
1

5555
C Functions

© 2007 Pearson Education, Inc. All rights reserved.

2

Form ever follows function.
—Louis Henri Sullivan

E pluribus unum.p
(One composed of many.)
—Virgilg

O! call back yesterday, bid time return.O! call back yesterday, bid time return.
—William Shakespeare

Call me Ishmael.
l ill

© 2007 Pearson Education, Inc. All rights reserved.

—Herman Melville

3

Wh ll h il !When you call me that, smile!
—Owen Wister

Answer me in one word.
—William Shakespeare

There is a point at which methods devour
themselves.
—Frantz Fanon

Life can only be understood backward; but it
must be lived forward.

© 2007 Pearson Education, Inc. All rights reserved.

—Soren Kierkegaard

4

OBJECTIVESOBJECTIVES
In this chapter you will learn:

To construct programs modularly from small pieces
called functions.
Th th f ti il bl i th CThe common math functions available in the C
Standard Library.
To create new functionsTo create new functions.
The mechanisms used to pass information between
functions.functions.
Simulation techniques using random num-ber
generation.
How to write and use recursive functions, i.e., functions
that call themselves.

© 2007 Pearson Education, Inc. All rights reserved.

5

5.1 Introduction
5.2 Program Modules in C
5.3 Math Library Functionsy
5.4 Functions
5.5 Function Definitions
5.6 Function Prototypes
5.7 Function Call Stack and Activation Records
5.8 Headers
5.9 Calling Functions: Call-by-Value and Call-by-5.9 Calling Functions: Call by Value and Call by

Reference

© 2007 Pearson Education, Inc. All rights reserved.

6

5.10 Random Number Generation
5.11 Example: A Game of Chance
5.12 Storage Classesg
5.13 Scope Rules
5.14 Recursion
5.15 Example Using Recursion: Fibonacci Series
5.16 Recursion vs. Iteration

© 2007 Pearson Education, Inc. All rights reserved.

7

5.1 Introduction

Divide and conquer q
– Construct a program from smaller pieces or components

- These smaller pieces are called modulesp
– Each piece more manageable than the original program

© 2007 Pearson Education, Inc. All rights reserved.

8

5.2 Program Modules in Cg
Functions

– Modules in C
– Programs combine user-defined functions with library functions

- C standard library has a wide variety of functionsy y
Function calls

– Invoking functions
P id f ti d t (d t)- Provide function name and arguments (data)

- Function performs operations or manipulations
- Function returns results

– Function call analogy:
- Boss asks worker to complete task

Worker gets information does task returns resultWorker gets information, does task, returns result
Information hiding: boss does not know details

© 2007 Pearson Education, Inc. All rights reserved.

9

Good Programming Practice 5.1

Familiarize yourself with the rich collection
f f ti i th C St d d Libof functions in the C Standard Library.

© 2007 Pearson Education, Inc. All rights reserved.

10

Software Engineering Observation 5.1

Avoid reinventing the wheel. When possible,
C St d d Lib f ti i t d fuse C Standard Library functions instead of

writing new functions. This can reduce
program development timeprogram development time.

© 2007 Pearson Education, Inc. All rights reserved.

11

Portability Tip 5.1

Using the functions in the C Standard
Lib h l k t blLibrary helps make programs more portable.

© 2007 Pearson Education, Inc. All rights reserved.

12

Fig. 5.1 | Hierarchical boss function/worker function relationship.

© 2007 Pearson Education, Inc. All rights reserved.

13

5.3 Math Library Functionsy

Math library functions y
– perform common mathematical calculations
– #include <math.h>

Format for calling functions
– FunctionName(argument);FunctionName(argument);

- If multiple arguments, use comma-separated list
– printf("%.2f", sqrt(900.0));

- Calls function sqrt, which returns the square root of its
argument

- All math functions return data type double
– Arguments may be constants, variables, or expressions

© 2007 Pearson Education, Inc. All rights reserved.

14

Error-Prevention Tip 5.1

Include the math header by using the
di ti #include math hpreprocessor directive #include <math.h>

when using functions in the math library.

© 2007 Pearson Education, Inc. All rights reserved.

15

 Function Description Example

 sqrt(x) square root of x sqrt(900.0) is 30.0

()sqrt(9.0) is 3.0

 exp(x) exponential function ex exp(1.0) is 2.718282

exp(2.0) is 7.389056

 log(x) natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

 log10(x) logarithm of x (base 10) log10(1.0) is 0.0
log10(10.0) is 1.0
log10(100.0) is 2.0

 fabs(x) absolute value of x fabs(5.0) is 5.0
fabs(0.0) is 0.0
fabs(-5.0) is 5.0

 ceil(x) rounds x to the smallest integer
not less than x

ceil(9.2) is 10.0
il(9 8) i 9 0 not less than x ceil(-9.8) is -9.0

Fig. 5.2 | Commonly used math library functions. (Part 1 of 2.)

© 2007 Pearson Education, Inc. All rights reserved.

16

 Function Description Example

 floor(x) rounds x to the largest integer
not greater than x

floor(9.2) is 9.0

fl (9 8) 10 0
g

floor(-9.8) is -10.0

 pow(x, y) x raised to power y (xy) pow(2, 7) is 128.0
pow(9, .5) is 3.0

 fmod(x, y) remainder of x/y as a floating-
point number

fmod(13.657, 2.333) is 1.992

 sin(x) trigonometric sine of x
(x in radians)

sin(0.0) is 0.0
(x in radians)

 cos(x) trigonometric cosine of x
(x in radians)

cos(0.0) is 1.0

 tan(x) trigonometric tangent of x tan(0 0) is 0 0 tan(x) trigonometric tangent of x
(x in radians)

tan(0.0) is 0.0

Fig. 5.2 | Commonly used math library functions. (Part 2 of 2.)

© 2007 Pearson Education, Inc. All rights reserved.

17

5.4 Functions
Functions

– Modularize a program
– All variables defined inside functions are local variables

- Known only in function definedy
– Parameters

- Communicate information between functions
- Local variablesoc v b es

Benefits of functions
– Divide and conquer

M bl d l t- Manageable program development
– Software reusability

- Use existing functions as building blocks for new programs
- Abstraction - hide internal details (library functions)

– Avoid code repetition

© 2007 Pearson Education, Inc. All rights reserved.

