
38

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.3

Forgetting one or both of the braces that delimit
a block can lead to syntax errors or logic errors
in a program.

39

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 4.4

Always putting the braces in an if...else
statement (or any control statement) helps
prevent their accidental omission, especially
when adding statements to an if or else
clause at a later time. To avoid omitting one or
both of the braces, some programmers prefer to
type the beginning and ending braces of blocks
even before typing the individual statements
within the braces.

40

© 2006 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement
(Cont.)

• Empty statement
– A semicolon (;) where a statement would

normally be
– Performs no action
– Also called a null statement

41

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.4

Placing a semicolon after the condition in an if
statement leads to a logic error in single-
selection if statements and a syntax error in
double-selection if...else statements (when
the if part contains an actual body statement).

42

© 2006 Pearson Education, Inc. All rights reserved.

4.7 while Repetition Statement

• Repetition statement
– Action repeated while some condition remains true
– Pseudocode

• While there are more items on my shopping list
Purchase next item and cross it off my list

– while loop repeats until condition becomes false
– Example

• int product = 3;

while (product <= 100)
product = 3 * product;

43

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.5

Not providing, in the body of a while statement,
an action that eventually causes the condition in
the while to become false normally results in a
logic error called an infinite loop, in which the
repetition statement never terminates. This can
make a program appear to “hang” or “freeze” if
the loop body does not contain statements that
interact with the user.

44

© 2006 Pearson Education, Inc. All rights reserved.

4.7 while Repetition Statement (Cont.)

• UML merge symbol
– Joins two or more flows of activity into one flow of activity
– Represented as a diamond

• Unlike the decision symbol a merge symbol has
– Multiple incoming transition arrows
– Only one outgoing transition arrows

• No guard conditions on outgoing transition arrows
– Has no counterpart in C++ code

45

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.6 | while repetition statement UML activity diagram.

46

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 4.3

Many of the performance tips we mention in
this text result in only small improvements, so
the reader might be tempted to ignore them.
However, a small performance improvement
for code that executes many times in a loop
can result in substantial overall performance
improvement.

47

© 2006 Pearson Education, Inc. All rights reserved.

4.8 Formulating Algorithms: Counter-
Controlled Repetition

• Problem statement
A class of ten students took a quiz. The grades
(integers in the range 0 to 100) for this quiz are
available to you. Calculate and display the total of
all student grades and the class average on the quiz.

• Counter-controlled repetition
– Loop repeated until counter reaches certain value
– Also known as definite repetition

• Number of repetitions known beforehand

48

© 2006 Pearson Education, Inc. All rights reserved.

4.8 Formulating Algorithms: Counter-
Controlled Repetition (Cont.)

• Counter-controlled repetition (Cont.)
– Counter variable

• Used to count

– In example, indicates which of the 10 grades is
being entered

– Total variable
• Used to accumulate the sum of several values
• Normally initialized to zero beforehand

– Otherwise it would include the previous value
stored in that memory location

49

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 4.3

Experience has shown that the most difficult
part of solving a problem on a computer is
developing the algorithm for the solution. Once a
correct algorithm has been specified, the process
of producing a working C++ program from the
algorithm is normally straightforward.

50

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.7 | Pseudocode algorithm that uses counter-controlled repetition to solve the
class average problem.

 1 Set total to zero
 2 Set grade counter to one
 3
 4 While grade counter is less than or equal to ten
 5 Prompt the user to enter the next grade
 6 Input the next grade
 7 Add the grade into the total
 8 Add one to the grade counter
 9
10 Set the class average to the total divided by ten
11 Print the total of the grades for all students in the class
12 Print the class average

51

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.8: GradeBook.h

 2 // Definition of class GradeBook that determines a class average.

 3 // Member functions are defined in GradeBook.cpp

 4 #include <string> // program uses C++ standard string class

 5 using std::string;

 6
 7 // GradeBook class definition

 8 class GradeBook

 9 {

10 public:
11 GradeBook(string); // constructor initializes course name
12 void setCourseName(string); // function to set the course name
13 string getCourseName(); // function to retrieve the course name
14 void displayMessage(); // display a welcome message
15 void determineClassAverage(); // averages grades entered by the user
16 private:
17 string courseName; // course name for this GradeBook
18 }; // end class GradeBook

Outline

fig04_08.cpp

(1 of 1)

Function determineClassAverage
implements the class average algorithm
described by the pseudocode

52

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.9: GradeBook.cpp

 2 // Member-function definitions for class GradeBook that solves the

 3 // class average program with counter-controlled repetition.

