
1

© 2006 Pearson Education, Inc. All rights reserved.

88
Pointers and
Pointer-Based

Strings

2

© 2006 Pearson Education, Inc. All rights reserved.

Addresses are given to us to conceal our
whereabouts.

— Saki (H. H. Munro)

By indirection find direction out.
— William Shakespeare

Many things, having full reference
To one consent, may work contrariously.

— William Shakespeare

You will find it a very good practice always to verify
your references, sir!

— Dr. Routh

3

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:

What pointers are.
The similarities and differences between
pointers and references and when to use each.
To use pointers to pass arguments to functions
by reference.
To use pointer-based C-style strings.
The close relationships among pointers, arrays
and C-style strings.
To use pointers to functions.
To declare and use arrays of C-style strings.

4

© 2006 Pearson Education, Inc. All rights reserved.

8.1 Introduction
8.2 Pointer Variable Declarations and Initialization
8.3 Pointer Operators
8.4 Passing Arguments to Functions by Reference with Pointers
8.5 Using const with Pointers
8.6 Selection Sort Using Pass-by-Reference
8.7 sizeof Operators
8.7 Pointer Expressions and Pointer Arithmetic
8.9 Relationship Between Pointers and Arrays
8.10 Arrays of Pointers
8.11 Case Study: Card Shuffling and Dealing Simulation
8.12 Function Pointers
8.13 Introduction to Pointer-Based String Processing

8.13.1 Fundamentals of Characters and Pointer-Based Strings
8.13.2 String Manipulation Functions of the String-Handling

Library
8.14 Wrap-Up

5

© 2006 Pearson Education, Inc. All rights reserved.

8.1 Introduction

• Pointers
– Powerful, but difficult to master
– Can be used to perform pass-by-reference
– Can be used to create and manipulate dynamic data

structures
– Close relationship with arrays and strings

• char * pointer-based strings

6

© 2006 Pearson Education, Inc. All rights reserved.

8.2 Pointer Variable Declarations and
Initialization

• Pointer variables
– Contain memory addresses as values

• Normally, variable contains specific value (direct reference)
• Pointers contain address of variable that has specific value

(indirect reference)

• Indirection
– Referencing value through pointer

7

© 2006 Pearson Education, Inc. All rights reserved.

8.2 Pointer Variable Declarations and
Initialization (Cont.)

• Pointer declarations
– * indicates variable is a pointer

• Example
– int *myPtr;

• Declares pointer to int, of type int *
• Multiple pointers require multiple asterisks

int *myPtr1, *myPtr2;

• Pointer initialization
– Initialized to 0, NULL, or an address

• 0 or NULL points to nothing (null pointer)

8

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.1

Assuming that the * used to declare a pointer
distributes to all variable names in a declaration’s
comma-separated list of variables can lead to
errors. Each pointer must be declared with the *
prefixed to the name (either with or without a
space in between—the compiler ignores the space).
Declaring only one variable per declaration helps
avoid these types of errors and improves program
readability.

9

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 8.1

Although it is not a requirement, including the
letters Ptr in pointer variable names makes it
clear that these variables are pointers and that
they must be handled appropriately.

10

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.1 | Directly and indirectly referencing a variable.

11

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 8.1

Initialize pointers to prevent pointing to
unknown or uninitialized areas of memory.

12

© 2006 Pearson Education, Inc. All rights reserved.

8.3 Pointer Operators

• Address operator (&)
– Returns memory address of its operand
– Example

• int y = 5;
int *yPtr;
yPtr = &y;
assigns the address of variable y to pointer variable yPtr

– Variable yPtr “points to” y
• yPtr indirectly references variable y’s value

13

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.2 | Graphical representation of a pointer pointing to a variable in memory.

14

© 2006 Pearson Education, Inc. All rights reserved.

8.3 Pointer Operators (Cont.)

•* operator
– Also called indirection operator or dereferencing operator
– Returns synonym for the object its operand points to
– *yPtr returns y (because yPtr points to y)
– Dereferenced pointer is an lvalue

*yptr = 9;

•* and & are inverses of each other
– Will “cancel one another out” when applied consecutively

in either order

15

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.3 | Representation of y and yPtr in memory.

