
55

© 2006 Pearson Education, Inc. All rights reserved.

3.8 Placing a Class in a Separate File
for Reusability
•.cpp file is known as a source-code file
• Header files

– Separate files in which class definitions are placed
• Allow compiler to recognize the classes when used elsewhere

– Generally have .h filename extensions

• Driver files
– Program used to test software (such as classes)
– Contains a main function so it can be executed

56

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_09.cpp

(1 of 2)

 1 // Fig. 3.9: GradeBook.h

 2 // GradeBook class definition in a separate file from main.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <string> // class GradeBook uses C++ standard string class

 8 using std::string;

 9
10 // GradeBook class definition
11 class GradeBook
12 {
13 public:
14 // constructor initializes courseName with string supplied as argument
15 GradeBook(string name)
16 {
17 setCourseName(name); // call set function to initialize courseName
18 } // end GradeBook constructor
19
20 // function to set the course name
21 void setCourseName(string name)
22 {
23 courseName = name; // store the course name in the object
24 } // end function setCourseName
25

Class definition is in a header file

57

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_09.cpp

(2 of 2)

26 // function to get the course name
27 string getCourseName()
28 {
29 return courseName; // return object's courseName
30 } // end function getCourseName
31
32 // display a welcome message to the GradeBook user
33 void displayMessage()
34 {
35 // call getCourseName to get the courseName
36 cout << "Welcome to the grade book for\n" << getCourseName()
37 << "!" << endl;
38 } // end function displayMessage
39 private:
40 string courseName; // course name for this GradeBook
41 }; // end class GradeBook

58

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_10.cpp

(1 of 1)

 1 // Fig. 3.10: fig03_10.cpp

 2 // Including class GradeBook from file GradeBook.h for use in main.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "GradeBook.h" // include definition of class GradeBook

 8
 9 // function main begins program execution

10 int main()
11 {
12 // create two GradeBook objects
13 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
14 GradeBook gradeBook2("CS102 Data Structures in C++");
15
16 // display initial value of courseName for each GradeBook
17 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
18 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
19 << endl;
20 return 0; // indicate successful termination
21 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Including the header file causes the
class definition to be copied into the file

59

© 2006 Pearson Education, Inc. All rights reserved.

3.8 Placing a Class in a Separate File
for Reusability (Cont.)

• #include preprocessor directive
– Used to include header files

• Instructs C++ preprocessor to replace directive with a copy
of the contents of the specified file

– Quotes indicate user-defined header files
• Preprocessor first looks in current directory

– If the file is not found, looks in C++ Standard Library
directory

– Angle brackets indicate C++ Standard Library
• Preprocessor looks only in C++ Standard Library directory

60

© 2006 Pearson Education, Inc. All rights reserved.

3.8 Placing a Class in a Separate File
for Reusability (Cont.)

• Creating objects
– Compiler must know size of object

• C++ objects typically contain only data members
• Compiler creates one copy of class’s member functions

– This copy is shared among all the class’s objects

61

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 3.3

To ensure that the preprocessor can locate header
files correctly, #include preprocessor directives
should place the names of user-defined header
files in quotes (e.g., "GradeBook.h") and place
the names of C++ Standard Library header files
in angle brackets (e.g., <iostream>).

62

© 2006 Pearson Education, Inc. All rights reserved.

3.9 Separating Interface from
Implementation

• Interface
– Describes what services a class’s clients can use and how to

request those services
• But does not reveal how the class carries out the services
• A class definition that lists only member function names,

return types and parameter types
– Function prototypes

– A class’s interface consists of the class’s public member
functions (services)

• Separating interface from implementation
– Client code should not break if implementation changes, as

long as interface stays the same

63

© 2006 Pearson Education, Inc. All rights reserved.

3.9 Separating Interface from
Implementation (Cont.)

• Separating interface from implementation (Cont.)
– Define member functions outside the class definition, in a

separate source-code file
• In source-code file for a class

– Use binary scope resolution operator (::) to tie each
member function to the class definition

• Implementation details are hidden
– Client code does not need to know the implementation

– In header file for a class
• Function prototypes describe the class’s public interface

64

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_11.cpp

(1 of 1)

 1 // Fig. 3.11: GradeBook.h

 2 // GradeBook class definition. This file presents GradeBook's public

 3 // interface without revealing the implementations of GradeBook's member

 4 // functions, which are defined in GradeBook.cpp.

 5 #include <string> // class GradeBook uses C++ standard string class

 6 using std::string;

 7
 8 // GradeBook class definition

 9 class GradeBook

10 {
11 public:
12 GradeBook(string); // constructor that initializes courseName
13 void setCourseName(string); // function that sets the course name
14 string getCourseName(); // function that gets the course name
15 void displayMessage(); // function that displays a welcome message
16 private:
17 string courseName; // course name for this GradeBook
18 }; // end class GradeBook

Interface contains data members
and member function prototypes

65

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.8

Forgetting the semicolon at the end of a function
prototype is a syntax error.

