
32

© 2006 Pearson Education, Inc. All rights reserved.

6.5 Function Prototypes and Argument
Coercion

• Function prototype
– Also called a function declaration
– Indicates to the compiler:

• Name of the function
• Type of data returned by the function
• Parameters the function expects to receive

– Number of parameters
– Types of those parameters
– Order of those parameters

33

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.6

Function prototypes are required in C++. Use
#include preprocessor directives to obtain
function prototypes for the C++ Standard Library
functions from the header files for the appropriate
libraries (e.g., the prototype for math function
sqrt is in header file <cmath>; a partial list of
C++ Standard Library header files appears in
Section 6.6). Also use #include to obtain header
files containing function prototypes written by
you or your group members.

34

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.3

If a function is defined before it is invoked, then
the function’s definition also serves as the
function’s prototype, so a separate prototype is
unnecessary. If a function is invoked before it is
defined, and that function does not have a
function prototype, a compilation error occurs.

35

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.7

Always provide function prototypes, even
though it is possible to omit them when
functions are defined before they are used
(in which case the function header acts as
the function prototype as well). Providing
the prototypes avoids tying the code to the
order in which functions are defined
(which can easily change as a program
evolves).

36

© 2006 Pearson Education, Inc. All rights reserved.

6.5 Function Prototypes and Argument
Coercion (Cont.)

• Function signature (or simply signature)
– The portion of a function prototype that includes the name

of the function and the types of its arguments
• Does not specify the function’s return type

– Functions in the same scope must have unique signatures
• The scope of a function is the region of a program in which

the function is known and accessible

37

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.4

It is a compilation error if two functions in
the same scope have the same signature but
different return types.

38

© 2006 Pearson Education, Inc. All rights reserved.

6.5 Function Prototypes and Argument
Coercion (Cont.)

• Argument Coercion
– Forcing arguments to the appropriate types specified by

the corresponding parameters
• For example, calling a function with an integer argument,

even though the function prototype specifies a double
argument

– The function will still work correctly

39

© 2006 Pearson Education, Inc. All rights reserved.

6.5 Function Prototypes and Argument
Coercion (Cont.)

• C++ Promotion Rules
– Indicate how to convert between types without losing

data
– Apply to expressions containing values of two or more data

types
• Such expressions are also referred to as mixed-type

expressions
• Each value in the expression is promoted to the “highest”

type in the expression
– Temporary version of each value is created and used for

the expression
• Original values remain unchanged

40

© 2006 Pearson Education, Inc. All rights reserved.

6.5 Function Prototypes and Argument
Coercion (Cont.)

• C++ Promotion Rules (Cont.)
– Promotion also occurs when the type of a function

argument does not match the specified parameter type
• Promotion is as if the argument value were being assigned

directly to the parameter variable
– Converting a value to a lower fundamental type

• Will likely result in the loss of data or incorrect values
• Can only be performed explicitly

– By assigning the value to a variable of lower type (some
compilers will issue a warning in this case) or

– By using a cast operator

41

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.6 | Promotion hierarchy for fundamental data types.

Data types

long double

double

float

unsigned long int (synonymous with unsigned long)
long int (synonymous with long)
unsigned int (synonymous with unsigned)
int

unsigned short int (synonymous with unsigned short)
short int (synonymous with short)
unsigned char

char

bool

42

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.5

Converting from a higher data type in the
promotion hierarchy to a lower type, or
between signed and unsigned, can corrupt
the data value, causing a loss of information.

43

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.6

It is a compilation error if the arguments in
a function call do not match the number and
types of the parameters declared in the
corresponding function prototype. It is also
an error if the number of arguments in the
call matches, but the arguments cannot be
implicitly converted to the expected types.

44

© 2006 Pearson Education, Inc. All rights reserved.

6.6 C++ Standard Library Header Files

• C++ Standard Library header files
– Each contains a portion of the Standard Library

• Function prototypes for the related functions
• Definitions of various class types and functions
• Constants needed by those functions

– “Instruct” the compiler on how to interface with library
and user-written components

– Header file names ending in .h
• Are “old-style” header files
• Superseded by the C++ Standard Library header files

45

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.7 | C++ Standard Library header files. (Part 1 of 4)

C++ Standard
Library header file

Explanation

<iostream> Contains function prototypes for the C++ standard input and
standard output functions, introduced in Chapter 2, and is
covered in more detail in Chapter 15, Stream Input/Output. This
header file replaces header file <iostream.h>.

<iomanip> Contains function prototypes for stream manipulators that
format streams of data. This header file is first used in
Section 4.9 and is discussed in more detail in Chapter 15, Stream
Input/Output. This header file replaces header file
<iomanip.h>.

<cmath> Contains function prototypes for math library functions
(discussed in Section 6.3). This header file replaces header file
<math.h>.

<cstdlib> Contains function prototypes for conversions of numbers to text,
text to numbers, memory allocation, random numbers and
various other utility functions. Portions of the header file are
covered in Section 6.7; Chapter 11, Operator Overloading;
String and Array Objects; Chapter 16, Exception Handling;
Chapter 19, Web Programming; Chapter 22, Bits, Characters,
C-Strings and structs; and Appendix E, C Legacy Code
Topics. This header file replaces header file <stdlib.h>.

46

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.7 | C++ Standard Library header files. (Part 2 of 4)

C++ Standard
Library header file

Explanation

<ctime> Contains function prototypes and types for manipulating the time and
date. This header file replaces header file <time.h>. This header file
is used in Section 6.7.

<vector>,
<list>,
<deque>,
<queue>,
<stack>,
<map>,
<set>,
<bitset>

These header files contain classes that implement the C++ Standard
Library containers. Containers store data during a program’s
execution. The <vector> header is first introduced in Chapter 7,
Arrays and Vectors. We discuss all these header files in Chapter 23,
Standard Template Library (STL).

<cctype> Contains function prototypes for functions that test characters for
certain properties (such as whether the character is a digit or a
punctuation), and function prototypes for functions that can be used to
convert lowercase letters to uppercase letters and vice versa. This
header file replaces header file <ctype.h>. These topics are
discussed in Chapter 8, Pointers and Pointer-Based Strings, and
Chapter 22, Bits, Characters, C-Strings and structs.

<cstring> Contains function prototypes for C-style string-processing functions.
This header file replaces header file <string.h>. This header file is
used in Chapter 11, Operator Overloading; String and Array Objects.

47

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.7 | C++ Standard Library header files. (Part 3 of 4)

C++ Standard
Library header file Explanation

<typeinfo> Contains classes for runtime type identification (determining
data types at execution time). This header file is discussed in
Section 13.8.

<exception>,
<stdexcept>

These header files contain classes that are used for exception
handling (discussed in Chapter 16).

<memory> Contains classes and functions used by the C++ Standard
Library to allocate memory to the C++ Standard Library
containers. This header is used in Chapter 16, Exception
Handling.

<fstream> Contains function prototypes for functions that perform input
from files on disk and output to files on disk (discussed in
Chapter 17, File Processing). This header file replaces header file
<fstream.h>.

<string> Contains the definition of class string from the C++ Standard
Library (discussed in Chapter 18).

<sstream> Contains function prototypes for functions that perform input
from strings in memory and output to strings in memory
(discussed in Chapter 18, Class string and String Stream
Processing).

<functional> Contains classes and functions used by C++ Standard Library
algorithms. This header file is used in Chapter 23.

48

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.7 | C++ Standard Library header files. (Part 4 of 4)

C++ Standard Library
header file

Explanation

<iterator> Contains classes for accessing data in the C++ Standard Library
containers. This header file is used in Chapter 23, Standard Template
Library (STL).

<algorithm> Contains functions for manipulating data in C++ Standard Library
containers. This header file is used in Chapter 23.

<cassert> Contains macros for adding diagnostics that aid program debugging.
This replaces header file <assert.h> from pre-standard C++. This
header file is used in Appendix F, Preprocessor.

<cfloat> Contains the floating-point size limits of the system. This header file
replaces header file <float.h>.

<climits> Contains the integral size limits of the system. This header file replaces
header file <limits.h>.

<cstdio> Contains function prototypes for the C-style standard input/output
library functions and information used by them. This header file
replaces header file <stdio.h>.

<locale> Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g.,
monetary formats, sorting strings, character presentation, etc.).