16

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.2

Dereferencing a pointer that has not been
properly initialized or that has not been
assigned to point to a specific location in
memory could cause a fatal execution-time
error, or it could accidentally modify
important data and allow the program to
run to completion, possibly with incorrect
results.

17

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.3

An attempt to dereference a variable that is not
a pointer is a compilation error.

18

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.4

Dereferencing a null pointer is normally
a fatal execution-time error.

19

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 8.1

The format in which a pointer is output is
compiler dependent. Some systems output
pointer values as hexadecimal integers,
while others use decimal integers.

20

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_04.cpp

(1 of 2)

 1 // Fig. 8.4: fig08_04.cpp

 2 // Using the & and * operators.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int a; // a is an integer

10 int *aPtr; // aPtr is an int * -- pointer to an integer
11
12 a = 7; // assigned 7 to a
13 aPtr = &a; // assign the address of a to aPtr

Variable aPtr is
a point to an int

Initialize aPtr with the
address of variable a

21

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_04.cpp

(2 of 2)

14
15 cout << "The address of a is " << &a
16 << "\nThe value of aPtr is " << aPtr;
17 cout << "\n\nThe value of a is " << a
18 << "\nThe value of *aPtr is " << *aPtr;
19 cout << "\n\nShowing that * and & are inverses of "
20 << "each other.\n&*aPtr = " << &*aPtr
21 << "\n*&aPtr = " << *&aPtr << endl;
22 return 0; // indicates successful termination
23 } // end main

The address of a is 0012F580
The value of aPtr is 0012F580

The value of a is 7
The value of *aPtr is 7

Showing that * and & are inverses of each other.
&*aPtr = 0012F580
*&aPtr = 0012F580

* and & are inverses
of each other

Address of a and the value
of aPtr are identical

* and & are inverses; same result
when both are applied to aPtr

Value of a and the dereferenced
aPtr are identical

22

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.5 | Operator precedence and associativity.

 Operators Associativity Type

 () [] left to right highest

 ++ -- static_cast< type >(operand) left to right unary (postfix)

 ++ -- + - ! & * right to left unary (prefix)

 * / % left to right multiplicative

 + - left to right additive

 << >> left to right insertion/extraction

 < <= > >= left to right relational

 == != left to right equality

 && left to right logical AND

 || left to right logical OR

 ?: right to left conditional

 = += -= *= /= %= right to left assignment

 , left to right comma

23

© 2006 Pearson Education, Inc. All rights reserved.

8.4 Passing Arguments to Functions by
Reference with Pointers

• Three ways to pass arguments to a function
– Pass-by-value
– Pass-by-reference with reference arguments
– Pass-by-reference with pointer arguments

• A function can return only one value
• Arguments passed to a function using reference

arguments
– Function can modify original values of arguments

• More than one value “returned”

24

© 2006 Pearson Education, Inc. All rights reserved.

8.4 Passing Arguments to Functions by
Reference with Pointers (Cont.)

• Pass-by-reference with pointer arguments
– Simulates pass-by-reference

• Use pointers and indirection operator
– Pass address of argument using & operator
– Arrays not passed with & because array name is already a

pointer
– * operator used as alias/nickname for variable inside of

function

25

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_06.cpp

(1 of 1)

 1 // Fig. 8.6: fig08_06.cpp

 2 // Cube a variable using pass-by-value.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int cubeByValue(int); // prototype

 8
 9 int main()

10 {
11 int number = 5;
12
13 cout << "The original value of number is " << number;
14
15 number = cubeByValue(number); // pass number by value to cubeByValue
16 cout << "\nThe new value of number is " << number << endl;
17 return 0; // indicates successful termination
18 } // end main
19
20 // calculate and return cube of integer argument
21 int cubeByValue(int n)
22 {
23 return n * n * n; // cube local variable n and return result
24 } // end function cubeByValue

The original value of number is 5
The new value of number is 125

Pass number by value; result
returned by cubeByValue

cubeByValue receives
parameter passed-by-value

Cubes local variable n
and return the result

26

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.5

Not dereferencing a pointer when it is necessary
to do so to obtain the value to which the pointer
points is an error.

