the
same process on many
processors

blocking is done on a thread
level

kernel routines can be
multithreaded

• Inconveniences

thread switching within the
same process involves the
kernel. We have 2 mode
switches per thread switch

this results in a significant
slow down

51

Combined ULT/KLT ApproachesCombined ULT/KLT Approaches

• Thread creation done in the
user space

• Bulk of scheduling and
synchronization of threads
done in the user space

• The programmer may adjust
the number of KLTs

• May combine the best of both
approaches

• Example is Solaris

52

SolarisSolaris
• Process includes the user’s address space, stack, and

process control block

• User-level threads (threads library)
– invisible to the OS
– are the interface for application parallelism

• Kernel threads
– the unit that can be dispatched on a processor and it’s

structures are maintain by the kernel

• Lightweight processes (LWP)
– each LWP supports one or more ULTs and maps to exactly

one KLT
– each LWP is visible to the application

53

Process 2 is equivalent to a pure ULT approach
Process 4 is equivalent to a pure KLT approach
We can specify a different degree of parallelism (process 3 and 5)

54

Solaris: VersatilitySolaris: Versatility

• We can use ULTs when logical parallelism does not
need to be supported by hardware parallelism (we save
mode switching)

– Ex: Multiple windows but only one is active at any one time

• If threads may block then we can specify two or more
LWPs to avoid blocking the whole application

55

Solaris: UserSolaris: User--Level Thread Level Thread
ExecutionExecution

• Transitions among these states is under the exclusive
control of the application
– a transition can occur only when a call is made to a function

of the thread library

• It’s only when a ULT is in the active state that it is
attached to a LWP (so that it will run when the kernel
level thread runs)
– a thread may transfer to the sleeping state by invoking a

synchronization primitive and later transfer to the runnable
state when the event waited for occurs

– A thread may force another thread to go to the stop state...

56

Solaris: UserSolaris: User--Level Thread StatesLevel Thread States

(Attached to an LWP)

57

Decomposition of UserDecomposition of User--Level Level
Active StateActive State

• When a ULT is active, it is associated to an LWP and,
thus, to a KLT

• Transitions among the LWP states is under the
exclusive control of the kernel

• An LWP can be in the following states:
– running: when the KLT is executing
– blocked: because the KLT issued a blocking system call (but

the ULT remains bound to that LWP and remains active)
– runnable: waiting to be dispatched to CPU

58

Solaris: Lightweight Process Solaris: Lightweight Process
StatesStates

LWP states are independent of ULT states
(except for bound ULTs)