<limits> Contains classes for defining the numerical data type limits on each
computer platform.

<utility> Contains classes and functions that are used by many C++ Standard
Library header files.

49

© 2006 Pearson Education, Inc. All rights reserved.

6.7 Case Study: Random Number
Generation

• C++ Standard Library function rand
– Introduces the element of chance into computer applications
– Example

• i = rand();

– Generates an unsigned integer between 0 and RAND_MAX (a
symbolic constant defined in header file <cstdlib>)

– Function prototype for the rand function is in <cstdlib>

50

© 2006 Pearson Education, Inc. All rights reserved.

6.7 Case Study: Random Number
Generation (Cont.)

• To produce integers in a specific range, use the modulus
operator (%) with rand

– Example
• rand() % 6;

– Produces numbers in the range 0 to 5
– This is called scaling, 6 is the scaling factor
– Shifting can move the range to 1 to 6

• 1 + rand() % 6;

51

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.8: fig06_08.cpp

 2 // Shifted and scaled random integers.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <iomanip>

 8 using std::setw;

 9
10 #include <cstdlib> // contains function prototype for rand
11 using std::rand;
12
13 int main()
14 {
15 // loop 20 times
16 for (int counter = 1; counter <= 20; counter++)
17 {
18 // pick random number from 1 to 6 and output it
19 cout << setw(10) << (1 + rand() % 6);

Outline

fig06_08.cpp

(1 of 2)

#include and using for function rand

Calling function rand

52

© 2006 Pearson Education,
Inc. All rights reserved.

20
21 // if counter is divisible by 5, start a new line of output
22 if (counter % 5 == 0)
23 cout << endl;
24 } // end for
25
26 return 0; // indicates successful termination
27 } // end main

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

Outline

fig06_08.cpp

(2 of 2)

53

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.9: fig06_09.cpp

 2 // Roll a six-sided die 6,000,000 times.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <iomanip>

 8 using std::setw;

 9
10 #include <cstdlib> // contains function prototype for rand
11 using std::rand;
12
13 int main()
14 {
15 int frequency1 = 0; // count of 1s rolled
16 int frequency2 = 0; // count of 2s rolled
17 int frequency3 = 0; // count of 3s rolled
18 int frequency4 = 0; // count of 4s rolled
19 int frequency5 = 0; // count of 5s rolled
20 int frequency6 = 0; // count of 6s rolled
21
22 int face; // stores most recently rolled value
23
24 // summarize results of 6,000,000 rolls of a die
25 for (int roll = 1; roll <= 6000000; roll++)
26 {
27 face = 1 + rand() % 6; // random number from 1 to 6

Outline

fig06_09.cpp

(1 of 3)

Scaling and shifting the value
produced by function rand

54

© 2006 Pearson Education,
Inc. All rights reserved.

28
29 // determine roll value 1-6 and increment appropriate counter
30 switch (face)
31 {
32 case 1:
33 ++frequency1; // increment the 1s counter
34 break;
35 case 2:
36 ++frequency2; // increment the 2s counter
37 break;
38 case 3:
39 ++frequency3; // increment the 3s counter
40 break;
41 case 4:
42 ++frequency4; // increment the 4s counter
43 break;
44 case 5:
45 ++frequency5; // increment the 5s counter
46 break;
47 case 6:
48 ++frequency6; // increment the 6s counter
49 break;
50 default: // invalid value
51 cout << "Program should never get here!";
52 } // end switch
53 } // end for

Outline

fig06_09.cpp

(2 of 3)

55

© 2006 Pearson Education,
Inc. All rights reserved.

54
55 cout << "Face" << setw(13) << "Frequency" << endl; // output headers
56 cout << " 1" << setw(13) << frequency1
57 << "\n 2" << setw(13) << frequency2
58 << "\n 3" << setw(13) << frequency3
59 << "\n 4" << setw(13) << frequency4
60 << "\n 5" << setw(13) << frequency5
61 << "\n 6" << setw(13) << frequency6 << endl;
62 return 0; // indicates successful termination
63 } // end main

Face Frequency

 1 999702
 2 1000823
 3 999378
 4 998898
 5 1000777
 6 1000422

Outline

fig06_09.cpp

(3 of 3)

Each face value appears approximately 1,000,000 times

56

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 6.3

Provide a default case in a switch to catch
errors even if you are absolutely, positively
certain that you have no bugs!

57

© 2006 Pearson Education, Inc. All rights reserved.

6.7 Case Study: Random Number
Generation (Cont.)

• Function rand
– Generates pseudorandom numbers
– The same sequence of numbers repeats itself each time the

program executes
• Randomizing

– Conditioning a program to produce a different sequence of
random numbers for each execution

• C++ Standard Library function srand
– Takes an unsigned integer argument
– Seeds the rand function to produce a different sequence of

random numbers

58

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.10: fig06_10.cpp

 2 // Randomizing die-rolling program.

 3 #include <iostream>

 4 using std::cout;

 5 using std::cin;

 6 using std::endl;

 7
 8 #include <iomanip>

 9 using std::setw;

10
11 #include <cstdlib> // contains prototypes for functions srand and rand
12 using std::rand;
13 using std::srand;
14
15 int main()
16 {
17 unsigned seed; // stores the seed entered by the user
18
19 cout << "Enter seed: ";
20 cin >> seed;
21 srand(seed); // seed random number generator
22

Outline

fig06_10.cpp

(1 of 2)

using statement for function srand

Data type unsigned is short for unsigned int

Passing seed to srand to randomize the program

59

© 2006 Pearson Education,
Inc. All rights reserved.

23 // loop 10 times
24 for (int counter = 1; counter <= 10; counter++)
25 {
26 // pick random number from 1 to 6 and output it
27 cout << setw(10) << (1 + rand() % 6);
28
29 // if counter is divisible by 5, start a new line of output
30 if (counter % 5 == 0)
31 cout << endl;
32 } // end for
33
34 return 0; // indicates successful termination
35 } // end main

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

Enter seed: 432
 4 6 3 1 6
 3 1 5 4 2

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

Outline

fig06_10.cpp

(2 of 2)

Program outputs show that each
unique seed value produces a different

sequence of random numbers

60

© 2006 Pearson Education, Inc. All rights reserved.

6.7 Case Study: Random Number
Generation (Cont.)

• To randomize without having to enter a seed each
time

– srand(time(0));
• This causes the computer to read its clock to obtain the seed

value
– Function time (with the argument 0)

• Returns the current time as the number of seconds since
January 1, 1970 at midnight Greenwich Mean Time (GMT)

• Function prototype for time is in <ctime>

61

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.7

Calling function srand more than once in a
program restarts the pseudorandom number
sequence and can affect the randomness of the
numbers produced by rand.

62

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.8

Using srand in place of rand to attempt to
generate random numbers is a compilation
error—function srand does not return a value.

63

© 2006 Pearson Education, Inc. All rights reserved.

6.7 Case Study: Random Number
Generation (Cont.)

• Scaling and shifting random numbers
– To obtain random numbers in a desired range, use a

statement like
number = shiftingValue + rand() % scalingFactor;

• shiftingValue is equal to the first number in the desired range
of consecutive integers

• scalingFactor is equal to the width of the desired range of
consecutive integers

– number of consecutive integers in the range

64

© 2006 Pearson Education, Inc. All rights reserved.

6.8 Case Study: Game of Chance and
Introducing enum

• Enumeration
– A set of integer constants represented by identifiers

• The values of enumeration constants start at 0, unless
specified otherwise, and increment by 1

• The identifiers in an enum must be unique, but separate
enumeration constants can have the same integer value

– Defining an enumeration
• Keyword enum
• A type name
• Comma-separated list of identifier names enclosed in braces
• Example

– enum Months { JAN = 1, FEB, MAR, APR };

65

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.11: fig06_11.cpp

 2 // Craps simulation.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstdlib> // contains prototypes for functions srand and rand

 8 using std::rand;

 9 using std::srand;

10
11 #include <ctime> // contains prototype for function time
12 using std::time;
13
14 int rollDice(); // rolls dice, calculates amd displays sum
15
16 int main()
17 {
18 // enumeration with constants that represent the game status
19 enum Status { CONTINUE, WON, LOST }; // all caps in constants
20
21 int myPoint; // point if no win or loss on first roll
22 Status gameStatus; // can contain CONTINUE, WON or LOST
23
24 // randomize random number generator using current time
25 srand(time(0));
26
27 int sumOfDice = rollDice(); // first roll of the dice

Outline

fig06_11.cpp

(1 of 4)

#include and using for function time

Enumeration to keep track of the game status

Declaring a variable of the user-defined enumeration type

Seeding the random number generator with the current time

66

© 2006 Pearson Education,
Inc. All rights reserved.

