
1

© 2006 Pearson Education, Inc. All rights reserved.

55
Control

Statements:
Part 2

2

© 2006 Pearson Education, Inc. All rights reserved.

Not everything that can be counted counts, and not every
thing that counts can be counted.

— Albert Einstein

Who can control his fate?
— William Shakespeare

The used key is always bright.
— Benjamin Franklin

Intelligence… is the faculty of making artificial objects,
especially tools to make tools.

— Henri Bergson

Every advantage in the past is judged in the light of the
final issue.

— Demosthenes

3

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:

The essentials of counter-controlled repetition.
To use the for and do…while repetition statements to
execute statements in a program repeatedly.
To understand multiple selection using the switch
selection statement.
To use the break and continue program control
statements to alter the flow of control.
To use the logical operators to form complex
conditional expressions in control statements.
To avoid the consequences of confusing the equality
and assignment operators.

4

© 2006 Pearson Education, Inc. All rights reserved.

5.1 Introduction
5.2 Essentials of Counter-Controlled Repetition
5.3 for Repetition Statement
5.4 Examples Using the for Statement
5.5 do…while Repetition Statement
5.6 switch Multiple-Selection Statement
5.7 break and continue Statements
5.8 Logical Operators
5.9 Confusing Equality (==) and Assignment (=) Operators
5.10 Structured Programming Summary
5.11 (Optional) Software Engineering Case Study: Identifying

Objects’ States and Activities in the ATM System
5.12 Wrap-Up

5

© 2006 Pearson Education, Inc. All rights reserved.

5.1 Introduction

• Continue structured programming discussion
– Introduce C++’s remaining control structures

• for, do…while, switch

6

© 2006 Pearson Education, Inc. All rights reserved.

5.2 Essentials of Counter-Controlled
Repetition

• Counter-controlled repetition requires:
– Name of a control variable (loop counter)
– Initial value of the control variable
– Loop-continuation condition that tests for the final value of

the control variable
– Increment/decrement of control variable at each iteration

7

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.1: fig05_01.cpp

 2 // Counter-controlled repetition.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int counter = 1; // declare and initialize control variable

10
11 while (counter <= 10) // loop-continuation condition
12 {
13 cout << counter << " ";
14 counter++; // increment control variable by 1
15 } // end while
16
17 cout << endl; // output a newline
18 return 0; // successful termination
19 } // end main

1 2 3 4 5 6 7 8 9 10

Outline

fig05_01.cpp

(1 of 1)

Control-variable name is counter
with variable initial value 1

Condition tests for
counter’s final value

Increment the value in counter

8

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.1

Floating-point values are approximate, so
controlling counting loops with floating-point
variables can result in imprecise counter values
and inaccurate tests for termination.

9

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 5.1

Control counting loops with integer values.

10

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.1

Put a blank line before and after each control
statement to make it stand out in the program.

11

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.2

Too many levels of nesting can make a program
difficult to understand. As a rule, try to avoid
using more than three levels of indentation.

12

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.3

Vertical spacing above and below control
statements and indentation of the bodies of
control statements within the control statement
headers give programs a two-dimensional
appearance that greatly improves readability.

13

© 2006 Pearson Education, Inc. All rights reserved.

5.3 for Repetition Statement

•for repetition statement
– Specifies counter-controlled repetition details in a single

line of code

14

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.2: fig05_02.cpp

 2 // Counter-controlled repetition with the for statement.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 // for statement header includes initialization,

10 // loop-continuation condition and increment.
11 for (int counter = 1; counter <= 10; counter++)
12 cout << counter << " ";
13
14 cout << endl; // output a newline
15 return 0; // indicate successful termination
16 } // end main

1 2 3 4 5 6 7 8 9 10

Outline

fig05_02.cpp

(1 of 1)

Control-variable name is counter with initial value 1

Condition tests for counter’s final value

Increment for counter

15

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.2

Using an incorrect relational operator or using an
incorrect final value of a loop counter in the
condition of a while or for statement can cause
off-by-one errors.

16

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.3 | for statement header components.