18

Software Engineering Observation 5.2

In programs containing many functions,
i i ft i l t d fmain is often implemented as a group of

calls to functions that perform the bulk of
the program’s workthe program s work.

© 2007 Pearson Education, Inc. All rights reserved.

19

Software Engineering Observation 5.3

Each function should be limited to
f i i l ll d fi d t k dperforming a single, well-defined task, and

the func-tion name should effectively express
that task This facilitates abstraction andthat task. This facilitates abstraction and
promotes software reusability.

© 2007 Pearson Education, Inc. All rights reserved.

20

Software Engineering Observation 5.4

If you cannot choose a concise name that
h t th f ti d it iexpresses what the function does, it is

possible that your function is attempting to
perform too many diverse tasks It is usuallyperform too many diverse tasks. It is usually
best to break such a function into several
smaller functions.smaller functions.

© 2007 Pearson Education, Inc. All rights reserved.

21

5.5 Function Definitions

Function definition format
return-value-type function-name(parameter-list)
{

d l i ddeclarations and statements
}

– Function-name: any valid identifierFunction name: any valid identifier
– Return-value-type: data type of the result (default int)

- void – indicates that the function returns nothingg
– Parameter-list: comma separated list, declares parameters

- A type must be listed explicitly for each parameter unless, the
parameter is of type int

© 2007 Pearson Education, Inc. All rights reserved.

22

5.5 Function Definitions

Function definition format (continued)
return-value-type function-name(parameter-list)
{

declarations and statements
}}

– Definitions and statements: function body (block)
- Variables can be defined inside blocks (can be nested)
- Functions can not be defined inside other functions

– Returning control
- If nothing returned- If nothing returned

return;

or, until reaches right brace
If hi d- If something returned
return expression;

© 2007 Pearson Education, Inc. All rights reserved.

23

Good Programming Practice 5.2

Place a blank line between function
d fi iti t t th f ti ddefinitions to separate the functions and
enhance program readability.

© 2007 Pearson Education, Inc. All rights reserved.

24 1 /* Fig. 5.3: fig05_03.c

 2 Creating and using a programmer-defined function */

 3 #include <stdio.h>

 4

Outline

 5 int square(int y); /* function prototype */

 6
 7 /* function main begins program execution */

 8 int main(void)

fig05_03.c

Function prototype indicates function will
 9 {

10 int x; /* counter */
11
12 /* loop 10 times and calculate and output square of x each time */
13 f (1 10) {

be defined later in the program

13 for (x = 1; x <= 10; x++) {
14 printf("%d ", square(x)); /* function call */
15 } /* end for */
16
17 i tf("\ ")

Call to square function
17 printf("\n");
18
19 return 0; /* indicates successful termination */
20
21 } /* end main */ 21 } /* end main */
22
23 /* square function definition returns square of parameter */
24 int square(int y) /* y is a copy of argument to function */
25 {

Function definition
25 {
26 return y * y; /* returns square of y as an int */
27
28 } /* end function square */

© 2007 Pearson Education,
Inc. All rights reserved.

1 4 9 16 25 36 49 64 81 100

25

Common Programming Error 5.1

Omitting the return-value-type in a function
definition is a syntax error if the function
prototype specifies a return type other than
i tint.

© 2007 Pearson Education, Inc. All rights reserved.

26

Common Programming Error 5.2

Forgetting to return a value from a function
th t i d t t l l d tthat is supposed to return a value can lead to
unexpected errors. The C standard states that
the result of this omission is undefinedthe result of this omission is undefined.

© 2007 Pearson Education, Inc. All rights reserved.

27

Common Programming Error 5.3

Returning a value from a function with a
id t t i tvoid return type is a syntax error.

© 2007 Pearson Education, Inc. All rights reserved.

28

Good Programming Practice 5.3

Even though an omitted return type
idefaults to int, always state the return

type explicitly.

© 2007 Pearson Education, Inc. All rights reserved.

29

Common Programming Error 5.4

Specifying function parameters of the same
d bl d bltype as double x, y instead of double x,

double y might cause errors in your
Th t d l ti d blprograms. The parameter declaration double

x, y would actually make y a parameter of type
int because int is the defaultint because int is the default.

© 2007 Pearson Education, Inc. All rights reserved.

30

Common Programming Error 5.5

Placing a semicolon after the right
th i l i th t li tparenthesis enclosing the parameter list

of a function definition is a syntax error.

© 2007 Pearson Education, Inc. All rights reserved.

31

Common Programming Error 5.6

Defining a function parameter again as a
l l i bl ithi th f ti i tlocal variable within the function is a syntax
error.

© 2007 Pearson Education, Inc. All rights reserved.

32

Good Programming Practice 5.4

Include the type of each parameter in the
t li t if th t t i fparameter list, even if that parameter is of

the default type int.

© 2007 Pearson Education, Inc. All rights reserved.

33

Good Programming Practice 5.5

Although it is not incorrect to do so, do not
th f th tuse the same names for the arguments

passed to a function and the
corresponding parameters in the functioncorresponding parameters in the function
definition. This helps avoid ambiguity.

© 2007 Pearson Education, Inc. All rights reserved.

34

Common Programming Error 5.7

Defining a function inside another function
i tis a syntax error.

© 2007 Pearson Education, Inc. All rights reserved.

35

Good Programming Practice 5.6

Choosing meaningful function names and
i f l t kmeaningful parameter names makes

programs more readable and helps avoid
excessive use of commentsexcessive use of comments.

© 2007 Pearson Education, Inc. All rights reserved.

36

Software Engineering Observation 5.5

A function should generally be no longer
th B tt t f ti h ldthan one page. Better yet, functions should
generally be no longer than half a page.
Small functions promote softwareSmall functions promote software
reusability.

© 2007 Pearson Education, Inc. All rights reserved.

37

Software Engineering Observation 5.6

Programs should be written as collections of
ll f ti Thi ksmall functions. This makes programs

easier to write, debug, maintain and modify.

© 2007 Pearson Education, Inc. All rights reserved.

38

Software Engineering Observation 5.7

A function requiring a large number of
t b f i tparameters may be performing too many

tasks. Consider dividing the function into
smaller functions that perform the separatesmaller functions that perform the separate
tasks. The function header should fit on one
line if possible.line if possible.

© 2007 Pearson Education, Inc. All rights reserved.