 4 #include <iostream>

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8
 9 #include "GradeBook.h" // include definition of class GradeBook

10
11 // constructor initializes courseName with string supplied as argument
12 GradeBook::GradeBook(string name)
13 {
14 setCourseName(name); // validate and store courseName
15 } // end GradeBook constructor
16
17 // function to set the course name;
18 // ensures that the course name has at most 25 characters
19 void GradeBook::setCourseName(string name)
20 {
21 if (name.length() <= 25) // if name has 25 or fewer characters
22 courseName = name; // store the course name in the object
23 else // if name is longer than 25 characters
24 { // set courseName to first 25 characters of parameter name
25 courseName = name.substr(0, 25); // select first 25 characters
26 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
27 << "Limiting courseName to first 25 characters.\n" << endl;
28 } // end if...else
29 } // end function setCourseName
30

Outline

fig04_09.cpp

(1 of 3)

If course name was longer than
25, select first 25 characters

53

© 2006 Pearson Education,
Inc. All rights reserved.

31 // function to retrieve the course name
32 string GradeBook::getCourseName()
33 {
34 return courseName;
35 } // end function getCourseName
36
37 // display a welcome message to the GradeBook user
38 void GradeBook::displayMessage()
39 {
40 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
41 << endl;
42 } // end function displayMessage
43
44 // determine class average based on 10 grades entered by user
45 void GradeBook::determineClassAverage()
46 {
47 int total; // sum of grades entered by user
48 int gradeCounter; // number of the grade to be entered next
49 int grade; // grade value entered by user
50 int average; // average of grades
51

Outline

fig04_09.cpp

(2 of 3)

Function determineClassAverage
implements the class average algorithm
described by the pseudocode

Declare counter variable
gradeCounter

Declare total variable total

54

© 2006 Pearson Education,
Inc. All rights reserved.

52 // initialization phase
53 total = 0; // initialize total
54 gradeCounter = 1; // initialize loop counter
55
56 // processing phase
57 while (gradeCounter <= 10) // loop 10 times
58 {
59 cout << "Enter grade: "; // prompt for input
60 cin >> grade; // input next grade
61 total = total + grade; // add grade to total
62 gradeCounter = gradeCounter + 1; // increment counter by 1
63 } // end while
64
65 // termination phase
66 average = total / 10; // integer division yields integer result
67
68 // display total and average of grades
69 cout << "\nTotal of all 10 grades is " << total << endl;
70 cout << "Class average is " << average << endl;
71 } // end function determineClassAverage

Outline

fig04_09.cpp

(3 of 3)

Initialize counter variable
gradeCounter to 1

Continue looping as long as
gradeCounter’s value is
less than or equal to 10

Increment counter by 1, which
causes gradeCounter to
exceed 10 eventually

Perform the averaging
calculation and assign its
result to the variable
average

Initilize total variable total to 0

Add the current grade to total

55

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.10: fig04_10.cpp

 2 // Create GradeBook object and invoke its determineClassAverage function.

 3 #include "GradeBook.h" // include definition of class GradeBook

 4
 5 int main()

 6 {

 7 // create GradeBook object myGradeBook and

 8 // pass course name to constructor

 9 GradeBook myGradeBook("CS101 C++ Programming");

10
11 myGradeBook.displayMessage(); // display welcome message
12 myGradeBook.determineClassAverage(); // find average of 10 grades
13 return 0; // indicate successful termination
14 } // end main

Welcome to the grade book for
CS101 C++ Programming

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

Outline

fig04_10.cpp

(1 of 1)

56

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 4.5

Separate declarations from other statements in
functions with a blank line for readability.

57

© 2006 Pearson Education, Inc. All rights reserved.

4.8 Formulating Algorithms: Counter-
Controlled Repetition (Cont.)

• Uninitialized variables
– Contain “garbage” (or undefined) values

• Notes on integer division and truncation
– Integer division

• When dividing two integers
• Performs truncation

– Fractional part of the resulting quotient is lost

58

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.6

Not initializing counters and totals can lead to
logic errors.

59

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 4.2

Initialize each counter and total, either in its
declaration or in an assignment statement. Totals
are normally initialized to 0. Counters are
normally initialized to 0 or 1, depending on how
they are used (we will show examples of when to
use 0 and when to use 1).