28
29 // determine game status and point (if needed) based on first roll
30 switch (sumOfDice)
31 {
32 case 7: // win with 7 on first roll
33 case 11: // win with 11 on first roll
34 gameStatus = WON;
35 break;
36 case 2: // lose with 2 on first roll
37 case 3: // lose with 3 on first roll
38 case 12: // lose with 12 on first roll
39 gameStatus = LOST;
40 break;
41 default: // did not win or lose, so remember point
42 gameStatus = CONTINUE; // game is not over
43 myPoint = sumOfDice; // remember the point
44 cout << "Point is " << myPoint << endl;
45 break; // optional at end of switch
46 } // end switch
47
48 // while game is not complete
49 while (gameStatus == CONTINUE) // not WON or LOST
50 {
51 sumOfDice = rollDice(); // roll dice again
52

Outline

fig06_11.cpp

(2 of 4)Assigning an enumeration constant to gameStatus

Comparing a variable of an enumeration
type to an enumeration constant

67

© 2006 Pearson Education,
Inc. All rights reserved.

53 // determine game status
54 if (sumOfDice == myPoint) // win by making point
55 gameStatus = WON;
56 else
57 if (sumOfDice == 7) // lose by rolling 7 before point
58 gameStatus = LOST;
59 } // end while
60
61 // display won or lost message
62 if (gameStatus == WON)
63 cout << "Player wins" << endl;
64 else
65 cout << "Player loses" << endl;
66
67 return 0; // indicates successful termination
68 } // end main
69
70 // roll dice, calculate sum and display results
71 int rollDice()
72 {
73 // pick random die values
74 int die1 = 1 + rand() % 6; // first die roll
75 int die2 = 1 + rand() % 6; // second die roll
76
77 int sum = die1 + die2; // compute sum of die values

Outline

fig06_11.cpp

(3 of 4)

Function that performs the task of rolling the dice

68

© 2006 Pearson Education,
Inc. All rights reserved.

78
79 // display results of this roll
80 cout << "Player rolled " << die1 << " + " << die2
81 << " = " << sum << endl;
82 return sum; // end function rollDice
83 } // end function rollDice

Player rolled 2 + 5 = 7
Player wins

Player rolled 6 + 6 = 12
Player loses

Player rolled 3 + 3 = 6
Point is 6
Player rolled 5 + 3 = 8
Player rolled 4 + 5 = 9
Player rolled 2 + 1 = 3
Player rolled 1 + 5 = 6
Player wins

Player rolled 1 + 3 = 4
Point is 4
Player rolled 4 + 6 = 10
Player rolled 2 + 4 = 6
Player rolled 6 + 4 = 10
Player rolled 2 + 3 = 5
Player rolled 2 + 4 = 6
Player rolled 1 + 1 = 2
Player rolled 4 + 4 = 8
Player rolled 4 + 3 = 7
Player loses

Outline

fig06_11.cpp

(4 of 4)

69

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 6.1

Capitalize the first letter of an identifier used as
a user-defined type name.

70

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 6.2

Use only uppercase letters in the names of
enumeration constants. This makes these
con-stants stand out in a program and reminds
the programmer that enumeration constants
are not variables.

71

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 6.3

Using enumerations rather than integer
constants can make programs clearer and
more maintainable. You can set the value of an
enumeration constant once in the enumeration
declaration.

72

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.9

Assigning the integer equivalent of an
enumeration constant to a variable of the
enumeration type is a compilation error.

73

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.10

After an enumeration constant has been defined,
attempting to assign another value to the
enumeration constant is a compilation error.

74

© 2006 Pearson Education, Inc. All rights reserved.

6.9 Storage Classes

• Each identifier has several attributes
– Name, type, size and value
– Also storage class, scope and linkage

• C++ provides five storage-class specifiers:
– auto, register, extern, mutable and static

• Identifier’s storage class
– Determines the period during which that identifier exists in

memory

• Identifier’s scope
– Determines where the identifier can be referenced in a

program

75

© 2006 Pearson Education, Inc. All rights reserved.

6.9 Storage Classes (Cont.)

• Identifier’s linkage
– Determines whether an identifier is known only in the

source file where it is declared or across multiple files that
are compiled, then linked together

• An identifier’s storage-class specifier helps
determine its storage class and linkage

76

© 2006 Pearson Education, Inc. All rights reserved.

6.9 Storage Classes (Cont.)

• Automatic storage class
– Declared with keywords auto and register
– Automatic variables

• Created when program execution enters block in which they
are defined

• Exist while the block is active
• Destroyed when the program exits the block

– Only local variables and parameters can be of automatic
storage class

• Such variables normally are of automatic storage class

77

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.1

Automatic storage is a means of conserving
memory, because automatic storage class
variables exist in memory only when the block
in which they are defined is executing.

78

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.8

Automatic storage is an example of the principle
of least privilege, which is fundamental to good
software engineering. In the context of an
application, the principle states that code should
be granted only the amount of privilege and
access that it needs to accomplish its designated
task, but no more. Why should we have variables
stored in memory and accessible when they are
not needed?

79

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.2

The storage-class specifier register can be
placed before an automatic variable declaration to
suggest that the compiler maintain the variable in
one of the computer’s high-speed hardware
registers rather than in memory. If intensely used
variables such as counters or totals are maintained
in hardware registers, the overhead of repeatedly
loading the variables from memory into the
registers and storing the results back into memory
is eliminated.

80

© 2006 Pearson Education, Inc. All rights reserved.

6.9 Storage Classes (Cont.)

• Storage-class specifier auto
– Explicitly declares variables of automatic storage class
– Local variables are of automatic storage class by default

• So keyword auto rarely is used

• Storage-class specifier register
– Data in the machine-language version of a program is

normally loaded into registers for calculations and other
processing

• Compiler tries to store register storage class variables in a
register

– The compiler might ignore register declarations
• May not be sufficient registers for the compiler to use

81

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.11

Using multiple storage-class specifiers for an
identifier is a syntax error. Only one storage
class specifier can be applied to an identifier.
For example, if you include register, do not
also include auto.

82

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.3

Often, register is unnecessary. Today’s
optimizing compilers are capable of recognizing
frequently used variables and can decide to place
them in registers without needing a register
declaration from the programmer.

83

© 2006 Pearson Education, Inc. All rights reserved.

6.9 Storage Classes (Cont.)

• Static storage class
– Declared with keywords extern and static
– Static-storage-class variables

• Exist from the point at which the program begins execution
• Initialized once when their declarations are encountered
• Last for the duration of the program

– Static-storage-class functions
• The name of the function exists when the program begins execution,

just as for all other functions
– However, even though the variables and the function names exist

from the start of program execution, this does not mean that
these identifiers can be used throughout the program.

84

© 2006 Pearson Education, Inc. All rights reserved.

6.9 Storage Classes (Cont.)

• Two types of identifiers with static storage class
– External identifiers

• Such as global variables and global function names
– Local variables declared with the storage class specifier static

• Global variables
– Created by placing variable declarations outside any class or

function definition
– Retain their values throughout the execution of the program
– Can be referenced by any function that follows their declarations

or definitions in the source file

85

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.9

Declaring a variable as global rather than local
allows unintended side effects to occur when a
function that does not need access to the
variable accidentally or maliciously modifies it.
This is another example of the principle of least
privilege. In general, except for truly global
resources such as cin and cout, the use of
global variables should be avoided except in
certain situations with unique performance
requirements.

86

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.10

Variables used only in a particular function
should be declared as local variables in that
function rather than as global variables.

87

© 2006 Pearson Education, Inc. All rights reserved.

6.9 Storage Classes (Cont.)

• Local variables declared with keyword static
– Known only in the function in which they are declared
– Retain their values when the function returns to its caller

• Next time the function is called, the static local variables
contain the values they had when the function last completed

– If numeric variables of the static storage class are not
explicitly initialized by the programmer

• They are initialized to zero

88

© 2006 Pearson Education, Inc. All rights reserved.