27

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_07.cpp

(1 of 1)

 1 // Fig. 8.7: fig08_07.cpp

 2 // Cube a variable using pass-by-reference with a pointer argument.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 void cubeByReference(int *); // prototype

 8
 9 int main()

10 {
11 int number = 5;
12
13 cout << "The original value of number is " << number;
14
15 cubeByReference(&number); // pass number address to cubeByReference
16
17 cout << "\nThe new value of number is " << number << endl;
18 return 0; // indicates successful termination
19 } // end main
20
21 // calculate cube of *nPtr; modifies variable number in main
22 void cubeByReference(int *nPtr)
23 {
24 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr
25 } // end function cubeByReference

The original value of number is 5
The new value of number is 125

Prototype indicates parameter
is a pointer to an int

Apply address operator & to
pass address of number to
cubeByReference

cubeByReference
modifies variable number

cubeByReference receives
address of an int variable,
i.e., a pointer to an int

Modify and access int
variable using indirection
operator *

28

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 8.1

Use pass-by-value to pass arguments to a
function unless the caller explicitly requires
that the called function directly modify the
value of the argument variable in the caller.
This is another example of the principle of
least privilege.

29

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.8 | Pass-by-value analysis of the program of Fig. 8.6.

30

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.9 | Pass-by-reference analysis (with a pointer argument) of the program of Fig. 8.7.

31

© 2006 Pearson Education, Inc. All rights reserved.

8.5 Using const with Pointers

•const qualifier
– Indicates that value of variable should not be modified
– const used when function does not need to change the

variable’s value

• Principle of least privilege
– Award function enough access to accomplish task, but no

more
– Example

• A function that prints the elements of an array, takes array
and int indicating length

– Array contents are not changed – should be const
– Array length is not changed – should be const

32

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 8.2

Although const is well defined in ANSI C
and C++, some compilers do not enforce it
properly. So a good rule is, “Know your
compiler.”

33

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 8.2

If a value does not (or should not) change in
the body of a function to which it is passed,
the parameter should be declared const to
ensure that it is not accidentally modified.

34

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 8.2

Before using a function, check its function
prototype to determine the parameters that
it can modify.

35

© 2006 Pearson Education, Inc. All rights reserved.

8.5 Using const with Pointers (Cont.)

• Four ways to pass pointer to function
– Nonconstant pointer to nonconstant data

• Highest amount of access
• Data can be modified through the dereferenced pointer
• Pointer can be modified to point to other data

– Pointer arithmetic
• Operator ++ moves array pointer to the next element

• Its declaration does not include const qualifier

36

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_10.cpp

(1 of 2)

 1 // Fig. 8.10: fig08_10.cpp

 2 // Converting lowercase letters to uppercase letters

 3 // using a non-constant pointer to non-constant data.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include <cctype> // prototypes for islower and toupper

 9 using std::islower;

10 using std::toupper;
11
12 void convertToUppercase(char *);
13
14 int main()
15 {
16 char phrase[] = "characters and $32.98";
17
18 cout << "The phrase before conversion is: " << phrase;
19 convertToUppercase(phrase);
20 cout << "\nThe phrase after conversion is: " << phrase << endl;
21 return 0; // indicates successful termination
22 } // end main

Parameter is a nonconstant
pointer to nonconstant data

convertToUppercase
modifies variable phrase

37

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_10.cpp

(2 of 2)

23
24 // convert string to uppercase letters
25 void convertToUppercase(char *sPtr)
26 {
27 while (*sPtr != '\0') // loop while current character is not '\0'
28 {
29 if (islower(*sPtr)) // if character is lowercase,
30 *sPtr = toupper(*sPtr); // convert to uppercase
31
32 sPtr++; // move sPtr to next character in string
33 } // end while
34 } // end function convertToUppercase

The phrase before conversion is: characters and $32.98
The phrase after conversion is: CHARACTERS AND $32.98

Parameter sPtr is a nonconstant
pointer to nonconstant data

Function islower returns true
if the character is lowercase

Function toupper returns corresponding
uppercase character if original character is
lowercase; otherwise toupper returns
the original character

Modify the memory address stored in sPtr
to point to the next element of the array

38

© 2006 Pearson Education, Inc. All rights reserved.