39

Software Engineering Observation 5.8

The function prototype, function header and
f ti ll h ld ll i th bfunction calls should all agree in the number,
type, and order of arguments and
parameters and in the type of return valueparameters, and in the type of return value.

© 2007 Pearson Education, Inc. All rights reserved.

40 1 /* Fig. 5.4: fig05_04.c

 2 Finding the maximum of three integers */

 3 #include <stdio.h>

 4

Outline

 5 int maximum(int x, int y, int z); /* function prototype */

 6
 7 /* function main begins program execution */

 8 int main(void)

{

fig05_04.c

(1 of 2)

Function prototype

 9 {

10 int number1; /* first integer */
11 int number2; /* second integer */
12 int number3; /* third integer */
13

(1 of 2)

13
14 printf("Enter three integers: ");
15 scanf("%d%d%d", &number1, &number2, &number3);
16
17 /* n mber1 n mber2 and n mber3 are arg ments

Function call

17 /* number1, number2 and number3 are arguments
18 to the maximum function call */
19 printf("Maximum is: %d\n", maximum(number1, number2, number3));
20
21 return 0; /* indicates successful termination */ 21 return 0; /* indicates successful termination */
22
23 } /* end main */
24

© 2007 Pearson Education,
Inc. All rights reserved.

4125 /* Function maximum definition */
26 /* x, y and z are parameters */
27 int maximum(int x, int y, int z)
28 {

Outline
Function definition

29 int max = x; /* assume x is largest */
30
31 if (y > max) { /* if y is larger than max, assign y to max */
32 max = y;

} / d if /

fig05_04.c

(2 of 2)33 } /* end if */
34
35 if (z > max) { /* if z is larger than max, assign z to max */
36 max = z;
37 } /* d if */

(2 of 2)

37 } /* end if */
38
39 return max; /* max is largest value */
40
41 } /* end function maximum */ 41 } /* end function maximum */

 Enter three integers: 22 85 17

 Maximum is: 85

 Enter three integers: 85 22 17

 Maximum is: 85

 Enter three integers: 22 17 85

 Maximum is: 85

© 2007 Pearson Education,
Inc. All rights reserved.

42

5.6 Function Prototypesyp

Function prototype
– Function name
– Parameters – what the function takes in

Return type data type function returns (default int)– Return type – data type function returns (default int)
– Used to validate functions
– Prototype only needed if function definition comes after use in yp y

program
– The function with the prototype

int maximum(int x int y int z);int maximum(int x, int y, int z);

- Takes in 3 ints
- Returns an int

P i l d iPromotion rules and conversions
– Converting to lower types can lead to errors

© 2007 Pearson Education, Inc. All rights reserved.

43

Good Programming Practice 5.7

Include function prototypes for all functions to
t k d t f C’ t h kitake advantage of C’s type-checking
capabilities. Use #include preprocessor
directives to obtain function prototypes for thedirectives to obtain function prototypes for the
standard library functions from the headers
for the appropriate libraries, or to obtainfor the appropriate libraries, or to obtain
headers containing function prototypes for
functions developed by you and/or your group p y y y g p
members.

© 2007 Pearson Education, Inc. All rights reserved.

44

Good Programming Practice 5.8

Parameter names are sometimes included
i f ti t t (f) fin function prototypes (our preference) for
documentation purposes. The compiler
ignores these namesignores these names.

© 2007 Pearson Education, Inc. All rights reserved.

45

Common Programming Error 5.8

Forgetting the semicolon at the end of a
f ti t t i tfunction prototype is a syntax error.

© 2007 Pearson Education, Inc. All rights reserved.

46

i tf i f i Data type printf conversion
specification

scanf conversion
specification

 Long double %Lf %Lf

 double %f %lf double %f %lf

 float %f %f

 Unsigned long int %lu %lu

 long int %ld %ld

 unsigned int %u %u

 int %d %d

 unsigned short %hu %hu

 short %hd %hd short %hd %hd

 char %c %c

Fig. 5.5 | Promotion hierarchy for data types.

© 2007 Pearson Education, Inc. All rights reserved.

47

Common Programming Error 5.9

Converting from a higher data type in the
ti hi h t l tpromotion hierarchy to a lower type can

change the data value.

© 2007 Pearson Education, Inc. All rights reserved.

48

Common Programming Error 5.10

Forgetting a function prototype causes a
t if th t t f th f tisyntax error if the return type of the function

is not int and the function definition appears
after the function call in the programafter the function call in the program.
Otherwise, forgetting a function prototype
may cause a runtime error or an unexpectedmay cause a runtime error or an unexpected
result.

© 2007 Pearson Education, Inc. All rights reserved.

49

Software Engineering Observation 5.9

A function prototype placed outside any
f ti d fi iti li t ll ll t thfunction definition applies to all calls to the
function appearing after the function
prototype in the file A function prototypeprototype in the file. A function prototype
placed in a function applies only to calls made
in that function.in that function.

© 2007 Pearson Education, Inc. All rights reserved.

50

5.7 Function Call Stack and Activation
RecordsRecords

Program execution stackg
– A stack is a last-in, first-out (LIFO) data structure

- Anything put into the stack is placed “on top”y g p p p
- The only data that can be taken out is the data on top

– C uses a program execution stack to keep track of which
functions have been called

- When a function is called, it is placed on top of the stack
Wh f ti d it i t k ff th t k d t l- When a function ends, it is taken off the stack and control
returns to the function immediately below it

– Calling more functions than C can handle at once is knownCalling more functions than C can handle at once is known
as a “stack overflow error”

© 2007 Pearson Education, Inc. All rights reserved.

51

5.8 Headers

Header files
– Contain function prototypes for library functions
– <stdlib.h> , <math.h> , etc, ,
– Load with #include <filename>

#include <math.h>

Custom header files
– Create file with functions
– Save as filename.h
– Load in other files with #include "filename.h"
– Reuse functions

© 2007 Pearson Education, Inc. All rights reserved.

52

 Standard library header Explanation

 <assert.h> Contains macros and information for adding diagnostics that aid
program debugging.program debugging.