66

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 3.7

Although parameter names in function
prototypes are optional (they are ignored by the
compiler), many programmers use these names
for documentation purposes.

67

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 3.4

Parameter names in a function prototype
(which, again, are ignored by the compiler) can
be misleading if wrong or confusing names are
used. For this reason, many programmers
create function prototypes by copying the first
line of the corresponding function definitions
(when the source code for the functions is
available), then appending a semicolon to the
end of each prototype.

68

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.9

When defining a class’s member functions
outside that class, omitting the class name and
binary scope resolution operator (::) preceding
the function names causes compilation errors.

69

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_12.cpp

(1 of 2)

 1 // Fig. 3.12: GradeBook.cpp

 2 // GradeBook member-function definitions. This file contains

 3 // implementations of the member functions prototyped in GradeBook.h.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "GradeBook.h" // include definition of class GradeBook

 9
10 // constructor initializes courseName with string supplied as argument
11 GradeBook::GradeBook(string name)
12 {
13 setCourseName(name); // call set function to initialize courseName
14 } // end GradeBook constructor
15
16 // function to set the course name
17 void GradeBook::setCourseName(string name)
18 {
19 courseName = name; // store the course name in the object
20 } // end function setCourseName
21

Binary scope resolution operator
ties a function to its class

GradeBook implementation is
placed in a separate source-code file

Include the header file to access
the class name GradeBook

70

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_12.cpp

(2 of 2)

22 // function to get the course name
23 string GradeBook::getCourseName()
24 {
25 return courseName; // return object's courseName
26 } // end function getCourseName
27
28 // display a welcome message to the GradeBook user
29 void GradeBook::displayMessage()
30 {
31 // call getCourseName to get the courseName
32 cout << "Welcome to the grade book for\n" << getCourseName()
33 << "!" << endl;
34 } // end function displayMessage

71

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_13.cpp

(1 of 1)

 1 // Fig. 3.13: fig03_13.cpp

 2 // GradeBook class demonstration after separating

 3 // its interface from its implementation.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "GradeBook.h" // include definition of class GradeBook

 9
10 // function main begins program execution
11 int main()
12 {
13 // create two GradeBook objects
14 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
15 GradeBook gradeBook2("CS102 Data Structures in C++");
16
17 // display initial value of courseName for each GradeBook
18 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
19 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
20 << endl;
21 return 0; // indicate successful termination
22 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

72

© 2006 Pearson Education, Inc. All rights reserved.

3.9 Separating Interface from
Implementation (Cont.)

• The Compilation and Linking Process
– Source-code file is compiled to create the class’s object

code (source-code file must #include header file)
• Class implementation programmer only needs to provide

header file and object code to client
– Client must #include header file in their own code

• So compiler can ensure that the main function creates and
manipulates objects of the class correctly

– To create executable application
• Object code for client code must be linked with the object

code for the class and the object code for any C++ Standard
Library object code used in the application

73

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.14 | Compilation and linking process that produces an executable application.

74

© 2006 Pearson Education, Inc. All rights reserved.

3.10 Validating Data with set
Functions

• set functions can validate data
– Known as validity checking
– Keeps object in a consistent state

• The data member contains a valid value
– Can return values indicating that attempts were made to

assign invalid data

•string member functions
– length returns the number of characters in the string
– Substr returns specified substring within the string

75

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_15.cpp

(1 of 1)

 1 // Fig. 3.15: GradeBook.h

 2 // GradeBook class definition presents the public interface of

 3 // the class. Member-function definitions appear in GradeBook.cpp.

 4 #include <string> // program uses C++ standard string class

 5 using std::string;

 6
 7 // GradeBook class definition

 8 class GradeBook

 9 {

10 public:
11 GradeBook(string); // constructor that initializes a GradeBook object
12 void setCourseName(string); // function that sets the course name
13 string getCourseName(); // function that gets the course name
14 void displayMessage(); // function that displays a welcome message
15 private:
16 string courseName; // course name for this GradeBook
17 }; // end class GradeBook

76

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_16.cpp

(1 of 2)

 1 // Fig. 3.16: GradeBook.cpp

 2 // Implementations of the GradeBook member-function definitions.