17

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.4

Using the final value in the condition of a while or
for statement and using the <= relational operator
will help avoid off-by-one errors. For a loop used to
print the values 1 to 10, for example, the loop-
continuation condition should be counter <= 10
rather than counter < 10 (which is an off-by-one
error) or counter < 11 (which is nevertheless
correct). Many programmers prefer so-called zero-
based counting, in which, to count 10 times through
the loop, counter would be initialized to zero and
the loop-continuation test would be counter < 10.

18

© 2006 Pearson Education, Inc. All rights reserved.

5.3 for Repetition Statement (Cont.)

• General form of the for statement
– for (initialization; loopContinuationCondition; increment)

statement;

• Can usually be rewritten as:
– initialization;

while (loopContinuationCondition)
{

statement;
increment;

}

• If the control variable is declared in the
initialization expression

– It will be unknown outside the for statement

19

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.3

When the control variable of a for statement is
declared in the initialization section of the for
statement header, using the control variable
after the body of the statement is a compilation
error.

20

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 5.1
In the C++ standard, the scope of the control variable declared in
the initialization section of a for statement differs from the scope
in older C++ compilers. In pre-standard compilers, the scope of
the control variable does not terminate at the end of the block
defining the body of the for statement; rather, the scope
terminates at the end of the block that encloses the for statement.
C++ code created with prestandard C++ compilers can break
when compiled on standard-compliant compilers. If you are
working with prestandard compilers and you want to be sure your
code will work with standard-compliant compilers, there are two
defensive programming strategies you can use: either declare
control variables with different names in every for statement, or,
if you prefer to use the same name for the control variable in
several for statements, declare the control variable before the
first for statement.

21

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.5

Place only expressions involving the control
variables in the initialization and increment
sections of a for statement. Manipulations
of other variables should appear either
before the loop (if they should execute only
once, like initialization statements) or in the
loop body (if they should execute once per
repetition, like incrementing or decrementing
statements).

22

© 2006 Pearson Education, Inc. All rights reserved.

5.3 for Repetition Statement (Cont.)

• The initialization and increment expressions can
be comma-separated lists of expressions

– These commas are comma operators
• Comma operator has the lowest precedence of all operators

– Expressions are evaluated from left to right
– Value and type of entire list are value and type of the

rightmost expressions

23

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.4

Using commas instead of the two required
semicolons in a for header is a syntax error.

24

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.5

Placing a semicolon immediately to the right of
the right parenthesis of a for header makes the
body of that for statement an empty statement.
This is usually a logic error.

25

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 5.1

Placing a semicolon immediately after a for
header is sometimes used to create a so-called
delay loop. Such a for loop with an empty body
still loops the indicated number of times, doing
nothing other than the counting. For example,
you might use a delay loop to slow down a
program that is producing outputs on the screen
too quickly for you to read them. Be careful
though, because such a time delay will vary
among systems with different processor speeds.

26

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 5.2

Although the value of the control variable can be
changed in the body of a for statement, avoid
doing so, because this practice can lead to subtle
logic errors.

27

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.4 | UML activity diagram for the for statement in Fig. 5.2.

28

© 2006 Pearson Education, Inc. All rights reserved.

5.4 Examples Using the for Statement

•for statement examples
– Vary control variable from 1 to 100 in increments of 1

• for (int i = 1; i <= 100; i++)

– Vary control variable from 100 to 1 in increments of -1
• for (int i = 100; i >= 1; i--)

– Vary control variable from 7 to 77 in steps of 7
• for (int i = 7; i <= 77; i += 7)

– Vary control variable from 20 to 2 in steps of -2
• for (int i = 20; i >= 2; i -= 2)

– Vary control variable over the sequence: 2, 5, 8, 11, 14, 17, 20
• for (int i = 2; i <= 20; i += 3)

– Vary control variable over the sequence: 99, 88, 77, 66, 55, 44,
33, 22, 11, 0
• for (int i = 99; i >= 0; i -= 11)

29

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.6

Not using the proper relational operator in the
loop-continuation condition of a loop that counts
downward (such as incorrectly using i <= 1
instead of i >= 1 in a loop counting down to 1) is
usually a logic error that yields incorrect results
when the program runs.