6.10 Scope Rules

• Scope
– Portion of the program where an identifier can be used
– Four scopes for an identifier

• Function scope
• File scope
• Block scope
• Function-prototype scope

89

© 2006 Pearson Education, Inc. All rights reserved.

6.10 Scope Rules (Cont.)

• File scope
– For an identifier declared outside any function or class

• Such an identifier is “known” in all functions from the point at
which it is declared until the end of the file

– Global variables, function definitions and function prototypes
placed outside a function all have file scope

• Function scope
– Labels (identifiers followed by a colon such as start:) are the

only identifiers with function scope
• Can be used anywhere in the function in which they appear
• Cannot be referenced outside the function body
• Labels are implementation details that functions hide from one

another

90

© 2006 Pearson Education, Inc. All rights reserved.

6.10 Scope Rules (Cont.)

• Block scope
– Identifiers declared inside a block have block scope

• Block scope begins at the identifier’s declaration
• Block scope ends at the terminating right brace (}) of the block in

which the identifier is declared
– Local variables and function parameters have block scope

• The function body is their block
– Any block can contain variable declarations
– Identifiers in an outer block can be “hidden” when a nested

block has a local identifier with the same name
– Local variables declared static still have block scope, even

though they exist from the time the program begins execution
• Storage duration does not affect the scope of an identifier

91

© 2006 Pearson Education, Inc. All rights reserved.

6.10 Scope Rules (Cont.)

• Function-prototype scope
– Only identifiers used in the parameter list of a function

prototype have function-prototype scope
– Parameter names appearing in a function prototype are

ignored by the compiler
• Identifiers used in a function prototype can be reused

elsewhere in the program without ambiguity
• However, in a single prototype, a particular identifier can be

used only once

92

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.12

Accidentally using the same name for an
identifier in an inner block that is used for an
identifier in an outer block, when in fact the
programmer wants the identifier in the outer
block to be active for the duration of the inner
block, is normally a logic error.

93

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 6.4

Avoid variable names that hide names in outer
scopes. This can be accomplished by avoiding
the use of duplicate identifiers in a program.

94

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.12: fig06_12.cpp

 2 // A scoping example.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 void useLocal(void); // function prototype

 8 void useStaticLocal(void); // function prototype

 9 void useGlobal(void); // function prototype

10
11 int x = 1; // global variable
12
13 int main()
14 {
15 int x = 5; // local variable to main
16
17 cout << "local x in main's outer scope is " << x << endl;
18
19 { // start new scope
20 int x = 7; // hides x in outer scope
21
22 cout << "local x in main's inner scope is " << x << endl;
23 } // end new scope
24
25 cout << "local x in main's outer scope is " << x << endl;

Outline

fig06_12.cpp

(1 of 4)

Declaring a global variable outside
any class or function definition

Local variable x that hides global variable x

Local variable x in a block that
hides local variable x in outer scope

95

© 2006 Pearson Education,
Inc. All rights reserved.

26
27 useLocal(); // useLocal has local x
28 useStaticLocal(); // useStaticLocal has static local x
29 useGlobal(); // useGlobal uses global x
30 useLocal(); // useLocal reinitializes its local x
31 useStaticLocal(); // static local x retains its prior value
32 useGlobal(); // global x also retains its value
33
34 cout << "\nlocal x in main is " << x << endl;
35 return 0; // indicates successful termination
36 } // end main
37
38 // useLocal reinitializes local variable x during each call
39 void useLocal(void)
40 {
41 int x = 25; // initialized each time useLocal is called
42
43 cout << "\nlocal x is " << x << " on entering useLocal" << endl;
44 x++;
45 cout << "local x is " << x << " on exiting useLocal" << endl;
46 } // end function useLocal

Outline

fig06_12.cpp

(2 of 4)

Local variable that gets recreated and
reinitialized each time useLocal is called

96

© 2006 Pearson Education,
Inc. All rights reserved.

47
48 // useStaticLocal initializes static local variable x only the
49 // first time the function is called; value of x is saved
50 // between calls to this function
51 void useStaticLocal(void)
52 {
53 static int x = 50; // initialized first time useStaticLocal is called
54
55 cout << "\nlocal static x is " << x << " on entering useStaticLocal"
56 << endl;
57 x++;
58 cout << "local static x is " << x << " on exiting useStaticLocal"
59 << endl;
60 } // end function useStaticLocal
61
62 // useGlobal modifies global variable x during each call
63 void useGlobal(void)
64 {
65 cout << "\nglobal x is " << x << " on entering useGlobal" << endl;
66 x *= 10;
67 cout << "global x is " << x << " on exiting useGlobal" << endl;
68 } // end function useGlobal

Outline

fig06_12.cpp

(3 of 4)

static local variable that gets initialized only once

Statement refers to global variable x
because no local variable named x exists

97

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig06_12.cpp

(4 of 4)

local x in main's outer scope is 5
local x in main's inner scope is 7
local x in main's outer scope is 5

local x is 25 on entering useLocal
local x is 26 on exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x is 25 on entering useLocal
local x is 26 on exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

98

© 2006 Pearson Education, Inc. All rights reserved.

6.11 Function Call Stack and Activation
Records

• Data structure: collection of related data items
• Stack data structure

– Analogous to a pile of dishes
– When a dish is placed on the pile, it is normally placed at

the top
• Referred to as pushing the dish onto the stack

– Similarly, when a dish is removed from the pile, it is
normally removed from the top

• Referred to as popping the dish off the stack
– A last-in, first-out (LIFO) data structure

• The last item pushed (inserted) on the stack is the first item
popped (removed) from the stack

99

© 2006 Pearson Education, Inc. All rights reserved.

6.11 Function Call Stack and Activation
Records (Cont.)

• Function Call Stack
– Sometimes called the program execution stack
– Supports the function call/return mechanism

• Each time a function calls another function, a stack frame
(also known as an activation record) is pushed onto the stack

– Maintains the return address that the called function
needs to return to the calling function

– Contains automatic variables—parameters and any
local variables the function declares

100

© 2006 Pearson Education, Inc. All rights reserved.

6.11 Function Call Stack and Activation
Records (Cont.)

• Function Call Stack (Cont.)
– When the called function returns

• Stack frame for the function call is popped
• Control transfers to the return address in the popped stack frame

– If a function makes a call to another function
• Stack frame for the new function call is simply pushed onto the call

stack
• Return address required by the newly called function to return to its

caller is now located at the top of the stack.

• Stack overflow
– Error that occurs when more function calls occur than can have

their activation records stored on the function call stack (due to
memory limitations)

101

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.13: fig06_13.cpp

 2 // square function used to demonstrate the function

 3 // call stack and activation records.

 4 #include <iostream>

 5 using std::cin;

 6 using std::cout;

 7 using std::endl;

 8
 9 int square(int); // prototype for function square

10
11 int main()
12 {
13 int a = 10; // value to square (local automatic variable in main)
14
15 cout << a << " squared: " << square(a) << endl; // display a squared
16 return 0; // indicate successful termination
17 } // end main
18
19 // returns the square of an integer
20 int square(int x) // x is a local variable
21 {
22 return x * x; // calculate square and return result
23 } // end function square

10 squared: 100

Outline

fig06_13.cpp

(1 of 1)

Calling function square

102

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.14 | Function call stack after the operating system invokes main to execute the
application.

Operating system calls main, pushing
an activation record onto the stack

103

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.15 | Function call stack after main invokes function square to perform the
calculation.

main calls function square, pushing another
stack frame onto the function call stack

104

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.16 | Function call stack after function square returns to main.

Program control returns to main and
square’s stack frame is popped off

105

© 2006 Pearson Education, Inc. All rights reserved.

6.12 Functions with Empty Parameter
Lists

• Empty parameter list
– Specified by writing either void or nothing at all in

parentheses
– For example,
void print();

specifies that function print does not take arguments and
does not return a value

106

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 6.2

The meaning of an empty function parameter list
in C++ is dramatically different than in C. In C, it
means all argument checking is disabled (i.e., the
function call can pass any arguments it wants). In
C++, it means that the function explicitly takes no
arguments. Thus, C programs using this feature
might cause compilation errors when compiled in
C++.