 <ctype.h> Contains function prototypes for functions that test characters for
certain properties, and function prototypes for functions that can
be used to convert lowercase letters to uppercase letters and vice
versa.

 errno h D fi th t f l f ti diti <errno.h> Defines macros that are useful for reporting error conditions.
 <float.h> Contains the floating-point size limits of the system.
 <limits.h> Contains the integral size limits of the system.
 <locale.h> Contains function prototypes and other information that enables a

program to be modified for the current locale on which it isprogram to be modified for the current locale on which it is
running. The notion of locale enables the computer system to
handle different conventions for expressing data like dates, times,
dollar amounts and large numbers throughout the world.

Fig. 5.6 | Some of the standard library headers. (Part 1 of 3.)

© 2007 Pearson Education, Inc. All rights reserved.

53

 Standard library header Explanation

 <math.h> Contains function prototypes for math library functions.
 setjmp h C t i f ti t t f f ti th t ll b i f <setjmp.h> Contains function prototypes for functions that allow bypassing of

the usual function call and return sequence.
 <signal.h> Contains function prototypes and macros to handle various

conditions that may arise during program execution.
 <stdarg.h> Defines macros for dealing with a list of arguments to a function g g g

whose number and types are unknown.
 <stddef.h> Contains common definitions of types used by C for performing

certain calculations.

Fig. 5.6 | Some of the standard library headers. (Part 2 of 3.)

© 2007 Pearson Education, Inc. All rights reserved.

54

 Standard library header Explanation

 <stdio.h> Contains function prototypes for the standard input/output library
functions and information used by themfunctions, and information used by them.

 <stdlib.h> Contains function prototypes for conversions of numbers to text
and text to numbers, memory allocation, random numbers, and
other utility functions.

 <string.h> Contains function prototypes for string-processing functions.
 <time.h> Contains function prototypes and types for manipulating the time

and date.

Fig. 5.6 | Some of the standard library headers. (Part 3 of 3.)

© 2007 Pearson Education, Inc. All rights reserved.

55

5.9 Calling Functions: Call-by-Value and
Call by ReferenceCall-by-Reference

Call by valuey
– Copy of argument passed to function
– Changes in function do not effect originalg g
– Use when function does not need to modify argument

- Avoids accidental changesg

Call by reference
– Passes original argumentPasses original argument
– Changes in function effect original
– Only used with trusted functionsOnly used with trusted functions

For now, we focus on call by value

© 2007 Pearson Education, Inc. All rights reserved.

56

5.10 Random Number Generation
rand function

– Load <stdlib.h>
– Returns "random" number between 0 and RAND_MAX (at least 32767)

i = rand();

– Pseudorandom
- Preset sequence of "random" numbers
- Same sequence for every function call

Scaling
– To get a random number between 1 and n

1 + (rand() % n)

- rand() % n returns a number between 0 and n - 1

- Add 1 to make random number between 1 and n
1 + (rand() % 6)

number between 1 and 6

© 2007 Pearson Education, Inc. All rights reserved.

57 1 /* Fig. 5.7: fig05_07.c

 2 Shifted, scaled integers produced by 1 + rand() % 6 */

 3 #include <stdio.h>

 4 #include <stdlib.h>

Outline

 5
 6 /* function main begins program execution */

 7 int main(void)

 8 {

i i / /

fig05_07.c

 9 int i; /* counter */

10
11 /* loop 20 times */
12 for (i = 1; i <= 20; i++) {
1313
14 /* pick random number from 1 to 6 and output it */
15 printf("%10d", 1 + (rand() % 6));
16
17 /* if co nter is di isible b 5 begin ne line of o tp t */

Generates a random number between 1 and 6
17 /* if counter is divisible by 5, begin new line of output */
18 if (i % 5 == 0) {
19 printf("\n");
20 } /* end if */
2121
22 } /* end for */
23
24 return 0; /* indicates successful termination */
2525
26 } /* end main */

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

© 2007 Pearson Education,
Inc. All rights reserved.

 6 2 3 4 1

58 1 /* Fig. 5.8: fig05_08.c

 2 Roll a six-sided die 6000 times */

 3 #include <stdio.h>

 4 #include <stdlib.h>

Outline

 5
 6 /* function main begins program execution */

 7 int main(void)

 8 {

i f / ll d /

fig05_08.c

(1 of 3) 9 int frequency1 = 0; /* rolled 1 counter */

10 int frequency2 = 0; /* rolled 2 counter */
11 int frequency3 = 0; /* rolled 3 counter */
12 int frequency4 = 0; /* rolled 4 counter */
13 i f 5 0 /* ll d 5 */

(1 of 3)

13 int frequency5 = 0; /* rolled 5 counter */
14 int frequency6 = 0; /* rolled 6 counter */
15
16 int roll; /* roll counter, value 1 to 6000 */
17 int face /* represents one roll of the die al e 1 to 6 */ 17 int face; /* represents one roll of the die, value 1 to 6 */
18
19 /* loop 6000 times and summarize results */
20 for (roll = 1; roll <= 6000; roll++) {
21 face 1 + rand() % 6; /* random number from 1 to 6 */ 21 face = 1 + rand() % 6; /* random number from 1 to 6 */
22
23 /* determine face value and increment appropriate counter */
24 switch (face) {
2525
26 case 1: /* rolled 1 */
27 ++frequency1;
28 break;
29

© 2007 Pearson Education,
Inc. All rights reserved.

29

5930 case 2: /* rolled 2 */
31 ++frequency2;
32 break;
33

Outline

34 case 3: /* rolled 3 */
35 ++frequency3;
36 break;
37

/ ll d /

fig05_08.c

(2 of 3)38 case 4: /* rolled 4 */
39 ++frequency4;
40 break;
41
42 5 /* ll d 5 */

(2 of 3)

42 case 5: /* rolled 5 */
43 ++frequency5;
44 break;
45
46 case 6 /* rolled 6 */ 46 case 6: /* rolled 6 */
47 ++frequency6;
48 break; /* optional */
49 } /* end switch */
5050
51 } /* end for */
52

© 2007 Pearson Education,
Inc. All rights reserved.

6053 /* display results in tabular format */
54 printf("%s%13s\n", "Face", "Frequency");
55 printf(" 1%13d\n", frequency1);
56 printf(" 2%13d\n", frequency2);

Outline

57 printf(" 3%13d\n", frequency3);
58 printf(" 4%13d\n", frequency4);
59 printf(" 5%13d\n", frequency5);
60 printf(" 6%13d\n", frequency6);

fig05_08.c

(3 of 3)61
62 return 0; /* indicates successful termination */
63
64 } /* end main */

(3 of 3)

Face Frequency

 1 1003

 2 1017

 3 983

 4 994 4 994

 5 1004

 6 999

© 2007 Pearson Education,
Inc. All rights reserved.