 3 // The setCourseName function performs validation.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "GradeBook.h" // include definition of class GradeBook

 9
10 // constructor initializes courseName with string supplied as argument
11 GradeBook::GradeBook(string name)
12 {
13 setCourseName(name); // validate and store courseName
14 } // end GradeBook constructor
15
16 // function that sets the course name;
17 // ensures that the course name has at most 25 characters
18 void GradeBook::setCourseName(string name)
19 {
20 if (name.length() <= 25) // if name has 25 or fewer characters
21 courseName = name; // store the course name in the object
22

set functions perform validity checking to
keep courseName in a consistent state

Constructor calls set function
to perform validity checking

77

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_16.cpp

(2 of 2)

23 if (name.length() > 25) // if name has more than 25 characters
24 {
25 // set courseName to first 25 characters of parameter name
26 courseName = name.substr(0, 25); // start at 0, length of 25
27
28 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
29 << "Limiting courseName to first 25 characters.\n" << endl;
30 } // end if
31 } // end function setCourseName
32
33 // function to get the course name
34 string GradeBook::getCourseName()
35 {
36 return courseName; // return object's courseName
37 } // end function getCourseName
38
39 // display a welcome message to the GradeBook user
40 void GradeBook::displayMessage()
41 {
42 // call getCourseName to get the courseName
43 cout << "Welcome to the grade book for\n" << getCourseName()
44 << "!" << endl;
45 } // end function displayMessage

78

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_17.cpp

(1 of 2)

 1 // Fig. 3.17: fig03_17.cpp

 2 // Create and manipulate a GradeBook object; illustrate validation.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "GradeBook.h" // include definition of class GradeBook

 8
 9 // function main begins program execution

10 int main()
11 {
12 // create two GradeBook objects;
13 // initial course name of gradeBook1 is too long
14 GradeBook gradeBook1("CS101 Introduction to Programming in C++");
15 GradeBook gradeBook2("CS102 C++ Data Structures");
16

Constructor will call set function
to perform validity checking

79

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_17.cpp

(2 of 2)

17 // display each GradeBook's courseName
18 cout << "gradeBook1's initial course name is: "
19 << gradeBook1.getCourseName()
20 << "\ngradeBook2's initial course name is: "
21 << gradeBook2.getCourseName() << endl;
22
23 // modify myGradeBook's courseName (with a valid-length string)
24 gradeBook1.setCourseName("CS101 C++ Programming");
25
26 // display each GradeBook's courseName
27 cout << "\ngradeBook1's course name is: "
28 << gradeBook1.getCourseName()
29 << "\ngradeBook2's course name is: "
30 << gradeBook2.getCourseName() << endl;
31 return 0; // indicate successful termination
32 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBook1's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBook1's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Call set function to perform validity checking

80

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.6

Making data members private and controlling
access, especially write access, to those data
members through public member functions
helps ensure data integrity.

81

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 3.5

The benefits of data integrity are not automatic
simply because data members are made
private—the programmer must provide
appropriate validity checking and report the
errors.

82

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.7

Member functions that set the values of private
data should verify that the intended new values
are proper; if they are not, the set functions
should place the private data members into an
appropriate state.

83

© 2006 Pearson Education, Inc. All rights reserved.

3.11 (Optional) Software Engineering Case Study:
Identifying the Classes in the ATM Requirements
Document

• Identifying the classes in a system
– Key nouns and noun phrases in requirements document

• Some are attributes of other classes
• Some do not correspond to parts of the system
• Some are classes

– To be represented by UML class diagrams

84

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.18 | Nouns and noun phrases in the requirements document.

Nouns and noun phrases in the requirements document

bank money / fund account number
ATM screen PIN
user keypad bank database
customer cash dispenser balance inquiry
transaction $20 bill / cash withdrawal
account deposit slot deposit
balance deposit envelope

85

© 2006 Pearson Education, Inc. All rights reserved.

3.11 (Optional) Software Engineering Case Study:
Identifying the Classes in the ATM Requirements
Document (Cont.)

• Modeling classes with UML class diagrams
– Top compartment contains name of the class
– Middle compartment contains attributes
– Bottom compartment contains operations
– An elided diagram

• Suppress some class attributes and operations for readability
– An association

• Represented by a solid line that connects two classes
• Association can be named
• Numbers near end of each line are multiplicity values
• Role name identifies the role an object plays in an association

86

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.19 | Representing a class in the UML using a class diagram.

87

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.20 | Class diagram showing an association among classes.

88

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.21 | Multiplicity types.

Symbol Meaning
0 None

1 One

m An integer value

0..1 Zero or one

m, n m or n

m..n At least m, but not more than n

* Any nonnegative integer (zero or more)

0..* Zero or more (identical to *)

1..* One or more

89

© 2006 Pearson Education, Inc. All rights reserved.

3.11 (Optional) Software Engineering Case Study:
Identifying the Classes in the ATM Requirements
Document (Cont.)

• Composition relationship
– Indicated by solid diamonds attached to association lines
– Composition properties

• Only one class can represent the whole
• Parts only exist while whole exists, whole creates and

destroys parts
• A part may only belong to one whole at a time

• Hollow diamonds indicate aggregation
– A weaker form of composition

• Types of associations
– One-to-one
– One-to-many
– Many-to-one

90

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.22 | Class diagram showing composition relationships.

91

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.23 | Class diagram for the ATM system model

92

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.24 | Class diagram showing composition relationships of a class Car.

93

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.25 | Class diagram for the ATM system model including class Deposit.