107

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.17: fig06_17.cpp

 2 // Functions that take no arguments.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 void function1(); // function that takes no arguments

 8 void function2(void); // function that takes no arguments

 9
10 int main()
11 {
12 function1(); // call function1 with no arguments
13 function2(); // call function2 with no arguments
14 return 0; // indicates successful termination
15 } // end main
16
17 // function1 uses an empty parameter list to specify that
18 // the function receives no arguments
19 void function1()
20 {
21 cout << "function1 takes no arguments" << endl;
22 } // end function1

Outline

fig06_17.cpp

(1 of 2)

Specify an empty parameter list by
putting nothing in the parentheses

Specify an empty parameter list by
putting void in the parentheses

108

© 2006 Pearson Education,
Inc. All rights reserved.

23
24 // function2 uses a void parameter list to specify that
25 // the function receives no arguments
26 void function2(void)
27 {
28 cout << "function2 also takes no arguments" << endl;
29 } // end function2

function1 takes no arguments
function2 also takes no arguments

Outline

fig06_17.cpp

(2 of 2)

109

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.13

C++ programs do not compile unless function
prototypes are provided for every function or
each function is defined before it is called.

110

© 2006 Pearson Education, Inc. All rights reserved.

6.13 Inline Functions

• Inline functions
– Reduce function call overhead—especially for small

functions
– Qualifier inline before a function’s return type in the

function definition
• “Advises” the compiler to generate a copy of the function’s

code in place (when appropriate) to avoid a function call
– Trade-off of inline functions

• Multiple copies of the function code are inserted in the
program (often making the program larger)

– The compiler can ignore the inline qualifier and
typically does so for all but the smallest functions

111

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.11

Any change to an inline function could require
all clients of the function to be recompiled. This
can be significant in some program development
and maintenance situations.

112

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 6.5

The inline qualifier should be used only with
small, frequently used functions.

113

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.4

Using inline functions can reduce execution
time but may increase program size.

114

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.12

The const qualifier should be used to enforce the
principle of least privilege. Using the principle of
least privilege to properly design software can
greatly reduce debugging time and improper side
effects and can make a program easier to modify
and maintain.

115

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.18: fig06_18.cpp

 2 // Using an inline function to calculate the volume of a cube.

 3 #include <iostream>

 4 using std::cout;

 5 using std::cin;

 6 using std::endl;

 7
 8 // Definition of inline function cube. Definition of function appears

 9 // before function is called, so a function prototype is not required.

10 // First line of function definition acts as the prototype.
11 inline double cube(const double side)
12 {
13 return side * side * side; // calculate cube
14 } // end function cube
15
16 int main()
17 {
18 double sideValue; // stores value entered by user
19 cout << "Enter the side length of your cube: ";
20 cin >> sideValue; // read value from user
21
22 // calculate cube of sideValue and display result
23 cout << "Volume of cube with side "
24 << sideValue << " is " << cube(sideValue) << endl;
25 return 0; // indicates successful termination
26 } // end main

Enter the side length of your cube: 3.5
Volume of cube with side 3.5 is 42.875

Outline

fig06_18.cpp

(1 of 1)

Complete function definition so the
compiler knows how to expand a cube

function call into its inlined code.
inline qualifier

cube function call that could be inlined

116

© 2006 Pearson Education, Inc. All rights reserved.

6.14 References and Reference
Parameters

• Two ways to pass arguments to functions
– Pass-by-value

• A copy of the argument’s value is passed to the called
function

• Changes to the copy do not affect the original variable’s value
in the caller

– Prevents accidental side effects of functions
– Pass-by-reference

• Gives called function the ability to access and modify the
caller’s argument data directly

117

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.5

One disadvantage of pass-by-value is that, if a
large data item is being passed, copying that data
can take a considerable amount of execution time
and memory space.

118

© 2006 Pearson Education, Inc. All rights reserved.

6.14 References and Reference
Parameters (Cont.)

• Reference Parameter
– An alias for its corresponding argument in a function call
– & placed after the parameter type in the function prototype

and function header
– Example

• int &count in a function header
– Pronounced as “count is a reference to an int”

– Parameter name in the body of the called function actually
refers to the original variable in the calling function

119

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.6

Pass-by-reference is good for performance
reasons, because it can eliminate the pass-by-
value overhead of copying large amounts of
data.

120

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.13

Pass-by-reference can weaken security, because
the called function can corrupt the caller’s data.

121

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.19: fig06_19.cpp

 2 // Comparing pass-by-value and pass-by-reference with references.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int squareByValue(int); // function prototype (value pass)

 8 void squareByReference(int &); // function prototype (reference pass)

 9

10 int main()
11 {
12 int x = 2; // value to square using squareByValue
13 int z = 4; // value to square using squareByReference
14
15 // demonstrate squareByValue
16 cout << "x = " << x << " before squareByValue\n";
17 cout << "Value returned by squareByValue: "
18 << squareByValue(x) << endl;
19 cout << "x = " << x << " after squareByValue\n" << endl;
20
21 // demonstrate squareByReference
22 cout << "z = " << z << " before squareByReference" << endl;
23 squareByReference(z);
24 cout << "z = " << z << " after squareByReference" << endl;
25 return 0; // indicates successful termination
26 } // end main
27

Outline

fig06_19.cpp

(1 of 2)

Function illustrating pass-by-value

Function illustrating pass-by-reference

Variable is simply mentioned
by name in both function calls

122

© 2006 Pearson Education,
Inc. All rights reserved.

28 // squareByValue multiplies number by itself, stores the
29 // result in number and returns the new value of number
30 int squareByValue(int number)
31 {
32 return number *= number; // caller's argument not modified
33 } // end function squareByValue
34
35 // squareByReference multiplies numberRef by itself and stores the result
36 // in the variable to which numberRef refers in function main
37 void squareByReference(int &numberRef)
38 {
39 numberRef *= numberRef; // caller's argument modified
40 } // end function squareByReference

x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference
z = 16 after squareByReference

Outline

fig06_19.cpp

(2 of 2)

Receives copy of argument in main

Receives reference to argument in main

Modifies variable in main

123

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.14

Because reference parameters are mentioned only
by name in the body of the called function, the
programmer might inadvertently treat reference
parameters as pass-by-value parameters. This can
cause unexpected side effects if the original copies
of the variables are changed by the function.

124

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.7

For passing large objects, use a constant reference
parameter to simulate the appearance and
security of pass-by-value and avoid the overhead
of passing a copy of the large object.

125

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.14

Many programmers do not bother to declare
parameters passed by value as const, even
though the called function should not be
modifying the passed argument. Keyword const
in this context would protect only a copy of the
original argument, not the original argument
itself, which when passed by value is safe from
modification by the called function.

126

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.15

For the combined reasons of clarity and
performance, many C++ programmers prefer
that modifiable arguments be passed to functions
by using pointers (which we study in Chapter 8),
small nonmodifiable arguments be passed by
value and large nonmodifiable arguments be
passed to functions by using references to
constants.

127

© 2006 Pearson Education, Inc. All rights reserved.

6.14 References and Reference
Parameters (Cont.)

• References
– Can also be used as aliases for other variables within a

function
• All operations supposedly performed on the alias (i.e., the

reference) are actually performed on the original variable
• An alias is simply another name for the original variable
• Must be initialized in their declarations

– Cannot be reassigned afterward
– Example

• int count = 1;
int &cRef = count;
cRef++;

– Increments count through alias cRef

128

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.20: fig06_20.cpp

 2 // References must be initialized.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int x = 3;

10 int &y = x; // y refers to (is an alias for) x
11
12 cout << "x = " << x << endl << "y = " << y << endl;
13 y = 7; // actually modifies x
14 cout << "x = " << x << endl << "y = " << y << endl;
15 return 0; // indicates successful termination
16 } // end main

x = 3
y = 3
x = 7
y = 7

Outline

fig06_20.cpp

(1 of 1)

Creating a reference as an alias to
another variable in the function

Assign 7 to x through alias y

129

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.21: fig06_21.cpp

 2 // References must be initialized.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int x = 3;

10 int &y; // Error: y must be initialized
11
12 cout << "x = " << x << endl << "y = " << y << endl;
13 y = 7;
14 cout << "x = " << x << endl << "y = " << y << endl;
15 return 0; // indicates successful termination
16 } // end main
Borland C++ command-line compiler error message:

Error E2304 C:\cpphtp5_examples\ch06\Fig06_21\fig06_21.cpp 10:
 Reference variable 'y' must be initialized in function main()

Microsoft Visual C++ compiler error message:

C:\cpphtp5_examples\ch06\Fig06_21\fig06_21.cpp(10) : error C2530: 'y' :
 references must be initialized

GNU C++ compiler error message:

fig06_21.cpp:10: error: 'y' declared as a reference but not initialized

Outline

fig06_21.cpp

(1 of 2)
Uninitialized reference

130

© 2006 Pearson Education, Inc. All rights reserved.