8.5 Using const with Pointers (Cont.)

• Four ways to pass pointer to function (Cont.)
– Nonconstant pointer to constant data

• Pointer can be modified to point to any appropriate data item
• Data cannot be modified through this pointer
• Provides the performance of pass-by-reference and the

protection of pass-by-value

39

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_11.cpp

(1 of 1)

 1 // Fig. 8.11: fig08_11.cpp

 2 // Printing a string one character at a time using

 3 // a non-constant pointer to constant data.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 void printCharacters(const char *); // print using pointer to const data

 9
10 int main()
11 {
12 const char phrase[] = "print characters of a string";
13
14 cout << "The string is:\n";
15 printCharacters(phrase); // print characters in phrase
16 cout << endl;
17 return 0; // indicates successful termination
18 } // end main
19
20 // sPtr can be modified, but it cannot modify the character to which
21 // it points, i.e., sPtr is a "read-only" pointer
22 void printCharacters(const char *sPtr)
23 {
24 for (; *sPtr != '\0'; sPtr++) // no initialization
25 cout << *sPtr; // display character without modification
26 } // end function printCharacters

The string is:
print characters of a string

Parameter is a nonconstant
pointer to constant data

Pass pointer phrase to function
printCharacters

sPtr is a nonconstant pointer to constant data;
it cannot modify the character to which it points

Increment sPtr to point to the next character

40

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_12.cpp

(1 of 2)

 1 // Fig. 8.12: fig08_12.cpp

 2 // Attempting to modify data through a

 3 // non-constant pointer to constant data.

 4
 5 void f(const int *); // prototype

 6
 7 int main()

 8 {

 9 int y;

10
11 f(&y); // f attempts illegal modification
12 return 0; // indicates successful termination
13 } // end main

Parameter is a nonconstant
pointer to constant data

Pass the address of int variable y
to attempt an illegal modification

41

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_12.cpp

(2 of 2)

14
15 // xPtr cannot modify the value of constant variable to which it points
16 void f(const int *xPtr)
17 {
18 *xPtr = 100; // error: cannot modify a const object
19 } // end function f
Borland C++ command-line compiler error message:

Error E2024 fig08_12.cpp 18:
 Cannot modify a const object in function f(const int *)

Microsoft Visual C++ compiler error message:

c:\cpphtp5_examples\ch08\Fig08_12\fig08_12.cpp(18) :
 error C2166: l-value specifies const object

GNU C++ compiler error message:

fig08_12.cpp: In function `void f(const int*)':
fig08_12.cpp:18: error: assignment of read-only location

Attempt to modify a const
object pointed to by xPtr

Error produced when
attempting to compile

42

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 8.1

If they do not need to be modified by the called
function, pass large objects using pointers to
constant data or references to constant data, to
obtain the performance benefits of pass-by-
reference.

43

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 8.3

Pass large objects using pointers to constant
data, or references to constant data, to obtain
the security of pass-by-value.

44

© 2006 Pearson Education, Inc. All rights reserved.

8.5 Using const with Pointers (Cont.)

• Four ways to pass pointer to function (Cont.)
– Constant pointer to nonconstant data

• Always points to the same memory location
– Can only access other elements using subscript notation

• Data can be modified through the pointer
• Default for an array name

– Can be used by a function to receive an array argument
• Must be initialized when declared

45

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_13.cpp

(1 of 1)

 1 // Fig. 8.13: fig08_13.cpp

 2 // Attempting to modify a constant pointer to non-constant data.