30

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.5: fig05_05.cpp

 2 // Summing integers with the for statement.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int total = 0; // initialize total

10
11 // total even integers from 2 through 20
12 for (int number = 2; number <= 20; number += 2)
13 total += number;
14
15 cout << "Sum is " << total << endl; // display results
16 return 0; // successful termination
17 } // end main

Sum is 110

Outline

fig05_05.cpp

(1 of 1)Vary number from 2
to 20 in steps of 2

Add the current value of
number to total

31

© 2006 Pearson Education, Inc. All rights reserved.

5.4 Examples Using the for Statement
(Cont.)

• Using a comma-separated list of expressions
– Lines 12-13 of Fig. 5.5 can be rewritten as
for (int number = 2; // initialization

number <= 20; // loop continuation condition
total += number, number += 2) // total and

// increment

; // empty statement

32

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.6

Although statements preceding a for and
statements in the body of a for often can be
merged into the for header, doing so can make
the program more difficult to read, maintain,
modify and debug.

33

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.7

Limit the size of control statement headers to a
single line, if possible.

34

© 2006 Pearson Education, Inc. All rights reserved.

5.4 Examples Using the for Statement
(Cont.)

• Standard library function std::pow
– Calculates an exponent
– Example

• pow(x, y)

– Calculates the value of x raised to the yth power
– Requires header file <cmath>

35

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.6: fig05_06.cpp

 2 // Compound interest calculations with for.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6 using std::fixed;

 7
 8 #include <iomanip>

 9 using std::setw; // enables program to set a field width

10 using std::setprecision;
11
12 #include <cmath> // standard C++ math library
13 using std::pow; // enables program to use function pow
14
15 int main()
16 {
17 double amount; // amount on deposit at end of each year
18 double principal = 1000.0; // initial amount before interest
19 double rate = .05; // interest rate
20
21 // display headers
22 cout << "Year" << setw(21) << "Amount on deposit" << endl;
23
24 // set floating-point number format
25 cout << fixed << setprecision(2);
26

Outline

fig05_06.cpp

(1 of 2)

C++ treats floating-point values as type double

setw stream manipulator
will set a field width

standard library function pow
(in header file <cmath>)

Specify that the next value output
should appear in a field width of 21

36

© 2006 Pearson Education,
Inc. All rights reserved.

27 // calculate amount on deposit for each of ten years
28 for (int year = 1; year <= 10; year++)
29 {
30 // calculate new amount for specified year
31 amount = principal * pow(1.0 + rate, year);
32
33 // display the year and the amount
34 cout << setw(4) << year << setw(21) << amount << endl;
35 } // end for
36
37 return 0; // indicate successful termination
38 } // end main

Year Amount on deposit

 1 1050.00

 2 1102.50

 3 1157.63

 4 1215.51

 5 1276.28

 6 1340.10

 7 1407.10

 8 1477.46

 9 1551.33

 10 1628.89

Outline

fig05_06.cpp

(2 of 2)

Calculate amount
within for statement

Use the setw stream
manipulator to set field width

37

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.7

In general, forgetting to include the appropriate
header file when using standard library functions
(e.g., <cmath> in a program that uses math
library functions) is a compilation error.

38

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.8

Do not use variables of type float or double to
perform monetary calculations. The imprecision
of floating-point numbers can cause errors that
result in incorrect mone-tary values. In the
Exercises, we explore the use of integers to
perform monetary calculations. [Note: Some
third-party vendors sell C++ class libraries that
perform precise monetary calculations. We
include several URLs in Appendix I.]

39

© 2006 Pearson Education, Inc. All rights reserved.

5.4 Examples Using the for Statement
(Cont.)

• Formatting numeric output
– Stream manipulator setw

• Sets field width
– Right justified by default

• Stream manipulator left to left-justify
• Stream manipulator right to right-justify

• Applies only to the next output value
– Stream manipulators fixed and setprecision

• Sticky settings
– Remain in effect until they are changed

40

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 5.1

Avoid placing expressions whose values do not
change inside loops—but, even if you do, many of
today’s sophisticated optimizing compilers will
automatically place such expressions outside the
loops in the generated machine-language code.