61

5.10 Random Number Generation

srand function
– <stdlib.h>

– Takes an integer seed and jumps to that location in its g j p
"random" sequence

srand(seed);
– srand(time(NULL));/*load <time.h> */

- time(NULL)

Returns the number of seconds that have passed since
January 1, 1970

“Randomizes" the seedRandomizes the seed

© 2007 Pearson Education, Inc. All rights reserved.

62 1 /* Fig. 5.9: fig05_09.c

 2 Randomizing die-rolling program */

 3 #include <stdlib.h>

 4 #include <stdio.h>

Outline

 5
 6 /* function main begins program execution */

 7 int main(void)

 8 {

fig05_09.c

(1 of 2)
 9 int i; /* counter */

10 unsigned seed; /* number used to seed random number generator */
11
12 printf("Enter seed: ");
13 f("% " & d) /* % f i d */

(1 of 2)

13 scanf("%u", &seed); /* note %u for unsigned */
14
15 srand(seed); /* seed random number generator */
16
17 /* l 10 ti */

Seeds the rand function

17 /* loop 10 times */
18 for (i = 1; i <= 10; i++) {
19

© 2007 Pearson Education,
Inc. All rights reserved.

6320 /* pick a random number from 1 to 6 and output it */
21 printf("%10d", 1 + (rand() % 6));
22
23 /* if counter is divisible by 5, begin a new line of output */

Outline

24 if (i % 5 == 0) {
25 printf("\n");
26 } /* end if */
27

} / d f /

fig05_09.c

(2 of 2)28 } /* end for */
29
30 return 0; /* indicates successful termination */
31
32 } /* d i */

(2 of 2)

32 } /* end main */

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

Enter seed: 867
 2 4 6 1 6
 1 1 3 6 2

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4 1 6 1 6 4

© 2007 Pearson Education,
Inc. All rights reserved.

64

Common Programming Error 5.11

Using srand in place of rand to generate
d brandom numbers.

© 2007 Pearson Education, Inc. All rights reserved.

65

5.11 Example: A Game of Chancep

Craps simulatorp
Rules

Roll two dice– Roll two dice
- 7 or 11 on first throw, player wins
- 2, 3, or 12 on first throw, player loses2, 3, or 12 on first throw, player loses
- 4, 5, 6, 8, 9, 10 - value becomes player's "point"

– Player must roll his point before rolling 7 to winy p g

© 2007 Pearson Education, Inc. All rights reserved.

66 1 /* Fig. 5.10: fig05_10.c

 2 Craps */

 3 #include <stdio.h>

 4 #include <stdlib.h>

Outline

 5 #include <time.h> /* contains prototype for function time */

 6
 7 /* enumeration constants represent game status */

 8 enum Status { CONTINUE, WON, LOST };

fig05_10.c

(1 of 4)
 9
10 int rollDice(void); /* function prototype */
11
12 /* function main begins program execution */
13 i i (id)

(1 of 4)
enum (enumeration) assigns numerical values

to CONTINUE, WON and LOST

13 int main(void)
14 {
15 int sum; /* sum of rolled dice */
16 int myPoint; /* point earned */
1717
18 enum Status gameStatus; /* can contain CONTINUE, WON, or LOST */
19
20 /* randomize random number generator using current time */
21 srand(time(NULL)); 21 srand(time(NULL));
22
23 sum = rollDice(); /* first roll of the dice */
24
25 /* determine game status based on sum of dice */ 25 /* determine game status based on sum of dice */
26 switch(sum) {
27

© 2007 Pearson Education,
Inc. All rights reserved.

6728 /* win on first roll */
29 case 7:
30 case 11:
31 gameStatus = WON;

Outline

32 break;
33
34 /* lose on first roll */
35 case 2:

fig05_10.c

(2 of 4)36 case 3:
37 case 12:
38 gameStatus = LOST;
39 break;
40

(2 of 4)

40
41 /* remember point */
42 default:
43 gameStatus = CONTINUE;
44 myPoint sum; 44 myPoint = sum;
45 printf("Point is %d\n", myPoint);
46 break; /* optional */
47 } /* end switch */
4848

© 2007 Pearson Education,
Inc. All rights reserved.

6849 /* while game not complete */
50 while (gameStatus == CONTINUE) {
51 sum = rollDice(); /* roll dice again */
52

Outline

53 /* determine game status */
54 if (sum == myPoint) { /* win by making point */
55 gameStatus = WON; /* game over, player won */
56 } /* end if */

fig05_10.c

(3 of 4)
57 else {
58
59 if (sum == 7) { /* lose by rolling 7 */
60 gameStatus = LOST; /* game over, player lost */
61 } /* d if */

(3 of 4)

61 } /* end if */
62
63 } /* end else */
64
65 } /* d hil */ 65 } /* end while */
66
67 /* display won or lost message */
68 if (gameStatus == WON) { /* did player win? */
69 printf("Player wins\n"); 69 printf(Player wins\n);

70 } /* end if */
71 else { /* player lost */
72 printf("Player loses\n");
73 } /* end else */ 73 } /* end else */
74
75 return 0; /* indicates successful termination */
76
77 } /* end main */

© 2007 Pearson Education,
Inc. All rights reserved.

77 } / end main /

6978
79 /* roll dice, calculate sum and display results */
80 int rollDice(void)
81 {

Outline

82 int die1; /* first die */
83 int die2; /* second die */
84 int workSum; /* sum of dice */
85

fig05_10.c

(4 of 4)
86 die1 = 1 + (rand() % 6); /* pick random die1 value */
87 die2 = 1 + (rand() % 6); /* pick random die2 value */
88 workSum = die1 + die2; /* sum die1 and die2 */
89
90 /* di l l f hi ll */

(4 of 4)

90 /* display results of this roll */
91 printf("Player rolled %d + %d = %d\n", die1, die2, workSum);
92
93 return workSum; /* return sum of dice */
9494
95 } /* end function rollRice */

© 2007 Pearson Education,
Inc. All rights reserved.