 3
 4 int main()

 5 {

 6 int x, y;

 7
 8 // ptr is a constant pointer to an integer that can

 9 // be modified through ptr, but ptr always points to the

10 // same memory location.
11 int * const ptr = &x; // const pointer must be initialized
12
13 *ptr = 7; // allowed: *ptr is not const
14 ptr = &y; // error: ptr is const; cannot assign to it a new address
15 return 0; // indicates successful termination
16 } // end main
Borland C++ command-line compiler error message:

Error E2024 fig08_13.cpp 14: Cannot modify a const object in function main()s

Microsoft Visual C++ compiler error message:

c:\cpphtp5e_examples\ch08\Fig08_13\fig08_13.cpp(14) : error C2166:
 l-value specifies const object

GNU C++ compiler error message:

fig08_13.cpp: In function `int main()':
fig08_13.cpp:14: error: assignment of read-only variable `ptr'

ptr is a constant pointer to an integer

Can modify x (pointed to by
ptr) since x is not constant

Cannot modify ptr to point to a
new address since ptr is constant

Line 14 generates a compiler
error by attempting to assign
a new address to a constant
pointer

46

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.6

Not initializing a pointer that is declared
const is a compilation error.

47

© 2006 Pearson Education, Inc. All rights reserved.

8.5 Using const with Pointers (Cont.)

• Four ways to pass pointer to function (Cont.)
– Constant pointer to constant data

• Least amount of access
• Always points to the same memory location
• Data cannot be modified using this pointer

48

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_14.cpp

(1 of 2)

 1 // Fig. 8.14: fig08_14.cpp

 2 // Attempting to modify a constant pointer to constant data.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int x = 5, y;

10
11 // ptr is a constant pointer to a constant integer.
12 // ptr always points to the same location; the integer
13 // at that location cannot be modified.
14 const int *const ptr = &x;
15
16 cout << *ptr << endl;
17
18 *ptr = 7; // error: *ptr is const; cannot assign new value
19 ptr = &y; // error: ptr is const; cannot assign new address
20 return 0; // indicates successful termination
21 } // end main

ptr is a constant pointer
to a constant integer

Cannot modify x (pointed to by
ptr) since *ptr is constant

Cannot modify ptr to point to a
new address since ptr is constant

49

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_14.cpp

(2 of 2)

Borland C++ command-line compiler error message:

Error E2024 fig08_14.cpp 18: Cannot modify a const object in function main()
Error E2024 fig08_14.cpp 19: Cannot modify a const object in function main()

Microsoft Visual C++ compiler error message:

c:\cpphtp5e_examples\ch08\Fig08_14\fig08_14.cpp(18) : error C2166:
 l-value specifies const object
c:\cpphtp5e_examples\ch08\Fig08_14\fig08_14.cpp(19) : error C2166:
 l-value specifies const object

GNU C++ compiler error message:

fig08_14.cpp: In function `int main()':
fig08_14.cpp:18: error: assignment of read-only location
fig08_14.cpp:19: error: assignment of read-only variable `ptr'

Line 18 generates a compiler
error by attempting to modify
a constant object
Line 19 generates a compiler
error by attempting to assign
a new address to a constant
pointer

50

© 2006 Pearson Education, Inc. All rights reserved.

8.6 Selection Sort Using Pass-by-
Reference

• Implement selectionSort using pointers
– Selection sort algorithm

• Swap smallest element with the first element
• Swap second-smallest element with the second element
• Etc.

– Want function swap to access array elements
• Individual array elements: scalars

– Passed by value by default
• Pass by reference via pointers using address operator &

51

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_15.cpp

(1 of 3)

 1 // Fig. 8.15: fig08_15.cpp

 2 // This program puts values into an array, sorts the values into

 3 // ascending order and prints the resulting array.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include <iomanip>

 9 using std::setw;

10
11 void selectionSort(int * const, const int); // prototype
12 void swap(int * const, int * const); // prototype
13
14 int main()
15 {
16 const int arraySize = 10;
17 int a[arraySize] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
18
19 cout << "Data items in original order\n";
20
21 for (int i = 0; i < arraySize; i++)
22 cout << setw(4) << a[i];
23
24 selectionSort(a, arraySize); // sort the array
25
26 cout << "\nData items in ascending order\n";
27
28 for (int j = 0; j < arraySize; j++)
29 cout << setw(4) << a[j];

52

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_15.cpp

(2 of 3)

