
1

© 2006 Pearson Education, Inc. All rights reserved.

44
Control

Statements:
Part 1

2

© 2006 Pearson Education, Inc. All rights reserved.

Let’s all move one place on.
— Lewis Carroll

The wheel is come full circle.
— William Shakespeare

How many apples fell on Newton’s head before
he took the hint!

— Robert Frost

All the evolution we know of proceeds from the
vague to the definite.

— Charles Sanders Peirce

3

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:

Basic problem-solving techniques.
To develop algorithms through the process of top-down,
stepwise refinement.
To use the if and if...else selection statements to
choose among alternative actions.
To use the while repetition statement to execute
statements in a program repeatedly.
Counter-controlled repetition and sentinel-controlled
repetition.
To use the increment, decrement and assignment
operators.

4

© 2006 Pearson Education, Inc. All rights reserved.

4.1 Introduction
4.2 Algorithms
4.3 Pseudocode
4.4 Control Structures
4.5 if Selection Statement
4.6 if...else Double-Selection Statement
4.7 while Repetition Statement
4.8 Formulating Algorithms: Counter-Controlled Repetition
4.9 Formulating Algorithms: Sentinel-Controlled Repetition
4.10 Formulating Algorithms: Nested Control Statements
4.11 Assignment Operators
4.12 Increment and Decrement Operators
4.13 (Optional) Software Engineering Case Study: Identifying Class

Attributes in the ATM System
4.14 Wrap-Up

5

© 2006 Pearson Education, Inc. All rights reserved.

4.1 Introduction

• Before writing a program
– Have a thorough understanding of problem
– Carefully plan your approach for solving it

• While writing a program
– Know what “building blocks” are available
– Use good programming principles

6

© 2006 Pearson Education, Inc. All rights reserved.

4.2 Algorithms

• Algorithms
– The actions to execute
– The order in which these actions execute

• Program control
– Specifies the order in which actions execute in a program
– Performed in C++ with control statements

7

© 2006 Pearson Education, Inc. All rights reserved.

4.3 Pseudocode

• Pseudocode
– Artificial, informal language used to develop algorithms

• Used to think out program before coding
– Easy to convert into C++ program

– Similar to everyday English
• Only executable statements

– No need to declare variables
– Not executed on computers

8

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.1 | Pseudocode for the addition program of Fig. 2.5.

 1 Prompt the user to enter the first integer
 2 Input the first integer
 3
 4 Prompt the user to enter the second integer
 5 Input the second integer
 6
 7 Add first integer and second integer, store result
 8 Display result

9

© 2006 Pearson Education, Inc. All rights reserved.

4.4 Control Structures

• Sequential execution
– Statements executed in sequential order

• Transfer of control
– Next statement executed is not the next one in sequence

• Structured programming
– Eliminated goto statements

10

© 2006 Pearson Education, Inc. All rights reserved.

4.4 Control Structures (Cont.)

• Only three control structures needed
– No goto statements
– Demonstrated by Böhm and Jacopini
– Three control structures

• Sequence structure
– Programs executed sequentially by default

• Selection structures
– if, if…else, switch

• Repetition structures
– while, do…while, for

11

© 2006 Pearson Education, Inc. All rights reserved.

4.4 Control Structures (Cont.)

• UML activity diagram
– Models the workflow

• Action state symbols
– Rectangles with curved sides

• Small circles
– Solid circle is the initial state
– Solid circle in a hollow circle is the final state

• Transition arrows
– Represent the flow of activity

• Comment notes
– Connected to diagram by dotted lines

12

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.2 | Sequence-structure activity diagram.

13

© 2006 Pearson Education, Inc. All rights reserved.

4.4 Control Structures (Cont.)

• Single-entry/single-exit control statements
– Three types of control statements

• Sequence statement
• Selection statements
• Repetition statements

– Combined in one of two ways
• Control statement stacking

– Connect exit point of one to entry point of the next
• Control statement nesting

14

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.3 | C++ keywords.

 C++ Keywords

 Keywords common to the C and C++ programming languages

 auto break case char Const

 Continue default do double Else

 enum extern float for Goto

 if int long register Return

 short signed sizeof static Struct

 switch typedef union unsigned Void

 volatile while

 C++-only keywords

 and and_eq asm bitand Bitor

 bool catch class compl const_cast

 delete dynamic_cast explicit export False

 friend inline mutable namespace New

 not not_eq operator or or_eq

 private protected public reinterpret_cas
t static_cast

 template this throw true Try

 typeid typename using virtual wchar_t

 xor xor_eq

15

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.1

Using a keyword as an identifier is a syntax error.

16

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.2

Spelling a keyword with any uppercase letters is
a syntax error. All of C++’s keywords contain
only lowercase letters.

17

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 4.1

Any C++ program we will ever build can be
constructed from only seven different types of
control statements (sequence, if, if... else,
switch, while, do... while and for)
combined in only two ways (control-statement
stacking and control-statement nesting).