60

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 4.6

Declare each variable on a separate line with its
own comment to make programs more readable.

61

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.7

Assuming that integer division rounds (rather
than truncates) can lead to incorrect results. For
example, 7 ÷

4, which yields 1.75 in conventional

arithmetic, truncates to 1 in integer arithmetic,
rather than rounding to 2.

62

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.8

Using a loop’s counter-control variable in a
calculation after the loop often causes a common
logic error called an off-by-one-error. In a
counter-controlled loop that counts up by one
each time through the loop, the loop terminates
when the counter’s value is one higher than its last
legitimate value (i.e., 11 in the case of counting
from 1 to 10).

63

© 2006 Pearson Education, Inc. All rights reserved.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition

• Problem statement
Develop a class average program that processes grades
for an arbitrary number of students each time it is run.

• Sentinel-controlled repetition
– Also known as indefinite repetition
– Use a sentinel value

• Indicates “end of data entry”
• A sentinel value cannot also be a valid input value
• Also known as a signal, dummy or flag value

64

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.9

Choosing a sentinel value that is also a legitimate
data value is a logic error.

65

© 2006 Pearson Education, Inc. All rights reserved.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

• Top-down, stepwise refinement
– Development technique for well-structured programs
– Top step

• Single statement conveying overall function of the program
• Example

– Determine the class average for the quiz
– First refinement

• Multiple statements using only the sequence structure
• Example

– Initialize variables
– Input, sum and count the quiz grades
– Calculate and print the total of all student grades and the

class average

66

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 4.4

Each refinement, as well as the top itself, is a
complete specification of the algorithm; only
the level of detail varies.

67

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 4.5

Many programs can be divided logically into
three phases: an initialization phase that
initializes the program variables; a processing
phase that inputs data values and adjusts
program variables (such as counters and
totals) accordingly; and a termination phase
that calculates and outputs the final results.

68

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.10

An attempt to divide by zero normally causes a
fatal runtime error.

69

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 4.3

When performing division by an expression
whose value could be zero, explicitly test for
this possibility and handle it appropriately in
your program (such as by printing an error
message) rather than allowing the fatal error
to occur.

70

© 2006 Pearson Education, Inc. All rights reserved.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

• Top-down, stepwise refinement (Cont.)
– Second refinement

• Commit to specific variables
• Use specific control structures
• Example in Fig. 4.11

• Fatal logic error
– Could cause the program the fail

• Often called “bombing” or “crashing”
– Division by zero is normally a fatal logic error

71

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.11 | Class average problem pseudocode algorithm with sentinel-controlled
repetition.

 1 Initialize total to zero
 2 Initialize counter to zero
 3
 4 Prompt the user to enter the first grade
 5 Input the first grade (possibly the sentinel)
 6
 7 While the user has not yet entered the sentinel
 8 Add this grade into the running total
 9 Add one to the grade counter
10 Prompt the user to enter the next grade
11 Input the next grade (possibly the sentinel)
12
13 If the counter is not equal to zero
14 Set the average to the total divided by the counter
15 Print the total of the grades for all students in the class
16 Print the class average
17 else
18 Print “No grades were entered”

72

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 4.6

Terminate the top-down, stepwise refinement
process when the pseudocode algorithm is
specified in sufficient detail for you to be able
to convert the pseudocode to C++. Normally,
implementing the C++ program is then
straightforward.

73

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 4.7

Many experienced programmers write programs
without ever using program development tools
like pseudocode. These programmers feel that
their ultimate goal is to solve the problem on a
computer and that writing pseudocode merely
delays the production of final outputs. Although
this method might work for simple and familiar
problems, it can lead to serious difficulties in large,
complex projects.

74

© 2006 Pearson Education, Inc. All rights reserved.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

• Floating-point numbers
– A real number with a decimal point
– C++ provides data types float and double

• double numbers can have larger magnitude and finer detail
– Called precision

• Floating-point constant values are treated as double values
by default

– Floating-point values are often only approximations

75

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.12: GradeBook.h

 2 // Definition of class GradeBook that determines a class average.