30
31 cout << endl;
32 return 0; // indicates successful termination
33 } // end main
34
35 // function to sort an array
36 void selectionSort(int * const array, const int size)
37 {
38 int smallest; // index of smallest element
39
40 // loop over size - 1 elements
41 for (int i = 0; i < size - 1; i++)
42 {
43 smallest = i; // first index of remaining array
44
45 // loop to find index of smallest element
46 for (int index = i + 1; index < size; index++)
47
48 if (array[index] < array[smallest])
49 smallest = index;
50
51 swap(&array[i], &array[smallest]);
52 } // end if
53 } // end function selectionSort

Declare array as int *array
(rather than int array[]) to
indicate function selectionSort
receives single-subscripted array

Receives the size of the array as
an argument; declared const to
ensure that size is not modified

53

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_15.cpp

(3 of 3)

54
55 // swap values at memory locations to which
56 // element1Ptr and element2Ptr point
57 void swap(int * const element1Ptr, int * const element2Ptr)
58 {
59 int hold = *element1Ptr;
60 *element1Ptr = *element2Ptr;
61 *element2Ptr = hold;
62 } // end function swap

Data items in original order

 2 6 4 8 10 12 89 68 45 37

Data items in ascending order

 2 4 6 8 10 12 37 45 68 89

Arguments are assed by reference,
allowing the function to swap values
at the original memory locations

54

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 8.4

When passing an array to a function, also pass
the size of the array (rather than building into
the function knowledge of the array size). This
makes the function more reusable.

55

© 2006 Pearson Education, Inc. All rights reserved.

8.7 sizeof Operators

•sizeof operator
– Returns size of operand in bytes
– For arrays, sizeof returns

(size of 1 element) * (number of elements)
– If sizeof(int) returns 4 then

int myArray[10];
cout << sizeof(myArray);

will print 40
– Can be used with

• Variable names
• Type names
• Constant values

56

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.7

Using the sizeof operator in a function to
find the size in bytes of an array parameter
results in the size in bytes of a pointer, not the
size in bytes of the array.

57

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_16.cpp

(1 of 1)

 1 // Fig. 8.16: fig08_16.cpp

 2 // Sizeof operator when used on an array name

 3 // returns the number of bytes in the array.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 size_t getSize(double *); // prototype

 9
10 int main()
11 {
12 double array[20]; // 20 doubles; occupies 160 bytes on our system
13
14 cout << "The number of bytes in the array is " << sizeof(array);
15
16 cout << "\nThe number of bytes returned by getSize is "
17 << getSize(array) << endl;
18 return 0; // indicates successful termination
19 } // end main
20
21 // return size of ptr
22 size_t getSize(double *ptr)
23 {
24 return sizeof(ptr);
25 } // end function getSize

The number of bytes in the array is 160

The number of bytes returned by getSize is 4

Operator sizeof applied to an array
returns total number of bytes in the array

Function getSize returns the number
of bytes used to store array address

Operator sizeof returns
number of bytes of pointer

58

© 2006 Pearson Education, Inc. All rights reserved.

8.7 sizeof Operators (Cont.)

•sizeof operator (Cont.)
– Is performed at compiler-time
– For double realArray[22];

• Use sizeof realArray / sizeof(double) to calculate
the number of elements in realArray

– Parentheses are only required if the operand is a type name

59

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_17.cpp

(1 of 2)

 1 // Fig. 8.17: fig08_17.cpp

 2 // Demonstrating the sizeof operator.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 char c; // variable of type char

10 short s; // variable of type short
11 int i; // variable of type int
12 long l; // variable of type long
13 float f; // variable of type float
14 double d; // variable of type double
15 long double ld; // variable of type long double
16 int array[20]; // array of int
17 int *ptr = array; // variable of type int *

60

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_17.cpp

(2 of 2)