18

© 2006 Pearson Education, Inc. All rights reserved.

4.5 if Selection Statement

• Selection statements
– Choose among alternative courses of action
– Pseudocode example

• If student’s grade is greater than or equal to 60
Print “Passed”
– If the condition is true

• Print statement executes, program continues to next
statement

– If the condition is false
• Print statement ignored, program continues

– Indenting makes programs easier to read
• C++ ignores white-space characters

19

© 2006 Pearson Education, Inc. All rights reserved.

4.5 if Selection Statement (Cont.)

• Selection statements (Cont.)
– Translation into C++

• if (grade >= 60)
cout << "Passed";

– Any expression can be used as the condition
• If it evaluates to false, it is treated as false

• Diamond symbol in UML modeling
– Indicates decision is to be made
– Contains guard conditions

• Test condition
• Follow correct path

20

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 4.1

Consistently applying reasonable indentation
conventions throughout your programs
greatly improves program readability. We
suggest three blanks per indent. Some people
prefer using tabs but these can vary across
editors, causing a program written on one
editor to align differently when used with
another.

21

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.4 | if single-selection statement activity diagram.

22

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 4.1

For compatibility with earlier versions of C,
which used integers for Boolean values, the
bool value true also can be represented by
any nonzero value (compilers typically use 1)
and the bool value false also can be
represented as the value zero.

23

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement

• if

– Performs action if condition true
• if…else

– Performs one action if condition is true, a different action if it is false
• Pseudocode

– If student’s grade is greater than or equal to 60
print “Passed”

Else
print “Failed”

• C++ code
– if (grade >= 60)

cout << "Passed";
else

cout << "Failed";

24

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 4.2

Indent both body statements of an if... else
statement.

25

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 4.3

If there are several levels of indentation, each
level should be indented the same additional
amount of space.

26

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.5 | if...else double-selection statement activity diagram.

27

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement
(Cont.)

• Ternary conditional operator (?:)
– Three arguments (condition, value if true, value if
false)

• Code could be written:
– cout << (grade >= 60 ? “Passed” : “Failed”);

Condition Value if true Value if false

28

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 4.1

To avoid precedence problems (and for clarity),
place conditional expressions (that appear in
larger expressions) in parentheses.

29

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement
(Cont.)

• Nested if…else statements
– One inside another, test for multiple cases
– Once a condition met, other statements are skipped
– Example

• If student’s grade is greater than or equal to 90
Print “A”

Else
If student’s grade is greater than or equal to 80

Print “B”
Else

If student’s grade is greater than or equal to 70
Print “C”

Else
If student’s grade is greater than or equal to 60

Print “D”
Else

Print “F”

30

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement
(Cont.)

• Nested if…else statements (Cont.)

– Written In C++
• if (studentGrade >= 90)

cout << "A";
else

if (studentGrade >= 80)
cout << "B";

else
if (studentGrade >= 70)

cout << "C";
else

if (studentGrade >= 60)
cout << "D";

else
cout << "F";

31

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement
(Cont.)

• Nested if…else statements (Cont.)

– Written In C++ (indented differently)
• if (studentGrade >= 90)

cout << "A";
else if (studentGrade >= 80)

cout << "B";
else if (studentGrade >= 70)

cout << "C";
else if (studentGrade >= 60)

cout << "D";
else

cout << "F";

32

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 4.1

A nested if...else statement can perform
much faster than a series of single-selection if
statements because of the possibility of early
exit after one of the conditions is satisfied.

33

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 4.2

In a nested if... else statement, test the
conditions that are more likely to be true at
the beginning of the nested if...else
statement. This will enable the nested
if...else statement to run faster and exit
earlier than testing infrequently occurring
cases first.

34

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement
(Cont.)

• Dangling-else problem
– Compiler associates else with the immediately

preceding if
– Example

• if (x > 5)
if (y > 5)

cout << "x and y are > 5";
else

cout << "x is <= 5";

– Compiler interprets as
• if (x > 5)

if (y > 5)
cout << "x and y are > 5";

else
cout << "x is <= 5";

35

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement
(Cont.)

• Dangling-else problem (Cont.)
– Rewrite with braces ({})

• if (x > 5)
{

if (y > 5)
cout << "x and y are > 5";

}
else

cout << "x is <= 5";

– Braces indicate that the second if statement is in the body of
the first and the else is associated with the first if statement

36

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement
(Cont.)

• Compound statement
– Also called a block

• Set of statements within a pair of braces
• Used to include multiple statements in an if body

– Example
• if (studentGrade >= 60)

cout << "Passed.\n";
else
{

cout << "Failed.\n";
cout << "You must take this course again.\n";

}

– Without braces,
cout << "You must take this course again.\n";

always executes

37

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 4.2

A block can be placed anywhere in a program
that a single statement can be placed.