 3 // Member functions are defined in GradeBook.cpp

 4 #include <string> // program uses C++ standard string class

 5 using std::string;

 6
 7 // GradeBook class definition

 8 class GradeBook

 9 {

10 public:
11 GradeBook(string); // constructor initializes course name
12 void setCourseName(string); // function to set the course name
13 string getCourseName(); // function to retrieve the course name
14 void displayMessage(); // display a welcome message
15 void determineClassAverage(); // averages grades entered by the user
16 private:
17 string courseName; // course name for this GradeBook
18 }; // end class GradeBook

Outline

fig04_12.cpp

(1 of 1)

76

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.13: GradeBook.cpp

 2 // Member-function definitions for class GradeBook that solves the

 3 // class average program with sentinel-controlled repetition.

 4 #include <iostream>

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8 using std::fixed; // ensures that decimal point is displayed

 9
10 #include <iomanip> // parameterized stream manipulators
11 using std::setprecision; // sets numeric output precision
12
13 // include definition of class GradeBook from GradeBook.h
14 #include "GradeBook.h"
15
16 // constructor initializes courseName with string supplied as argument
17 GradeBook::GradeBook(string name)
18 {
19 setCourseName(name); // validate and store courseName
20 } // end GradeBook constructor
21

Outline

fig04_13.cpp

(1 of 4)

fixed forces output to print in fixed point
format (not scientific notation) and forces
trailing zeros and decimal point to print

steprecision stream manipulator
(in header <iomanip>) sets numeric
output precision

77

© 2006 Pearson Education,
Inc. All rights reserved.

22 // function to set the course name;
23 // ensures that the course name has at most 25 characters
24 void GradeBook::setCourseName(string name)
25 {
26 if (name.length() <= 25) // if name has 25 or fewer characters
27 courseName = name; // store the course name in the object
28 else // if name is longer than 25 characters
29 { // set courseName to first 25 characters of parameter name
30 courseName = name.substr(0, 25); // select first 25 characters
31 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
32 << "Limiting courseName to first 25 characters.\n" << endl;
33 } // end if...else
34 } // end function setCourseName
35
36 // function to retrieve the course name
37 string GradeBook::getCourseName()
38 {
39 return courseName;
40 } // end function getCourseName
41
42 // display a welcome message to the GradeBook user
43 void GradeBook::displayMessage()
44 {
45 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
46 << endl;
47 } // end function displayMessage
48

Outline

fig04_13.cpp

(2 of 4)

78

© 2006 Pearson Education,
Inc. All rights reserved.

49 // determine class average based on 10 grades entered by user
50 void GradeBook::determineClassAverage()
51 {
52 int total; // sum of grades entered by user
53 int gradeCounter; // number of grades entered
54 int grade; // grade value
55 double average; // number with decimal point for average
56
57 // initialization phase
58 total = 0; // initialize total
59 gradeCounter = 0; // initialize loop counter
60
61 // processing phase
62 // prompt for input and read grade from user
63 cout << "Enter grade or -1 to quit: ";
64 cin >> grade; // input grade or sentinel value

65
66 // loop until sentinel value read from user

67 while (grade != -1) // while grade is not -1
68 {
69 total = total + grade; // add grade to total
70 gradeCounter = gradeCounter + 1; // increment counter
71
72 // prompt for input and read next grade from user
73 cout << "Enter grade or -1 to quit: ";
74 cin >> grade; // input grade or sentinel value
75 } // end while
76

Outline

fig04_13.cpp

(3 of 4)

Function determineClassAverage
implements the class average algorithm
described by the pseudocode

Declare local int variables total,
gradeCounter and grade and
double variable average

while loop iterates as long as grade
does not equal the sentinel value -1

79

© 2006 Pearson Education,
Inc. All rights reserved.

77 // termination phase
78 if (gradeCounter != 0) // if user entered at least one grade...
79 {
80 // calculate average of all grades entered
81 average = static_cast< double >(total) / gradeCounter;
82
83 // display total and average (with two digits of precision)
84 cout << "\nTotal of all " << gradeCounter << " grades entered is "
85 << total << endl;
86 cout << "Class average is " << setprecision(2) << fixed << average
87 << endl;
88 } // end if
89 else // no grades were entered, so output appropriate message
90 cout << "No grades were entered" << endl;
91 } // end function determineClassAverage

Outline

fig04_13.cpp

(4 of 4)
Calculate average grade using
static_cast< double >
to perform explicit conversion

80

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.14: fig04_14.cpp

 2 // Create GradeBook object and invoke its determineClassAverage function.

