
Storage Allocation: LinkersStorage Allocation: Linkers
(Topic 4(Topic 4--1)1)

홍 성수

서울대학교공과대학전기공학부

Real-Time Operating Systems Laboratory

1

• Readings for the topic:
– The a.out(4) section of the Unix manual.

Type man a.out

• Information stored in memory is used in many
different ways.
– Some possible classifications are:

(1) Role in programming Language:
– Instructions

Specify the operations to be performed.

Storage Allocation (1)Storage Allocation (1)

2

– Variables
The information that changes as the program runs.

– Constants
Information used a operands, but that never changes.

(2) Changeability:
– Read-only

Examples: Code, constants.
– Read & write

Example: Variables
Important in disk write-back and sharing.

Storage Allocation (2)Storage Allocation (2)

3

(3) Addresses vs. Data.

– Must modify addresses if memory is rearranged.

– Example: Relocation and garbage collection.

(4) Binding time or When is memory allocated for the object ?

– Static: Location determined before program starts.

Possibilities: Compile-time, link-time, or load-time.

– Dynamic: Location is determined at runtime and may
change.

Storage Allocation (3)Storage Allocation (3)

4

Process Memory Allocation (1)Process Memory Allocation (1)
• What does a process memory look like ?

– In Unix it’s divided up into areas called segments.

Code (Text)

Data

Stack

Address
2N

0

5

• Why have different segments?
– Separate read-only code from read-write data.

• Division of responsibility between various portions of
system:
– Compiler: Generates one object file for each source file.

Information is incomplete, since source file reference some thing
defined in other source files.

– Linker: Combines all of the object files for one program into
a single object file.

Process Memory Allocation (2)Process Memory Allocation (2)

6

– Operation system: Loads object files into memory.
Allows several different processes to share memory.

Provides facilities for a process to get more memory.

• Linkers (or Linkage Editors, “ld” in Unix)
– Tie together many separate pieces of a program.

– Re-organize storage allocation.

– Must interface with the operating system.
(In Unix, ld is hidden by cc and g++).

Process Memory Allocation (3)Process Memory Allocation (3)

7

Linkers (1)Linkers (1)

• Three functions of a linker:
– Collect all the pieces of a program.

– Figure out a new memory organization so that all the pieces
fit together (combine segments of the same type).

– Touch up addresses so that the program can run under the
new memory organization.

The result is a runnable program stored in a new object file.

8

Linkers (2)Linkers (2)

• Problems linker must solve.
– Compiler doesn’t know where the things it’s compiling will go

in memory.
It will just assume that things start at zero.

The linker must relocation things.

Compiler puts info in object file to tell linker how to re-arrange
safely. This info is called relocation information.

9

– Compiler doesn’t know where everything is when compiling
files separately.

Example: where is printf or is it a new routine?

Where it doesn’t know, compiler just puts zero in the object
file and leaves additional note in the object file telling the
linger to fix things up.

These notes are called cross-references.

Linkers (3)Linkers (3)

10

Linkers (4)Linkers (4)

• There are two parts to a cross-reference:

– The global definition: One file provides a variable or

procedure that can be used by other files.

– The external reference: A file accesses a variable or

procedure that isn’t in that file.

11

• In Unix, each object file consists of:

– Two segments: Code and data (the OS creates and empty

stack segment when it loads the process).

– For each segment, the object file gives:

The size of the segment.

The address where that segment should begin when loaded.

Initial data if there is any.

Linkers (5)Linkers (5)

12

Linkers (6)Linkers (6)
– Symbol Table (global definitions): Information about stuff

defined in this module that may be used in other modules.
Used to get from name of thing to the thing itself.

Example: Printf is at 0x234

– Relocation Information: Information about addresses that the
linker should fix up:

External references: Never know to begin with.

Internals: Knew once, but if the linker re-arranges the segments
then this will change.