6.14 References and Reference
Parameters (Cont.)

• Returning a reference from a function
– Functions can return references to variables

• Should only be used when the variable is static
– Dangling reference

• Returning a reference to an automatic variable
– That variable no longer exists after the function ends

131

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.15

Not initializing a reference variable when it is
declared is a compilation error, unless the
declaration is part of a function’s parameter list.
Reference parameters are initialized when the
function in which they are declared is called.

132

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.16

Attempting to reassign a previously declared
reference to be an alias to another variable is a
logic error. The value of the other variable is
simply assigned to the variable for which the
reference is already an alias.

133

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.17

Returning a reference to an automatic variable in
a called function is a logic error. Some compilers
issue a warning when this occurs.

134

© 2006 Pearson Education, Inc. All rights reserved.

6.15 Default Arguments

• Default argument
– A default value to be passed to a parameter

• Used when the function call does not specify an argument for
that parameter

– Must be the rightmost argument(s) in a function’s
parameter list

– Should be specified with the first occurrence of the
function name

• Typically the function prototype

135

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.18

It is a compilation error to specify default
arguments in both a function’s prototype and
header.

136

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.22: fig06_22.cpp

 2 // Using default arguments.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 // function prototype that specifies default arguments

 8 int boxVolume(int length = 1, int width = 1, int height = 1);

 9
10 int main()
11 {
12 // no arguments--use default values for all dimensions
13 cout << "The default box volume is: " << boxVolume();
14
15 // specify length; default width and height
16 cout << "\n\nThe volume of a box with length 10,\n"
17 << "width 1 and height 1 is: " << boxVolume(10);
18
19 // specify length and width; default height
20 cout << "\n\nThe volume of a box with length 10,\n"
21 << "width 5 and height 1 is: " << boxVolume(10, 5);
22
23 // specify all arguments
24 cout << "\n\nThe volume of a box with length 10,\n"
25 << "width 5 and height 2 is: " << boxVolume(10, 5, 2)
26 << endl;
27 return 0; // indicates successful termination
28 } // end main

Outline

fig06_22.cpp

(1 of 2)

Default arguments

Calling function with no arguments

Calling function with one argument

Calling function with two arguments

Calling function with three arguments

137

© 2006 Pearson Education,
Inc. All rights reserved.

29
30 // function boxVolume calculates the volume of a box
31 int boxVolume(int length, int width, int height)
32 {
33 return length * width * height;
34 } // end function boxVolume

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

Outline

fig06_22.cpp

(2 of 2)Note that default arguments were specified in the function
prototype, so they are not specified in the function header

138

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 6.6

Using default arguments can simplify writing
function calls. However, some programmers feel
that explicitly specifying all arguments is clearer.

139

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.16

If the default values for a function change, all
client code using the function must be recompiled.

140

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.19

Specifying and attempting to use a default
argument that is not a rightmost (trailing)
argument (while not simultaneously defaulting
all the rightmost arguments) is a syntax error.

141

© 2006 Pearson Education, Inc. All rights reserved.

6.16 Unary Scope Resolution Operator

• Unary scope resolution operator (::)
– Used to access a global variable when a local variable of

the same name is in scope
– Cannot be used to access a local variable of the same name

in an outer block

142

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.20

It is an error to attempt to use the unary scope
resolution operator (::) to access a nonglobal
variable in an outer block. If no global variable
with that name exists, a compilation error occurs.
If a global variable with that name exists, this is a
logic error, because the program will refer to the
global variable when you intended to access the
nonglobal variable in the outer block.

143

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 6.7

Always using the unary scope resolution operator
(::) to refer to global variables makes programs
easier to read and understand, because it makes it
clear that you are intending to access a global
variable rather than a nonglobal variable.

144

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.23: fig06_23.cpp

 2 // Using the unary scope resolution operator.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int number = 7; // global variable named number

 8
 9 int main()

10 {
11 double number = 10.5; // local variable named number
12
13 // display values of local and global variables
14 cout << "Local double value of number = " << number
15 << "\nGlobal int value of number = " << ::number << endl;
16 return 0; // indicates successful termination
17 } // end main

Local double value of number = 10.5
Global int value of number = 7

Outline

fig06_23.cpp

(1 of 1)

Unary scope resolution operator used
to access global variable number

145

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.17

Always using the unary scope resolution operator
(::) to refer to global variables makes programs
easier to modify by reducing the risk of name
collisions with nonglobal variables.

146

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 6.4

Always using the unary scope resolution operator
(::) to refer to a global variable eliminates
possible logic errors that might occur if a
nonglobal variable hides the global variable.

147

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 6.5

Avoid using variables of the same name for
different purposes in a program. Although this is
allowed in various circumstances, it can lead to
errors.

148

© 2006 Pearson Education, Inc. All rights reserved.

6.17 Function Overloading

• Overloaded functions
– Overloaded functions have

• Same name
• Different sets of parameters

– Compiler selects proper function to execute based on
number, types and order of arguments in the function call

– Commonly used to create several functions of the same
name that perform similar tasks, but on different data
types

149

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 6.8

Overloading functions that perform closely
related tasks can make programs more readable
and understandable.

150

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.24: fig06_24.cpp

 2 // Overloaded functions.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 // function square for int values

 8 int square(int x)

 9 {

10 cout << "square of integer " << x << " is ";
11 return x * x;
12 } // end function square with int argument
13
14 // function square for double values
15 double square(double y)
16 {
17 cout << "square of double " << y << " is ";
18 return y * y;
19 } // end function square with double argument

Outline

fig06_24.cpp

(1 of 2)Defining a square function for ints

Defining a square function for doubles

151

© 2006 Pearson Education,
Inc. All rights reserved.

20
21 int main()
22 {
23 cout << square(7); // calls int version
24 cout << endl;
25 cout << square(7.5); // calls double version
26 cout << endl;
27 return 0; // indicates successful termination
28 } // end main

square of integer 7 is 49
square of double 7.5 is 56.25

Outline

fig06_24.cpp

(2 of 2)

Output confirms that the proper
function was called in each case

152

© 2006 Pearson Education, Inc. All rights reserved.

6.17 Function Overloading (Cont.)

• How the compiler differentiates overloaded
functions

– Overloaded functions are distinguished by their signatures
– Name mangling or name decoration

• Compiler encodes each function identifier with the number
and types of its parameters to enable type-safe linkage

– Type-safe linkage ensures that
• Proper overloaded function is called
• Types of the arguments conform to types of the parameters

153

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.25: fig06_25.cpp

 2 // Name mangling.

 3
 4 // function square for int values

 5 int square(int x)

 6 {

 7 return x * x;

 8 } // end function square

 9
10 // function square for double values
11 double square(double y)
12 {
13 return y * y;
14 } // end function square
15
16 // function that receives arguments of types
17 // int, float, char and int &
18 void nothing1(int a, float b, char c, int &d)
19 {
20 // empty function body
21 } // end function nothing1

Outline

fig06_25.cpp

(1 of 2)
Overloaded square functions

154

© 2006 Pearson Education,
Inc. All rights reserved.

22
23 // function that receives arguments of types
24 // char, int, float & and double &
25 int nothing2(char a, int b, float &c, double &d)
26 {
27 return 0;
28 } // end function nothing2
29
30 int main()
31 {
32 return 0; // indicates successful termination
33 } // end main

@square$qi

@square$qd

@nothing1$qifcri

@nothing2$qcirfrd

_main

Outline

fig06_25.cpp

(2 of 2)

main is not mangled because it cannot be overloaded

Mangled names of overloaded functions

155

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.21

Creating overloaded functions with identical
parameter lists and different return types is a
compilation error.