 3
 4 // include definition of class GradeBook from GradeBook.h

 5 #include "GradeBook.h"

 6
 7 int main()

 8 {

 9 // create GradeBook object myGradeBook and

10 // pass course name to constructor
11 GradeBook myGradeBook("CS101 C++ Programming");
12
13 myGradeBook.displayMessage(); // display welcome message
14 myGradeBook.determineClassAverage(); // find average of 10 grades
15 return 0; // indicate successful termination
16 } // end main

Welcome to the grade book for
CS101 C++ Programming

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of all 3 grades entered is 257
Class average is 85.67

Outline

fig04_14.cpp

(1 of 1)

81

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 4.7

Prompt the user for each keyboard input. The
prompt should indicate the form of the input
and any special input values. For example, in a
sentinel-controlled loop, the prompts requesting
data entry should explicitly remind the user
what the sentinel value is.

82

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.11

Omitting the braces that delimit a block can lead
to logic errors, such as infinite loops. To prevent
this problem, some programmers enclose the
body of every control statement in braces, even if
the body contains only a single statement.

83

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.12

Using floating-point numbers in a manner that
assumes they are represented exactly (e.g., using
them in comparisons for equality) can lead to
incorrect results. Floating-point numbers are
represented only approximately by most
computers.

84

© 2006 Pearson Education, Inc. All rights reserved.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

• Unary cast operator
– Creates a temporary copy of its operand with a different

data type
• Example

– static_cast< double > (total)
• Creates temporary floating-point copy of total

– Explicit conversion

• Promotion
– Converting a value (e.g. int) to another data type (e.g.
double) to perform a calculation

– Implicit conversion

85

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.13

The cast operator can be used to convert between
fundamental numeric types, such as int and
double, and between related class types (as we
discuss in Chapter 13, Object-Oriented
Programming: Polymorphism). Casting to the
wrong type may cause compilation errors or
runtime errors.

86

© 2006 Pearson Education, Inc. All rights reserved.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

• Formatting floating-point numbers
– Parameterized stream manipulator setprecision

• Specifies number of digits of precision to display to the right
of the decimal point

• Default precision is six digits
– Nonparameterized stream manipulator fixed

• Indicates that floating-point values should be output in fixed-
point format

– As opposed to scientific notation (3.1 × 103)
– Stream manipulator showpoint

• Forces decimal point to display

87

© 2006 Pearson Education, Inc. All rights reserved.

4.10 Formulating Algorithms: Nested
Control Statement

• Problem statement
A college offers a course that prepares students for the state licensing
exam for real estate brokers. Last year, ten of the students who completed
this course took the exam. The college wants to know how well its students
did on the exam. You have been asked to write a program to summarize
the results. You have been given a list of these 10 students. Next to each
name is written a 1 if the student passed the exam or a 2 if the student
failed.
Your program should analyze the results of the exam as follows:
1. Input each test result (i.e., a 1 or a 2). Display the prompting message

“Enter result” each time the program requests another test result.
2. Count the number of test results of each type.
3. Display a summary of the test results indicating the number of

students who passed and the number who failed.
4. If more than eight students passed the exam, print the message “Raise

tuition.”

88

© 2006 Pearson Education, Inc. All rights reserved.

4.10 Formulating Algorithms: Nested
Control Statement (Cont.)

• Notice that
– Program processes 10 results

• Fixed number, use counter-controlled loop
– Each test result is 1 or 2

• If not 1, assume 2
– Two counters can be used

• One counts number that passed
• Another counts number that failed

– Must decide whether more than eight students passed

89

© 2006 Pearson Education, Inc. All rights reserved.

4.10 Formulating Algorithms: Nested
Control Statement (Cont.)

• Top level outline
– Analyze exam results and decide whether tuition should be raised

• First refinement
– Initialize variables

Input the ten exam results and count passes and failures
Print a summary of the exam results and decide whether tuition

should be raised

• Second Refinement
– Initialize variables

to
Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

90

© 2006 Pearson Education, Inc. All rights reserved.

4.10 Formulating Algorithms: Nested
Control Statement (Cont.)

• Second Refinement (Cont.)
– Input the ten exam results and count passes and failures

to
While student counter is less than or equal to ten

Prompt the user to enter the next exam result
If the student passed

Add one to passes
Else

Add one to failures
Add one to student counter

91

© 2006 Pearson Education, Inc. All rights reserved.