– Additional information for the use of a Debugger.
Example: Variable “foobar” is and integer located at 0x123.

13

• Type “man –s 4 a.out” on UNIX for a complete

description of UNIX object files.

• Linker can shuffle segments around at will, but

cannot rearrange information within a segment.

Example: Linker doesn’t rearrange instructions in a routine.

Linkers (7)Linkers (7)

14

• Example link job:

Linkers (8)Linkers (8)

C library :
printf(....) scanf(....)
....

Math module :

float sin (x)
float x;
{

static float tmp1, tmp2;
static float result;

-- compute sin(x) –

retrun result;
}

Main program :

main ()
{

static float x, val;

extern float sin();
extern printf(), scanf();

printf(“Type number:”)
scanf(“%f”, &x)
printf(“Sine is %f”, val);

}

15

• Starting object files:

Linkers (9)Linkers (9)

main()
call printf
call scanf(&x)
val = call sin(x)

x:
val:

main @ 0x..

int val @ 0x..
float x @ 0x..
ext printf :

text @ 0X...

ext scanf:
text @ 0X...

ext sin:
text @ 0X

Main

Symbol

Data

Txt

printf @ 0x..
scanf @ 0x..

libc

tmp1:
tmp2:
result:

printf()
scanf()

sin ()
return result

sin @ 0x...
int tmp1 @ 0x...
int tmp2 @ 0x...
int result @ 0x...

Math module

16

• Three general functions:

– Collect together segments of the same type from different

files.

– Compute new memory organization.

– Relocate addresses

Linkers (10)Linkers (10)

17

• Linker reorg:
Linkers (11)Linkers (11)

main()
call printf
call scanf(&x)
val = call sin(x)
call printf(val)

sin ()
return result

printf()
scanf()

x:
val:
tmp1:
tmp2:
result:

int val @ 0x..
int x @ 0x..

printf :
text @ 0X...

scanf:
text @ 0X...

sin:
text @ 0X...

Symbol Table

Data

Code

Main

• Note that addresses must be updated.

18

Linkers (12)Linkers (12)
• Linker run in several passes:

– Pass 1: Read in all of the symbol table information.
Decide how memory will be arranged.
Read external references to see what additional stuff has to be

gotten from libraries.
– Pass 2: read in segment and relocation information.

Modify addresses.
Write out new module containing symbols, segments, and

relocation.

Why: Can’t do final touchup until all files have.Why: Can’t do final touchup until all files have.

19

• While linker is running it keeps around information
about program, in a symbol table.
– Segments: Name, size, old location, new location.

– Symbols: Name, input segment containing it, offset within
input segment.

• Symbol names typically implemented using hashing.
– Segments: Name, size, old location, new location.

– Fast lookups.

Linkers (13)Linkers (13)

20

• Pass 1 just assigns input segment location in order to
fill up the output segments. No information needs to
be loaded into memory at this point except symbol
information.
– From main/sin example:

• Segments : Name, size, old location, new location.

• Main: (Code, 420, ,) (data, 42, ,).

• Math: (Code, 1600, ,) (data, 12, ,).

• Library: (Code, 1230, ,) (data, 148, ,).

Linkers (14)Linkers (14)

21

• Pass 2:
– Read data and relocation information from files.

– Fix up addresses.

– Write out new object file.

Linkers (15)Linkers (15)

22

• Relocation Information:
– Address and size of value to be relocated.

– Symbol (or segment) that determines the amount of
relocation.

• How to relocate:
1) “Place final address of symbol here.”

Case 1: Extern int X; X=1; move #1, _X

2) “Add final address of symbol to contents of this location.”

Case 2: Record/struct offsets.
3) “Add the difference between the final and original address of

segment to the contents of this location.”
Case 3: static int X; X=1;

Linkers (16)Linkers (16)

23

Linkers (17)Linkers (17)

• Example instruction relocation:

– CALL SIN

– BR X