156

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.22

A function with default arguments omitted might
be called identically to another overloaded
function; this is a compilation error. For example,
having in a program both a function that
explicitly takes no arguments and a function of
the same name that contains all default arguments
results in a compilation error when an attempt is
made to use that function name in a call passing
no arguments. The compiler does not know which
version of the function to choose.

157

© 2006 Pearson Education, Inc. All rights reserved.

6.18 Function Templates

• Function templates
– More compact and convenient form of overloading

• Identical program logic and operations for each data type
– Function template definition

• Written by programmer once
• Essentially defines a whole family of overloaded functions
• Begins with the template keyword
• Contains template parameter list of formal type parameters for the

function template enclosed in angle brackets (<>)
• Formal type parameters

– Preceded by keyword typename or keyword class
– Placeholders for fundamental types or user-defined types

158

© 2006 Pearson Education, Inc. All rights reserved.

6.18 Function Templates (Cont.)

• Function-template specializations
– Generated automatically by the compiler to handle each

type of call to the function template
– Example for function template max with type parameter T

called with int arguments
• Compiler detects a max invocation in the program code
• int is substituted for T throughout the template definition
• This produces function-template specialization max< int >

159

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.26: maximum.h

 2 // Definition of function template maximum.

 3
 4 template < class T > // or template< typename T >

 5 T maximum(T value1, T value2, T value3)

 6 {

 7 T maximumValue = value1; // assume value1 is maximum

 8

 9 // determine whether value2 is greater than maximumValue

10 if (value2 > maximumValue)
11 maximumValue = value2;
12
13 // determine whether value3 is greater than maximumValue
14 if (value3 > maximumValue)
15 maximumValue = value3;
16
17 return maximumValue;
18 } // end function template maximum

Outline

fig06_26.cpp

(1 of 1)

Using formal type parameter T in place of data type

160

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.23

Not placing keyword class or keyword
typename before every formal type parameter of
a function template (e.g., writing < class S, T >
instead of < class S, class T >) is a syntax
error.

161

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.27: fig06_27.cpp

 2 // Function template maximum test program.

 3 #include <iostream>

 4 using std::cout;

 5 using std::cin;

 6 using std::endl;

 7
 8 #include "maximum.h" // include definition of function template maximum

 9
10 int main()
11 {
12 // demonstrate maximum with int values
13 int int1, int2, int3;
14
15 cout << "Input three integer values: ";
16 cin >> int1 >> int2 >> int3;
17
18 // invoke int version of maximum
19 cout << "The maximum integer value is: "
20 << maximum(int1, int2, int3);
21
22 // demonstrate maximum with double values
23 double double1, double2, double3;
24
25 cout << "\n\nInput three double values: ";
26 cin >> double1 >> double2 >> double3;
27
28 // invoke double version of maximum
29 cout << "The maximum double value is: "
30 << maximum(double1, double2, double3);

Outline

fig06_27.cpp

(1 of 2)

Invoking maximum with int arguments

Invoking maximum with double arguments

162

© 2006 Pearson Education,
Inc. All rights reserved.

31
32 // demonstrate maximum with char values
33 char char1, char2, char3;
34
35 cout << "\n\nInput three characters: ";
36 cin >> char1 >> char2 >> char3;
37
38 // invoke char version of maximum
39 cout << "The maximum character value is: "
40 << maximum(char1, char2, char3) << endl;
41 return 0; // indicates successful termination
42 } // end main

Input three integer values: 1 2 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value is: 3.3

Input three characters: A C B
The maximum character value is: C

Outline

fig06_27.cpp

(2 of 2)

Invoking maximum with char arguments

163

© 2006 Pearson Education, Inc. All rights reserved.

6.19 Recursion

• Recursive function
– A function that calls itself, either directly, or indirectly

(through another function)

• Recursion
– Base case(s)

• The simplest case(s), which the function knows how to handle
– For all other cases, the function typically divides the

problem into two conceptual pieces
• A piece that the function knows how to do
• A piece that it does not know how to do

– Slightly simpler or smaller version of the original problem

164

© 2006 Pearson Education, Inc. All rights reserved.

6.19 Recursion (Cont.)

• Recursion (Cont.)
– Recursive call (also called the recursion step)

• The function launches (calls) a fresh copy of itself to work on
the smaller problem

• Can result in many more recursive calls, as the function
keeps dividing each new problem into two conceptual pieces

• This sequence of smaller and smaller problems must
eventually converge on the base case

– Otherwise the recursion will continue forever

165

© 2006 Pearson Education, Inc. All rights reserved.

6.19 Recursion (Cont.)

• Factorial
– The factorial of a nonnegative integer n, written n! (and

pronounced “n factorial”), is the product
• n · (n – 1) · (n – 2) · … · 1

– Recursive definition of the factorial function
• n! = n · (n – 1)!
• Example

– 5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

166

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.28 | Recursive evaluation of 5!.

167

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.29: fig06_29.cpp

 2 // Testing the recursive factorial function.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <iomanip>

 8 using std::setw;

 9
10 unsigned long factorial(unsigned long); // function prototype
11
12 int main()
13 {
14 // calculate the factorials of 0 through 10
15 for (int counter = 0; counter <= 10; counter++)
16 cout << setw(2) << counter << "! = " << factorial(counter)
17 << endl;
18
19 return 0; // indicates successful termination
20 } // end main

Outline

fig06_29.cpp

(1 of 2)

First call to factorial function

168

© 2006 Pearson Education,
Inc. All rights reserved.

21
22 // recursive definition of function factorial
23 unsigned long factorial(unsigned long number)
24 {
25 if (number <= 1) // test for base case
26 return 1; // base cases: 0! = 1 and 1! = 1
27 else // recursion step
28 return number * factorial(number - 1);
29 } // end function factorial

 0! = 1
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
10! = 3628800

Outline

fig06_29.cpp

(2 of 2)

Base cases simply return 1

Recursive call to factorial function
with a slightly smaller problem

169

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.24

Either omitting the base case, or writing the
recursion step incorrectly so that it does not
converge on the base case, causes “infinite”
recursion, eventually exhausting memory. This is
analogous to the problem of an infinite loop in an
iterative (nonrecursive) solution.

170

© 2006 Pearson Education, Inc. All rights reserved.

6.20 Example Using Recursion:
Fibonacci Series

• The Fibonacci series
– 0, 1, 1, 2, 3, 5, 8, 13, 21, …
– Begins with 0 and 1
– Each subsequent Fibonacci number is the sum of the

previous two Fibonacci numbers
– can be defined recursively as follows:

• fibonacci(0) = 0
• fibonacci(1) = 1
• fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

171

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.30: fig06_30.cpp

 2 // Testing the recursive fibonacci function.

 3 #include <iostream>

 4 using std::cout;

 5 using std::cin;

 6 using std::endl;

 7
 8 unsigned long fibonacci(unsigned long); // function prototype

 9
10 int main()
11 {
12 // calculate the fibonacci values of 0 through 10
13 for (int counter = 0; counter <= 10; counter++)
14 cout << "fibonacci(" << counter << ") = "
15 << fibonacci(counter) << endl;
16
17 // display higher fibonacci values
18 cout << "fibonacci(20) = " << fibonacci(20) << endl;
19 cout << "fibonacci(30) = " << fibonacci(30) << endl;
20 cout << "fibonacci(35) = " << fibonacci(35) << endl;
21 return 0; // indicates successful termination
22 } // end main
23

Outline

fig06_30.cpp

(1 of 2)

172

© 2006 Pearson Education,
Inc. All rights reserved.

24 // recursive method fibonacci
25 unsigned long fibonacci(unsigned long number)
26 {
27 if ((number == 0) || (number == 1)) // base cases
28 return number;
29 else // recursion step
30 return fibonacci(number - 1) + fibonacci(number - 2);
31 } // end function fibonacci

fibonacci(0) = 0

fibonacci(1) = 1

fibonacci(2) = 1

fibonacci(3) = 2

fibonacci(4) = 3

fibonacci(5) = 5

fibonacci(6) = 8

fibonacci(7) = 13

fibonacci(8) = 21

fibonacci(9) = 34

fibonacci(10) = 55

fibonacci(20) = 6765

fibonacci(30) = 832040

fibonacci(35) = 9227465

Outline

fig06_30.cpp

(2 of 2)

Recursive calls to fibonacci function

Base cases

173

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.31 | Set of recursive calls to function fibonacci.