4.10 Formulating Algorithms: Nested
Control Statement (Cont.)

• Second Refinement (Cont.)
– Print a summary of the exam results and decide whether

tuition should be raised
to

Print the number of passes
Print the number of failures
If more than eight students passed

Print “Raise tuition”

92

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.15 | Pseudocode for examination-results problem.

 1 Initialize passes to zero
 2 Initialize failures to zero
 3 Initialize student counter to one
 4
 5 While student counter is less than or equal to 10
 6 Prompt the user to enter the next exam result
 7 Input the next exam result
 8
 9 If the student passed
10 Add one to passes
11 Else
12 Add one to failures
13
14 Add one to student counter
15
16 Print the number of passes
17 Print the number of failures
18
19 If more than eight students passed
20 Print “Raise tuition”

93

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.16: Analysis.h

 2 // Definition of class Analysis that analyzes examination results.

 3 // Member function is defined in Analysis.cpp

 4
 5 // Analysis class definition

 6 class Analysis

 7 {

 8 public:

 9 void processExamResults(); // process 10 students' examination results

10 }; // end class Analysis

Outline

fig04_16.cpp

(1 of 1)

94

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.17: Analysis.cpp

 2 // Member-function definitions for class Analysis that

 3 // analyzes examination results.

 4 #include <iostream>

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8
 9 // include definition of class Analysis from Analysis.h

10 #include "Analysis.h"
11
12 // process the examination results of 10 students
13 void Analysis::processExamResults()
14 {
15 // initializing variables in declarations
16 int passes = 0; // number of passes
17 int failures = 0; // number of failures
18 int studentCounter = 1; // student counter
19 int result; // one exam result (1 = pass, 2 = fail)
20

Outline

fig04_17.cpp

(1 of 2)

Declare function
processExamResults’s
local variables

95

© 2006 Pearson Education,
Inc. All rights reserved.

21 // process 10 students using counter-controlled loop
22 while (studentCounter <= 10)
23 {
24 // prompt user for input and obtain value from user
25 cout << "Enter result (1 = pass, 2 = fail): ";
26 cin >> result; // input result
27
28 // if...else nested in while
29 if (result == 1) // if result is 1,
30 passes = passes + 1; // increment passes;
31 else // else result is not 1, so
32 failures = failures + 1; // increment failures
33
34 // increment studentCounter so loop eventually terminates
35 studentCounter = studentCounter + 1;
36 } // end while
37
38 // termination phase; display number of passes and failures
39 cout << "Passed " << passes << "\nFailed " << failures << endl;
40
41 // determine whether more than eight students passed
42 if (passes > 8)
43 cout << "Raise tuition " << endl;
44 } // end function processExamResults

Outline

fig04_17.cpp

(2 of 2)

Determine whether this student
passed or failed, and increment
the appropriate variable

Determine whether more than
eight students passed

96

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.18: fig04_18.cpp

 2 // Test program for class Analysis.

 3 #include "Analysis.h" // include definition of class Analysis

 4
 5 int main()

 6 {

 7 Analysis application; // create Analysis object

 8 application.processExamResults(); // call function to process results

 9 return 0; // indicate successful termination

10 } // end main

Outline

fig04_18.cpp

(1 of 2)

97

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig04_18.cpp

(2 of 2)

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed 9
Failed 1
Raise tuition

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Passed 6
Failed 4

More than eight students
passed the exam

98

© 2006 Pearson Education, Inc. All rights reserved.

4.11 Assignment Operators

• Assignment expression abbreviations
– Addition assignment operator

• Example
– c = c + 3; abbreviates to c += 3;

• Statements of the form
variable = variable operator expression;

can be rewritten as
variable operator= expression;

• Other assignment operators
– d -= 4 (d = d - 4)
– e *= 5 (e = e * 5)
– f /= 3 (f = f / 3)
– g %= 9 (g = g % 9)

99

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.19 | Arithmetic assignment operators.

Assignment
operator

Sample
expression

Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;
 += c += 7 c = c + 7 10 to c
 -= d -= 4 d = d - 4 1 to d
 *= e *= 5 e = e * 5 20 to e
 /= f /= 3 f = f / 3 2 to f
 %= g %= 9 g = g % 9 3 to g

100

© 2006 Pearson Education, Inc. All rights reserved.

4.12 Increment and Decrement Operators

• Increment operator ++
– Increments variable by one

• Example
– c++

• Decrement operator --
– Decrement variable by one

• Example
– c--

101

© 2006 Pearson Education, Inc. All rights reserved.