70
Player rolled 5 + 6 = 11
Player wins

Outline

Player rolled 4 + 1 = 5
Point is 5
Player rolled 6 + 2 = 8
Player rolled 2 + 1 = 3
Player rolled 3 + 2 = 5

fig05_11.c

Player wins

Player rolled 1 + 1 = 2
Player loses y

Player rolled 6 + 4 = 10
Point is 10
Player rolled 3 + 4 = 7 Player rolled 3 + 4 = 7
Player loses

© 2007 Pearson Education,
Inc. All rights reserved.

71

Common Programming Error 5.12

Assigning a value to an enumeration constant
ft it h b d fi d i tafter it has been defined is a syntax error.

© 2007 Pearson Education, Inc. All rights reserved.

72

Good Programming Practice 5.9

Use only uppercase letters in the names of
ti t t t k thenumeration constants to make these

constants stand out in a program and to
indicate that enumeration constants are notindicate that enumeration constants are not
variables.

© 2007 Pearson Education, Inc. All rights reserved.

73

5.12 Storage Classesg

Storage class specifiers
– Storage duration – how long an object exists in memory
– Scope – where object can be referenced in program
– Linkage – specifies the files in which an identifier is known

(more in Chapter 14)

Automatic storageAutomatic storage
– Object created and destroyed within its block
– auto: default for local variablesauto: default for local variables

auto double x, y;

– register: tries to put variable into high-speed registers
- Can only be used for automatic variables

register int counter = 1;

© 2007 Pearson Education, Inc. All rights reserved.

74

Performance Tip 5.1

Automatic storage is a means of conserving
b t ti i bl i tmemory, because automatic variables exist

only when they are needed. They are
created when the function in which they arecreated when the function in which they are
defined is entered and they are destroyed
when the function is exited.when the function is exited.

© 2007 Pearson Education, Inc. All rights reserved.

75

Software Engineering Observation 5.10

Automatic storage is an example of the
principle of least privilege—allowing access to
data only when it is absolutely needed. Why
h i bl t d i dhave variables stored in memory and
accessible when in fact they are not needed?

© 2007 Pearson Education, Inc. All rights reserved.

76

Performance Tip 5.2

The storage-class specifier register can be placed
b f t ti i bl d l ti t t th tbefore an automatic variable declaration to suggest that
the compiler maintain the variable in one of the
computer’s high-speed hardware registers. If intensely p g p g y
used variables such as counters or totals can be
maintained in hardware registers, the overhead of

t dl l di th i bl f i t threpeatedly loading the variables from memory into the
registers and storing the results back into memory can
be eliminated.be eliminated.

© 2007 Pearson Education, Inc. All rights reserved.

77

Performance Tip 5.3

Often, register declarations are
unnecessary. Today’s optimizing compilers
are capable of recognizing frequently used

i bl d d id t l th ivariables and can decide to place them in
registers without the need for a register
declarationdeclaration.

© 2007 Pearson Education, Inc. All rights reserved.

78

5.12 Storage Classesg

Static storage g
– Variables exist for entire program execution
– Default value of zero
– static: local variables defined in functions.

- Keep value after function endsp
- Only known in their own function

– extern: default for global variables and functions
- Known in any function

© 2007 Pearson Education, Inc. All rights reserved.

79

Software Engineering Observation 5.11

Defining a variable as global rather than
l l ll i t d d id ff t tlocal allows unintended side effects to occur
when a function that does not need access to
the variable accidentally or maliciouslythe variable accidentally or maliciously
modifies it. In general, use of global variables
should be avoided except in certainshould be avoided except in certain
situa-tions with unique performance
requirements (as discussed in Chapter 14).q (p)

© 2007 Pearson Education, Inc. All rights reserved.

80

Software Engineering Observation 5.12

Variables used only in a particular function
h ld b d fi d l l i bl i th tshould be defined as local variables in that

function rather than as external variables.

© 2007 Pearson Education, Inc. All rights reserved.

81

Common Programming Error 5.13

Using multiple storage-class specifiers for an
id tifi O l t l ifiidentifier. Only one storage-class specifier
can be applied to an identifier.

© 2007 Pearson Education, Inc. All rights reserved.

82

5.13 Scope Rulesp

File scope p
– Identifier defined outside function, known in all functions
– Used for global variables, function definitions, function g , ,

prototypes

Function scope p
– Can only be referenced inside a function body
– Used only for labels (start:, case: , etc.)y (, ,)

© 2007 Pearson Education, Inc. All rights reserved.

83

5.13 Scope Rulesp

Block scope p
– Identifier declared inside a block

- Block scope begins at definition, ends at right bracep g , g
– Used for variables, function parameters (local variables of

function)
– Outer blocks "hidden" from inner blocks if there is a

variable with the same name in the inner block

iFunction prototype scope
– Used for identifiers in parameter list

© 2007 Pearson Education, Inc. All rights reserved.

84

Common Programming Error 5.14

Accidentally using the same name for an
id tifi i i bl k i d fidentifier in an inner block as is used for an
identifier in an outer block, when in fact you
want the identifier in the outer block to bewant the identifier in the outer block to be
active for the duration of the inner block.

© 2007 Pearson Education, Inc. All rights reserved.

85

Error-Prevention Tip 5.2

Avoid variable names that hide names in
t Thi b li h d i louter scopes. This can be accomplished simply

by avoiding the use of duplicate identifiers in
a programa program.

© 2007 Pearson Education, Inc. All rights reserved.

86 1 /* Fig. 5.12: fig05_12.c

 2 A scoping example */

 3 #include <stdio.h>

 4

Outline

 5 void useLocal(void); /* function prototype */

 6 void useStaticLocal(void); /* function prototype */

 7 void useGlobal(void); /* function prototype */

 8

fig05_12.c

(1 of 4)
 9 int x = 1; /* global variable */

10
11 /* function main begins program execution */
12 int main(void)
13 {

(1 of 4)
Global variable with file scope

13 {
14 int x = 5; /* local variable to main */
15
16 printf("local x in outer scope of main is %d\n", x);
17

Variable with block scope

17
18 { /* start new scope */
19 int x = 7; /* local variable to new scope */
20
21 printf("local x in inner scope of main is %d\n" x);

Variable with block scope

21 printf(local x in inner scope of main is %d\n , x);

22 } /* end new scope */
23

© 2007 Pearson Education,
Inc. All rights reserved.