18
19 cout << "sizeof c = " << sizeof c
20 << "\tsizeof(char) = " << sizeof(char)
21 << "\nsizeof s = " << sizeof s
22 << "\tsizeof(short) = " << sizeof(short)
23 << "\nsizeof i = " << sizeof i
24 << "\tsizeof(int) = " << sizeof(int)
25 << "\nsizeof l = " << sizeof l
26 << "\tsizeof(long) = " << sizeof(long)
27 << "\nsizeof f = " << sizeof f
28 << "\tsizeof(float) = " << sizeof(float)
29 << "\nsizeof d = " << sizeof d
30 << "\tsizeof(double) = " << sizeof(double)
31 << "\nsizeof ld = " << sizeof ld
32 << "\tsizeof(long double) = " << sizeof(long double)
33 << "\nsizeof array = " << sizeof array
34 << "\nsizeof ptr = " << sizeof ptr << endl;
35 return 0; // indicates successful termination
36 } // end main

sizeof c = 1 sizeof(char) = 1
sizeof s = 2 sizeof(short) = 2
sizeof i = 4 sizeof(int) = 4
sizeof l = 4 sizeof(long) = 4
sizeof f = 4 sizeof(float) = 4
sizeof d = 8 sizeof(double) = 8
sizeof ld = 8 sizeof(long double) = 8
sizeof array = 80
sizeof ptr = 4

Operator sizeof can be
used on a variable name

Operator sizeof can be
used on a type name

Operator sizeof returns the total
number of bytes in the array

61

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 8.3

The number of bytes used to store a particular
data type may vary between systems. When
writing programs that depend on data type sizes,
and that will run on several computer systems,
use sizeof to determine the number of bytes
used to store the data types.

62

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.8

Omitting the parentheses in a sizeof operation
when the operand is a type name is a compilation
error.

63

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 8.2

Because sizeof is a compile-time unary
operator, not an execution-time operator,
using sizeof does not negatively impact
execution performance.

64

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 8.3

To avoid errors associated with omitting the
parentheses around the operand of operator
sizeof, many programmers include
parentheses around every sizeof operand.

65

© 2006 Pearson Education, Inc. All rights reserved.

8.8 Pointer Expressions and Pointer
Arithmetic

• Pointer arithmetic
– Increment/decrement pointer (++ or --)
– Add/subtract an integer to/from a pointer (+ or +=,
- or -=)

– Pointers may be subtracted from each other
– Pointer arithmetic is meaningless unless performed on a

pointer to an array

66

© 2006 Pearson Education, Inc. All rights reserved.

8.8 Pointer Expressions and Pointer
Arithmetic (Cont.)

• 5 element int array on a machine using 4 byte
ints

– vPtr points to first element v[0], at location 3000
vPtr = &v[0];

– vPtr += 2; sets vPtr to 3008 (3000 + 2 * 4)
vPtr points to v[2]

• Subtracting pointers
– Returns number of elements between two addresses

vPtr2 = v[2];

vPtr = v[0];
vPtr2 - vPtr is 2

67

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 8.4

Most computers today have two-byte or four-
byte integers. Some of the newer machines
use eight-byte integers. Because the results of
pointer arithmetic depend on the size of the
objects a pointer points to, pointer arithmetic
is machine dependent.

68

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.18 | Array v and a pointer variable vPtr that points to v.

69

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.19 | Pointer vPtr after pointer arithmetic.

70

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.9

Using pointer arithmetic on a pointer
that does not refer to an array of values
is a logic error.

71

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.10

Subtracting or comparing two pointers
that do not refer to elements of the same
array is a logic error.

72

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.11

Using pointer arithmetic to increment or
decrement a pointer such that the pointer
refers to an element past the end of the
array or before the beginning of the array
is normally a logic error.

73

© 2006 Pearson Education, Inc. All rights reserved.

8.8 Pointer Expressions and Pointer
Arithmetic (Cont.)

• Pointer assignment
– Pointer can be assigned to another pointer if both are of

same type
• If not same type, cast operator must be used
• Exception

– Pointer to void (type void *)
• Generic pointer, represents any type
• No casting needed to convert pointer to void *
• Casting is needed to convert void * to any other

type
• void pointers cannot be dereferenced

74

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 8.5

Nonconstant pointer arguments can be passed
to constant pointer parameters. This is helpful
when the body of a program uses a nonconstant
pointer to access data, but does not want that
data to be modified by a function called in the
body of the program.

75

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.12

Assigning a pointer of one type to a pointer
of another (other than void *) without
casting the first pointer to the type of the
second pointer is a compilation error.

76

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.13

All operations on a void * pointer are
compilation errors, except comparing void *
pointers with other pointers, casting void *
pointers to valid pointer types and assigning
addresses to void * pointers.