41

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 5.2

Many compilers contain optimization features
that improve the performance of the code you
write, but it is still better to write good code from
the start.

42

© 2006 Pearson Education, Inc. All rights reserved.

5.5 do…while Repetition Statement

•do…while statement
– Similar to while statement
– Tests loop-continuation after performing body of loop

• Loop body always executes at least once

43

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.9

Always including braces in a do...while
statement helps eliminate ambiguity between the
while statement and the do...while
statement containing one statement.

44

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.7: fig05_07.cpp

 2 // do...while repetition statement.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int counter = 1; // initialize counter

10
11 do
12 {
13 cout << counter << " "; // display counter
14 counter++; // increment counter
15 } while (counter <= 10); // end do...while
16
17 cout << endl; // output a newline
18 return 0; // indicate successful termination
19 } // end main

1 2 3 4 5 6 7 8 9 10

Outline

fig05_07.cpp

(1 of 1)

Declare and initialize
control variable counter

do…while loop displays counter’s value
before testing for counter’s final value

45

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.8 | UML activity diagram for the do...while repetition statement of Fig. 5.7.

46

© 2006 Pearson Education, Inc. All rights reserved.

5.6 switch Multiple-Selection Statement

•switch statement
– Used for multiple selections
– Tests a variable or expression

• Compared against constant integral expressions to decide on
action to take

– Any combination of character constants and integer
constants that evaluates to a constant integer value

47

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.9: GradeBook.h

 2 // Definition of class GradeBook that counts A, B, C, D and F grades.

 3 // Member functions are defined in GradeBook.cpp

 4
 5 #include <string> // program uses C++ standard string class

 6 using std::string;

 7
 8 // GradeBook class definition

 9 class GradeBook

10 {
11 public:
12 GradeBook(string); // constructor initializes course name
13 void setCourseName(string); // function to set the course name
14 string getCourseName(); // function to retrieve the course name
15 void displayMessage(); // display a welcome message
16 void inputGrades(); // input arbitrary number of grades from user
17 void displayGradeReport(); // display a report based on the grades
18 private:
19 string courseName; // course name for this GradeBook
20 int aCount; // count of A grades
21 int bCount; // count of B grades
22 int cCount; // count of C grades
23 int dCount; // count of D grades
24 int fCount; // count of F grades
25 }; // end class GradeBook

Outline

fig05_09.cpp

(1 of 1)

Counter variable for
each grade category

48

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.10: GradeBook.cpp

 2 // Member-function definitions for class GradeBook that

 3 // uses a switch statement to count A, B, C, D and F grades.

 4 #include <iostream>

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8
 9 #include "GradeBook.h" // include definition of class GradeBook

10
11 // constructor initializes courseName with string supplied as argument;
12 // initializes counter data members to 0
13 GradeBook::GradeBook(string name)
14 {
15 setCourseName(name); // validate and store courseName
16 aCount = 0; // initialize count of A grades to 0
17 bCount = 0; // initialize count of B grades to 0
18 cCount = 0; // initialize count of C grades to 0
19 dCount = 0; // initialize count of D grades to 0
20 fCount = 0; // initialize count of F grades to 0
21 } // end GradeBook constructor
22

Outline

fig05_10.cpp

(1 of 5)

Initialize each counter
variable to 0

49

© 2006 Pearson Education,
Inc. All rights reserved.

23 // function to set the course name; limits name to 25 or fewer characters
24 void GradeBook::setCourseName(string name)
25 {
26 if (name.length() <= 25) // if name has 25 or fewer characters
27 courseName = name; // store the course name in the object
28 else // if name is longer than 25 characters
29 { // set courseName to first 25 characters of parameter name
30 courseName = name.substr(0, 25); // select first 25 characters
31 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
32 << "Limiting courseName to first 25 characters.\n" << endl;
33 } // end if...else
34 } // end function setCourseName
35
36 // function to retrieve the course name
37 string GradeBook::getCourseName()
38 {
39 return courseName;
40 } // end function getCourseName
41
42 // display a welcome message to the GradeBook user
43 void GradeBook::displayMessage()
44 {
45 // this statement calls getCourseName to get the
46 // name of the course this GradeBook represents
47 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
48 << endl;
49 } // end function displayMessage
50

Outline

fig05_10.cpp

(2 of 5)

50

© 2006 Pearson Education,
Inc. All rights reserved.