174

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.25

Writing programs that depend on the order of
evaluation of the operands of operators other than
&&, ||, ?: and the comma (,) operator can lead
to logic errors.

175

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 6.3

Programs that depend on the order of evaluation
of the operands of operators other than &&, ||, ?:
and the comma (,) operator can function
differently on systems with different compilers.

176

© 2006 Pearson Education, Inc. All rights reserved.

6.20 Example Using Recursion:
Fibonacci Series (Cont.)

• Caution about recursive programs
– Each level of recursion in function fibonacci has a

doubling effect on the number of function calls
• i.e., the number of recursive calls that are required to

calculate the nth Fibonacci number is on the order of 2n

• 20th Fibonacci number would require on the order of 220 or
about a million calls

• 30th Fibonacci number would require on the order of 230 or
about a billion calls.

– Exponential complexity
• Can humble even the world’s most powerful computers

177

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.8

Avoid Fibonacci-style recursive programs that
result in an exponential “explosion” of calls.

178

© 2006 Pearson Education, Inc. All rights reserved.

6.21 Recursion vs. Iteration

• Both are based on a control statement
– Iteration – repetition structure
– Recursion – selection structure

• Both involve repetition
– Iteration – explicitly uses repetition structure
– Recursion – repeated function calls

• Both involve a termination test
– Iteration – loop-termination test
– Recursion – base case

179

© 2006 Pearson Education, Inc. All rights reserved.

6.21 Recursion vs. Iteration (Cont.)

• Both gradually approach termination
– Iteration modifies counter until loop-termination test fails
– Recursion produces progressively simpler versions of

problem

• Both can occur infinitely
– Iteration – if loop-continuation condition never fails
– Recursion – if recursion step does not simplify the problem

180

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.32: fig06_32.cpp

 2 // Testing the iterative factorial function.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <iomanip>

 8 using std::setw;

 9
10 unsigned long factorial(unsigned long); // function prototype
11
12 int main()
13 {
14 // calculate the factorials of 0 through 10
15 for (int counter = 0; counter <= 10; counter++)
16 cout << setw(2) << counter << "! = " << factorial(counter)
17 << endl;
18
19 return 0;
20 } // end main
21
22 // iterative function factorial
23 unsigned long factorial(unsigned long number)
24 {
25 unsigned long result = 1;

Outline

fig06_32.cpp

(1 of 2)

181

© 2006 Pearson Education,
Inc. All rights reserved.

26
27 // iterative declaration of function factorial
28 for (unsigned long i = number; i >= 1; i--)
29 result *= i;
30
31 return result;
32 } // end function factorial

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Outline

fig06_32.cpp

(2 of 2)

Iterative approach to finding a factorial

182

© 2006 Pearson Education, Inc. All rights reserved.

6.21 Recursion vs. Iteration (Cont.)

• Negatives of recursion
– Overhead of repeated function calls

• Can be expensive in both processor time and memory space
– Each recursive call causes another copy of the function

(actually only the function’s variables) to be created
• Can consume considerable memory

• Iteration
– Normally occurs within a function
– Overhead of repeated function calls and extra memory

assignment is omitted

183

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.18

Any problem that can be solved recursively
can also be solved iteratively (nonrecursively).
A recursive approach is normally chosen in
preference to an iterative approach when the
recursive approach more naturally mirrors
the problem and results in a program that is
easier to understand and debug. Another
reason to choose a recursive solution is that an
iterative solution is not apparent.

184

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 6.9

Avoid using recursion in performance situations.
Recursive calls take time and consume additional
memory.

185

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.26

Accidentally having a nonrecursive function call
itself, either directly or indirectly (through
another function), is a logic error.

186

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.33 | Summary of recursion examples and exercises in the text. (Part 1 of 3)

 Location in Text Recursion Examples and Exercises

 Chapter 6

 Section 6.19, Fig. 6.29 Factorial function

 Section 6.19, Fig. 6.30 Fibonacci function

 Exercise 6.7 Sum of two integers

 Exercise 6.40 Raising an integer to an integer power

 Exercise 6.42 Towers of Hanoi

 Exercise 6.44 Visualizing recursion

 Exercise 6.45 Greatest common divisor

 Exercise 6.50, Exercise 6.51 Mystery “What does this program do?” exercise

187

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.33 | Summary of recursion examples and exercises in the text. (Part 2 of 3)

 Location in Text Recursion Examples and Exercises

 Chapter 7

 Exercise 7.18 Mystery “What does this program do?” exercise

 Exercise 7.21 Mystery “What does this program do?” exercise

 Exercise 7.31 Selection sort

 Exercise 7.32 Determine whether a string is a palindrome

 Exercise 7.33 Linear search

 Exercise 7.34 Binary search

 Exercise 7.35 Eight Queens

 Exercise 7.36 Print an array

 Exercise 7.37 Print a string backward

 Exercise 7.38 Minimum value in an array

 Chapter 8
 Exercise 8.24 Quicksort
 Exercise 8.25 Maze traversal
 Exercise 8.26 Generating Mazes Randomly
 Exercise 8.27 Mazes of Any Size

188

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.33 | Summary of recursion examples and exercises in the text. (Part 3 of 3)

 Location in Text Recursion Examples and Exercises

 Chapter 20

 Section 20.3.3, Figs. 20.5–20.7 Mergesort

 Exercise 20.8 Linear search

 Exercise 20.9 Binary search

 Exercise 20.10 Quicksort

 Chapter 21

 Section 21.7, Figs. 21.20–21.22 Binary tree insert

 Section 21.7, Figs. 21.20–21.22 Preorder traversal of a binary tree

 Section 21.7, Figs. 21.20–21.22 Inorder traversal of a binary tree

 Section 21.7, Figs. 21.20–21.22 Postorder traversal of a binary tree

 Exercise 21.20 Print a linked list backward

 Exercise 21.21 Search a linked list

 Exercise 21.22 Binary tree delete

 Exercise 21.25 Printing tree

189

© 2006 Pearson Education, Inc. All rights reserved.

6.22 (Optional) Software Engineering Case Study:
Identifying Class Operations in the ATM System

• Operation
– A service that objects of a class provide to their clients

• For example, a radio’s operations include setting its station
and volume

– Implemented as a member function in C++
– Identifying operations

• Examine key verbs and verb phrases in the requirements
document

190

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.34 | Verbs and verb phrases for each class in the ATM system.

Class Verbs and verb phrases

ATM executes financial transactions
BalanceInquiry [none in the requirements document]

Withdrawal [none in the requirements document]
Deposit [none in the requirements document]

BankDatabase
authenticates a user, retrieves an account balance, credits a deposit
amount to an account, debits a withdrawal amount from an account

Account
retrieves an account balance, credits a deposit amount to an account,
debits a withdrawal amount from an account

Screen displays a message to the user
Keypad receives numeric input from the user

CashDispenser
dispenses cash, indicates whether it contains enough cash to satisfy a
withdrawal request

DepositSlot receives a deposit envelope

191

© 2006 Pearson Education, Inc. All rights reserved.

6.22 (Optional) Software Engineering Case Study:
Identifying Class Operations in the ATM System (Cont.)

• Modeling operations in UML
– Each operation is given an operation name, a parameter

list and a return type:
• operationName(parameter1, …, parameterN) : return

type
• Each parameter has a parameter name and a parameter type

– parameterName : parameterType

– Some operations may not have return types yet
• Remaining return types will be added as design and

implementation proceed

192

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.35 | Classes in the ATM system with attributes and operations.

193

© 2006 Pearson Education, Inc. All rights reserved.

6.22 (Optional) Software Engineering Case Study:
Identifying Class Operations in the ATM System (Cont.)

• Identifying and modeling operation parameters
– Examine what data the operation requires to perform its

assigned task
– Additional parameters may be added later on

194

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.36 | Class BankDatabase with operation parameters.

195

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.37 | Class Account with operation parameters.

196

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.38 | Class Screen with operation parameters.

197

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.39 | Class CashDispenser with operation parameters.