8724 printf("local x in outer scope of main is %d\n", x);
25
26 useLocal(); /* useLocal has automatic local x */
27 useStaticLocal(); /* useStaticLocal has static local x */

Outline

28 useGlobal(); /* useGlobal uses global x */
29 useLocal(); /* useLocal reinitializes automatic local x */
30 useStaticLocal(); /* static local x retains its prior value */
31 useGlobal(); /* global x also retains its value */

fig05_12.c

(2 of 4)
32
33 printf("\nlocal x in main is %d\n", x);
34
35 return 0; /* indicates successful termination */
36

(2 of 4)

36
37 } /* end main */
38
39 /* useLocal reinitializes local variable x during each call */
40 id L l(id) 40 void useLocal(void)
41 {
42 int x = 25; /* initialized each time useLocal is called */
43
44 printf("\nlocal x in useLocal is %d after entering useLocal\n" x);

Variable with block scope
44 printf(\nlocal x in useLocal is %d after entering useLocal\n , x);

45 x++;
46 printf("local x in useLocal is %d before exiting useLocal\n", x);
47 } /* end function useLocal */
4848

© 2007 Pearson Education,
Inc. All rights reserved.

8849 /* useStaticLocal initializes static local variable x only the first time
50 the function is called; value of x is saved between calls to this
51 function */
52 void useStaticLocal(void)

Outline

53 {
54 /* initialized only first time useStaticLocal is called */
55 static int x = 50;
56

fig05_12.c

(3 of 4)
Static variable with block scope

57 printf("\nlocal static x is %d on entering useStaticLocal\n", x);
58 x++;
59 printf("local static x is %d on exiting useStaticLocal\n", x);
60 } /* end function useStaticLocal */
61

(3 of 4)

61
62 /* function useGlobal modifies global variable x during each call */
63 void useGlobal(void)
64 {
65 printf("\nglobal is %d on entering seGlobal\n") 65 printf("\nglobal x is %d on entering useGlobal\n", x);
66 x *= 10;
67 printf("global x is %d on exiting useGlobal\n", x);
68 } /* end function useGlobal */

Global variable

© 2007 Pearson Education,
Inc. All rights reserved.

89
local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

l l i L l i 25 ft t i L l

Outline

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

fig05_12.c

(4 of 4)
global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

(4 of 4)

local x in useLocal is 26 before exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal g g
global x is 100 on exiting useGlobal

local x in main is 5

© 2007 Pearson Education,
Inc. All rights reserved.

90

5.14 Recursion

Recursive functions
– Functions that call themselves
– Can only solve a base casey
– Divide a problem up into

- What it can do
- What it cannot do

What it cannot do resembles original problem
The function launches a new copy of itself (recursion step)

to solve what it cannot do
Eventually base case gets solved– Eventually base case gets solved

- Gets plugged in, works its way up and solves whole problem

© 2007 Pearson Education, Inc. All rights reserved.

91

5.14 Recursion

Example: factorialsp
– 5! = 5 * 4 * 3 * 2 * 1

– Notice that
- 5! = 5 * 4!

- 4! = 4 * 3! ...

– Can compute factorials recursively
– Solve base case (1! = 0! = 1) then plug in

2! 2 * 1! 2 * 1 2- 2! = 2 * 1! = 2 * 1 = 2;

- 3! = 3 * 2! = 3 * 2 = 6;

© 2007 Pearson Education, Inc. All rights reserved.

92

Fig. 5.13 | Recursive evaluation of 5!.

© 2007 Pearson Education, Inc. All rights reserved.

93 1 /* Fig. 5.14: fig05_14.c

 2 Recursive factorial function */

 3 #include <stdio.h>

 4

Outline

 5 long factorial(long number); /* function prototype */

 6
 7 /* function main begins program execution */

 8 int main(void)

fig05_14.c

(1 of 2)
 9 {

10 int i; /* counter */
11
12 /* loop 11 times; during each iteration, calculate
13 f i l(i) d di l l */

(1 of 2)

13 factorial(i) and display result */
14 for (i = 0; i <= 10; i++) {
15 printf("%2d! = %ld\n", i, factorial(i));
16 } /* end for */
1717
18 return 0; /* indicates successful termination */
19
20 } /* end main */
2121

© 2007 Pearson Education,
Inc. All rights reserved.

9422 /* recursive definition of function factorial */
23 long factorial(long number)
24 {
25 /* base case */

Outline

26 if (number <= 1) {
27 return 1;
28 } /* end if */
29 else { /* recursive step */

fig05_14.c

(2 of 2)
30 return (number * factorial(number - 1));
31 } /* end else */
32
33 } /* end function factorial */

(2 of 2)

 0! = 1
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
10! = 3628800

© 2007 Pearson Education,
Inc. All rights reserved.

95

Common Programming Error 5.15

Forgetting to return a value from a recursive
f ti h i d dfunction when one is needed.

© 2007 Pearson Education, Inc. All rights reserved.

96

Common Programming Error 5.16

Either omitting the base case, or writing the
recursion step incorrectly so that it does not
converge on the base case, will cause infinite

i t ll h tirecursion, eventually exhausting memory.
This is analogous to the problem of an infinite
loop in an iterati e (nonrec rsi e) sol tionloop in an iterative (nonrecursive) solution.
Infinite recursion can also be caused by
providing an unexpected inputproviding an unexpected input.

© 2007 Pearson Education, Inc. All rights reserved.

97

5.15 Example Using Recursion:
Fibonacci SeriesFibonacci Series

Fibonacci series: 0, 1, 1, 2, 3, 5, 8...
– Each number is the sum of the previous two
– Can be solved recursively:y

- fib(n) = fib(n - 1) + fib(n – 2)

– Code for the fibonacci function
l fib i(l)long fibonacci(long n)

{

if (n == 0 || n == 1) // base case

return n;

else

return fibonacci(n - 1) +return fibonacci(n 1) +
fibonacci(n – 2);

}

© 2007 Pearson Education, Inc. All rights reserved.