51 // input arbitrary number of grades from user; update grade counter
52 void GradeBook::inputGrades()
53 {
54 int grade; // grade entered by user
55
56 cout << "Enter the letter grades." << endl
57 << "Enter the EOF character to end input." << endl;
58
59 // loop until user types end-of-file key sequence
60 while ((grade = cin.get()) != EOF)
61 {
62 // determine which grade was entered
63 switch (grade) // switch statement nested in while
64 {
65 case 'A': // grade was uppercase A
66 case 'a': // or lowercase a
67 aCount++; // increment aCount
68 break; // necessary to exit switch
69
70 case 'B': // grade was uppercase B
71 case 'b': // or lowercase b
72 bCount++; // increment bCount
73 break; // exit switch
74
75 case 'C': // grade was uppercase C
76 case 'c': // or lowercase c
77 cCount++; // increment cCount
78 break; // exit switch
79

Outline

fig05_10.cpp

(3 of 5)
Loop condition uses function cin.get to

determine whether there is more data to input

switch statement determines
which case label to execute,

depending on controlling expression

grade is the controlling expression

case labels for a grade of A

break statement transfers control to
after the end of the switch statement

51

© 2006 Pearson Education,
Inc. All rights reserved.

80 case 'D': // grade was uppercase D
81 case 'd': // or lowercase d
82 dCount++; // increment dCount
83 break; // exit switch
84
85 case 'F': // grade was uppercase F
86 case 'f': // or lowercase f
87 fCount++; // increment fCount
88 break; // exit switch
89
90 case '\n': // ignore newlines,
91 case '\t': // tabs,
92 case ' ': // and spaces in input
93 break; // exit switch
94
95 default: // catch all other characters
96 cout << "Incorrect letter grade entered."
97 << " Enter a new grade." << endl;
98 break; // optional; will exit switch anyway
99 } // end switch
100 } // end while
101 } // end function inputGrades

Outline

fig05_10.cpp

(4 of 5)

default case for an
invalid letter grade

Ignore whitespace characters,
do not display an error message

52

© 2006 Pearson Education,
Inc. All rights reserved.

102
103 // display a report based on the grades entered by user
104 void GradeBook::displayGradeReport()
105 {
106 // output summary of results
107 cout << "\n\nNumber of students who received each letter grade:"
108 << "\nA: " << aCount // display number of A grades
109 << "\nB: " << bCount // display number of B grades
110 << "\nC: " << cCount // display number of C grades
111 << "\nD: " << dCount // display number of D grades
112 << "\nF: " << fCount // display number of F grades
113 << endl;
114 } // end function displayGradeReport

Outline

fig05_01.cpp

(5 of 5)

53

© 2006 Pearson Education, Inc. All rights reserved.

5.6 switch Multiple-Selection Statement
(Cont.)

• Reading character input
– Function cin.get()

• Reads one character from the keyboard
– Integer value of a character

• static_cast< int >(character)
– ASCII character set

• Table of characters and their decimal equivalents
– EOF

• <ctrl> d in UNIX/Linux
• <ctrl> z in Windows

54

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 5.2

The keystroke combinations for entering end-of-
file are system dependent.

55

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 5.3

Testing for the symbolic constant EOF rather than
–1 makes programs more portable. The ANSI/ISO
C standard, from which C++ adopts the definition
of EOF, states that EOF is a negative integral value
(but not necessarily –1), so EOF could have
different values on different systems.

56

© 2006 Pearson Education, Inc. All rights reserved.

5.6 switch Multiple-Selection Statement
(Cont.)