4.12 Increment and Decrement Operators
(Cont.)

• Preincrement
– When the operator is used before the variable (++c or --c)
– Variable is changed, then the expression it is in is evaluated using

the new value

• Postincrement
– When the operator is used after the variable (c++ or c--)
– Expression the variable is in executes using the old value, then

the variable is changed

102

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.20 | Increment and decrement operators.

Operator Called Sample
expression Explanation

 ++ preincrement ++a Increment a by 1, then use the new value of
a in the expression in which a resides.

 ++ postincrement a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

 -- predecrement --b Decrement b by 1, then use the new value of
b in the expression in which b resides.

 -- postdecrement b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

103

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 4.8

Unlike binary operators, the unary increment
and decrement operators should be placed next
to their operands, with no intervening spaces.

104

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 4.21: fig04_21.cpp

 2 // Preincrementing and postincrementing.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int c;

10
11 // demonstrate postincrement
12 c = 5; // assign 5 to c
13 cout << c << endl; // print 5
14 cout << c++ << endl; // print 5 then postincrement
15 cout << c << endl; // print 6
16
17 cout << endl; // skip a line
18
19 // demonstrate preincrement
20 c = 5; // assign 5 to c
21 cout << c << endl; // print 5
22 cout << ++c << endl; // preincrement then print 6
23 cout << c << endl; // print 6
24 return 0; // indicate successful termination
25 } // end main
5
5
6

5
6
6

Outline

fig04_21.cpp

(1 of 1)

Postincrementing the c variable

Preincrementing the c variable

105

© 2006 Pearson Education, Inc. All rights reserved.

4.12 Increment and Decrement Operators
(Cont.)

• If c = 5, then
– cout << ++c;

• c is changed to 6
• Then prints out 6

– cout << c++;
• Prints out 5 (cout is executed before the increment)
• c then becomes 6

106

© 2006 Pearson Education, Inc. All rights reserved.

4.12 Increment and Decrement Operators
(Cont.)

• When variable is not in an expression
– Preincrementing and postincrementing have same effect

• Example
– ++c;

cout << c;
and

c++;
cout << c;

are the same

107

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 4.14

4 Attempting to use the increment or
decrement operator on an expression other
than a modifiable variable name or reference,
e.g., writing ++(x + 1), is a syntax error.

108

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.22 | Operator precedence for the operators encountered so far in the text.

 Operators Associativity Type
 () left to right parentheses
 ++ -- static_cast< type >() left to right unary (postfix)

 ++ -- + - right to left unary (prefix)

 * / % left to right multiplicative

 + - left to right additive

 << >> left to right insertion/extraction

 < <= > >= left to right relational

 == != left to right equality

 ?: right to left conditional

 = += -= *= /= %= right to left assignment

109

© 2006 Pearson Education, Inc. All rights reserved.

4.13 (Optional) Software Engineering Case Study:
Identifying Class Attributes in the ATM System

• Identifying and modeling attributes
– Create attributes and assign them to classes

• Look for descriptive words and phrases in the requirements
document

• Each attribute is given an attribute type
• Some attributes may have an initial value
• Example

– userAuthenticated : Boolean = false
• Attribute userAuthenticated is a Boolean

value and is initially false

110

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.23 | Descriptive words and phrases from the
ATM requirements.

 Class Descriptive words and phrases

 ATM user is authenticated
 BalanceInquiry account number

 Withdrawal account number
amount

 Deposit account number
amount

 BankDatabase [no descriptive words or phrases]

 Account account number
PIN
balance

 Screen [no descriptive words or phrases]

 Keypad [no descriptive words or phrases]

 CashDispenser begins each day loaded with 500 $20 bills

 DepositSlot [no descriptive words or phrases]

111

© 2006 Pearson Education, Inc. All rights reserved.

4.13 (Optional) Software Engineering Case Study:
Identifying Class Attributes in the ATM System
(Cont.)

• Identifying and modeling attributes (Cont.)
– Some classes may end up without any attributes

• Additional attributes may be added later on as the design and
implementation process continues

– Class-type attributes are modeled more clearly as
associations

112

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 4.24 | Classes with attributes.

113

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 4.8

At early stages in the design process, classes
often lack attributes (and operations). Such
classes should not be eliminated, however,
because attributes (and operations) may
become evident in the later phases of design
and implementation.