98 1 /* Fig. 5.15: fig05_15.c

 2 Recursive fibonacci function */

 3 #include <stdio.h>

 4

Outline

 5 long fibonacci(long n); /* function prototype */

 6
 7 /* function main begins program execution */

 8 int main(void)

fig05_15.c

(1 of 4)
 9 {

10 long result; /* fibonacci value */
11 long number; /* number input by user */
12
13 /* b i i f */

(1 of 4)

13 /* obtain integer from user */
14 printf("Enter an integer: ");
15 scanf("%ld", &number);
16
17 /* calc late fibonacci al e for n mber inp t b ser */ 17 /* calculate fibonacci value for number input by user */
18 result = fibonacci(number);
19
20 /* display result */
21 printf("Fibonacci(%ld) %ld\n" number result); 21 printf(Fibonacci(%ld) = %ld\n , number, result);

22
23 return 0; /* indicates successful termination */
24
25 } /* end main */ 25 } /* end main */
26

© 2007 Pearson Education,
Inc. All rights reserved.

9927 /* Recursive definition of function fibonacci */
28 long fibonacci(long n)
29 {
30 /* base case */

Outline

31 if (n == 0 || n == 1) {
32 return n;
33 } /* end if */
34 else { /* recursive step */

fib i() fib i()

fig05_15.c

(2 of 4)35 return fibonacci(n - 1) + fibonacci(n - 2);
36 } /* end else */
37
38 } /* end function fibonacci */

(2 of 4)

Enter an integer: 0
Fibonacci(0) = 0

Enter an integer: 1
Fibonacci(1) = 1

Enter an integer: 2
Fibonacci(2) = 1

 (continued on next slide…)

© 2007 Pearson Education,
Inc. All rights reserved.

100 (continued from previous slide…)
Enter an integer: 3
Fibonacci(3) = 2

Outline

Enter an integer: 4
Fibonacci(4) = 3

fig05_15.c

(3 of 4)
Enter an integer: 5
Fibonacci(5) = 5

(3 of 4)

Enter an integer: 6
Fibonacci(6) = 8

 (continued on next slide…)

© 2007 Pearson Education,
Inc. All rights reserved.

101 (continued from previous slide…)
Enter an integer: 10
Fibonacci(10) = 55

Outline

Enter an integer: 20
Fibonacci(20) = 6765

fig05_15.c

(4 of 4)
Enter an integer: 30
Fibonacci(30) = 832040

(4 of 4)

Enter an integer: 35
Fibonacci(35) = 9227465

© 2007 Pearson Education,
Inc. All rights reserved.

102

Fig. 5.16 | Set of recursive calls for fibonacci(3).

© 2007 Pearson Education, Inc. All rights reserved.

103

Common Programming Error 5.17

Writing programs that depend on the order of
evaluation of the operands of operators other
than &&, ||, ?:, and the comma (,) operator

l d t b il tcan lead to errors because compilers may not
necessarily evaluate the operands in the order

o e pectyou expect.

© 2007 Pearson Education, Inc. All rights reserved.

104

Portability Tip 5.2

Programs that depend on the order of
evaluation of the operands of operators other
than &&, ||, ?:, and the comma (,) operator

f ti diff tl t ithcan function differently on systems with
different compilers.

© 2007 Pearson Education, Inc. All rights reserved.

105

Performance Tip 5.4

Avoid Fibonacci-style recursive programs
hi h lt i ti l “ l i ”which result in an exponential “explosion”

of calls.

© 2007 Pearson Education, Inc. All rights reserved.

106

5.16 Recursion vs. Iteration

Repetitionp
– Iteration: explicit loop
– Recursion: repeated function callsp

Termination
Iteration: loop condition fails– Iteration: loop condition fails

– Recursion: base case recognized

Both can have infinite loopsBoth can have infinite loops
Balance

– Choice between performance (iteration) and good software
engineering (recursion)

© 2007 Pearson Education, Inc. All rights reserved.

107

Software Engineering Observation 5.13

Any problem that can be solved recursively can also
be solved iteratively (nonrecursively) A recursivebe solved iteratively (nonrecursively). A recursive
approach is normally chosen in preference to an
iterative approach when the recursive approach more
naturally mirrors the problem and results in a
program that is easier to understand and debug.
Another reason to choose a recursive solution is thatAnother reason to choose a recursive solution is that
an iterative solution may not be apparent.

© 2007 Pearson Education, Inc. All rights reserved.

108

Performance Tip 5.5

Avoid using recursion in performance
it ti R i ll t k ti dsituations. Recursive calls take time and

consume additional memory.

© 2007 Pearson Education, Inc. All rights reserved.

109

Common Programming Error 5.18

Accidentally having a nonrecursive function
ll it lf ith di tl i di tlcall itself either directly, or indirectly

through another function.

© 2007 Pearson Education, Inc. All rights reserved.

110

Performance Tip 5.6

Functionalizing programs in a neat, hierarchical
manner promotes good software engineering But itmanner promotes good software engineering. But it
has a price. A heavily functionalized program—as
compared to a monolithic (i.e., one-piece) program
without functions—makes potentially large numbers
of function calls, and these consume execution time on
a computer’s processor(s) So although monolithica computer s processor(s). So, although monolithic
programs may perform better, they are more difficult
to program, test, debug, maintain, and evolve.

© 2007 Pearson Education, Inc. All rights reserved.

111

 Chapter Recursion examples and exercises

 Chapter 5 Factorial function
Fibonacci functionFibonacci function
Greatest common divisor
Sum of two integers
Multiply two integers
Raising an integer to an integer power
T f H iTowers of Hanoi
Recursive main
Printing keyboard inputs in reverse
Visualizing recursion

 Chapter 6 Sum the elements of an array p
Print an array
Print an array backward
Print a string backward
Check if a string is a palindrome
Minimum value in an arrayMinimum value in an array
Selection sort
Quicksort
Linear search
Binary search

Fig. 5.17 | Recursion examples and exercises in the text. (Part 1 of 2.)

© 2007 Pearson Education, Inc. All rights reserved.

112

Chapter Recursion examples and exercises Chapter Recursion examples and exercises

 Chapter 7 Eight Queens
Maze traversal

 Chapter 8 Printing a string input at the keyboard backward p
 Chapter 12 Linked list insert

Linked list delete
Search a linked list
Print a linked list backward
Binary tree insertBinary tree insert
Preorder traversal of a binary tree
Inorder traversal of a binary tree
Postorder traversal of a binary tree

 Chapter 16 Selection sort
Quicksort

Fig. 5.17 | Recursion examples and exercises in the text. (Part 2 of 2.)

© 2007 Pearson Education, Inc. All rights reserved.