•switch statement
– Controlling expression

• Expression in parentheses after keyword switch
– case labels

• Compared with the controlling expression
• Statements following the matching case label are executed

– Braces are not necessary around multiple statements in
a case label

– A break statements causes execution to proceed with
the first statement after the switch

• Without a break statement, execution will fall
through to the next case label

57

© 2006 Pearson Education, Inc. All rights reserved.

5.6 switch Multiple-Selection Statement
(Cont.)

•switch statement (Cont.)
– default case

• Executes if no matching case label is found
• Is optional

– If no match and no default case
• Control simply continues after the switch

58

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.8

Forgetting a break statement when one is needed
in a switch statement is a logic error.

59

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.9

Omitting the space between the word case and
the integral value being tested in a switch
statement can cause a logic error. For example,
writing case3: instead of writing case 3:
simply creates an unused label. We will say more
about this in Appendix E, C Legacy Code Topics.
In this situation, the switch statement will not
perform the appropriate actions when the
switch’s controlling expression has a value of 3.

60

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.10

Provide a default case in switch statements.
Cases not explicitly tested in a switch statement
without a default case are ignored. Including a
default case focuses the programmer on the
need to process exceptional conditions. There are
situations in which no default processing is
needed. Although the case clauses and the
default case clause in a switch statement can
occur in any order, it is common practice to place
the default clause last.

61

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.11

In a switch statement that lists the default
clause last, the default clause does not require
a break statement. Some programmers include
this break for clarity and for symmetry with
other cases.

62

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.10

Not processing newline and other white-space
characters in the input when reading characters
one at a time can cause logic errors.

63

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.11: fig05_11.cpp

 2 // Create GradeBook object, input grades and display grade report.

 3
 4 #include "GradeBook.h" // include definition of class GradeBook

 5
 6 int main()

 7 {

 8 // create GradeBook object

 9 GradeBook myGradeBook("CS101 C++ Programming");

10
11 myGradeBook.displayMessage(); // display welcome message
12 myGradeBook.inputGrades(); // read grades from user
13 myGradeBook.displayGradeReport(); // display report based on grades
14 return 0; // indicate successful termination
15 } // end main

Outline

fig05_11.cpp

(1 of 2)

64

© 2006 Pearson Education,
Inc. All rights reserved.

Welcome to the grade book for
CS101 C++ Programming!

Enter the letter grades.
Enter the EOF character to end input.
a
B
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z

Number of students who received each letter grade:
A: 3
B: 2
C: 3
D: 2
F: 1

Outline

fig05_11.cpp

(2 of 2)
An error message is shown in
response to an invalid grade

65

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.11

Specifying an expression including variables
(e.g., a + b) in a switch statement’s case
label is a syntax error.

66

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.12 | switch multiple-selection statement UML activity diagram with break
statements.

67

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.12

Providing identical case labels in a switch
statement is a compilation error. Providing case
labels containing different expressions that
evaluate to the same value also is a compilation
error. For example, placing case 4 + 1: and
case 3 + 2: in the same switch statement is
a compilation error, because these are both
equivalent to case 5:.

68

© 2006 Pearson Education, Inc. All rights reserved.

5.6 switch Multiple-Selection Statement
(Cont.)

• Integer data types
– short

• Abbreviation of short int
• Minimum range is -32,768 to 32,767

– long
• Abbreviation of long int
• Minimum range is -2,147,483,648 to 2,147,483,647

– int
• Equivalent to either short or long on most computers

– char
• Can be used to represent small integers

69

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 5.4

Because ints can vary in size between systems,
use long integers if you expect to process
integers outside the range –32,768 to 32,767 and
you would like to run the program on several
different computer systems.

70

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 5.3

If memory is at a premium, it might be desirable
to use smaller integer sizes.

71

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 5.4

Using smaller integer sizes can result in a
slower program if the machine’s instructions
for manipulating them are not as efficient as
those for the natural-size integers, i.e., integers
whose size equals the machine’s word size (e.g.,
32 bits on a 32-bit machine, 64 bits on a 64-bit
machine). Always test proposed efficiency
“upgrades” to be sure they really improve
performance.