77

© 2006 Pearson Education, Inc. All rights reserved.

8.8 Pointer Expressions and Pointer
Arithmetic (Cont.)

• Pointer comparison
– Use equality and relational operators
– Compare addresses stored in pointers

• Comparisons are meaningless unless pointers point to
members of the same array

– Example
• Could show that one pointer points to higher-index element

of array than another pointer
– Commonly used to determine whether pointer is 0 (null

pointer)

78

© 2006 Pearson Education, Inc. All rights reserved.

8.9 Relationship Between Pointers and
Arrays

• Arrays and pointers are closely related
– Array name is like constant pointer
– Pointers can do array subscripting operations

79

© 2006 Pearson Education, Inc. All rights reserved.

8.9 Relationship Between Pointers and
Arrays (Cont.)

• Accessing array elements with pointers
– Assume declarations:

int b[5];
int *bPtr;
bPtr = b;

– Element b[n] can be accessed by *(bPtr + n)
• Called pointer/offset notation

– Addresses
• &b[3] is same as bPtr + 3

– Array name can be treated as pointer
• b[3] is same as *(b + 3)

– Pointers can be subscripted (pointer/subscript notation)
• bPtr[3] is same as b[3]

80

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.14

Although array names are pointers to the
beginning of the array and pointers can be
modified in arithmetic expressions, array names
cannot be modified in arithmetic expressions,
because array names are constant pointers.

81

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 8.2

For clarity, use array notation instead of pointer
notation when manipulating arrays.

82

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_20.cpp

(1 of 3)

 1 // Fig. 8.20: fig08_20.cpp

 2 // Using subscripting and pointer notations with arrays.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int b[] = { 10, 20, 30, 40 }; // create 4-element array b

10 int *bPtr = b; // set bPtr to point to array b
11
12 // output array b using array subscript notation
13 cout << "Array b printed with:\n\nArray subscript notation\n";
14
15 for (int i = 0; i < 4; i++)
16 cout << "b[" << i << "] = " << b[i] << '\n';
17
18 // output array b using the array name and pointer/offset notation
19 cout << "\nPointer/offset notation where "
20 << "the pointer is the array name\n";
21
22 for (int offset1 = 0; offset1 < 4; offset1++)
23 cout << "*(b + " << offset1 << ") = " << *(b + offset1) << '\n';

Using array subscript notation

Using array name and
pointer/offset notation

83

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_20.cpp

(2 of 3)

24
25 // output array b using bPtr and array subscript notation
26 cout << "\nPointer subscript notation\n";
27
28 for (int j = 0; j < 4; j++)
29 cout << "bPtr[" << j << "] = " << bPtr[j] << '\n';
30
31 cout << "\nPointer/offset notation\n";
32
33 // output array b using bPtr and pointer/offset notation
34 for (int offset2 = 0; offset2 < 4; offset2++)
35 cout << "*(bPtr + " << offset2 << ") = "
36 << *(bPtr + offset2) << '\n';
37
38 return 0; // indicates successful termination
39 } // end main

Using pointer subscript notation

Using pointer name and pointer/offset notation

84

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_20.cpp

(3 of 3)

Array b printed with:

Array subscript notation

b[0] = 10

b[1] = 20

b[2] = 30

b[3] = 40

Pointer/offset notation where the pointer is the array name

*(b + 0) = 10

*(b + 1) = 20

*(b + 2) = 30

*(b + 3) = 40

Pointer subscript notation

bPtr[0] = 10

bPtr[1] = 20

bPtr[2] = 30

bPtr[3] = 40

Pointer/offset notation

*(bPtr + 0) = 10

*(bPtr + 1) = 20

*(bPtr + 2) = 30

*(bPtr + 3) = 40

85

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_21.cpp

(1 of 2)

 1 // Fig. 8.21: fig08_21.cpp

 2 // Copying a string using array notation and pointer notation.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 void copy1(char *, const char *); // prototype

 8 void copy2(char *, const char *); // prototype

 9
10 int main()
11 {
12 char string1[10];
13 char *string2 = "Hello";
14 char string3[10];
15 char string4[] = "Good Bye";
16
17 copy1(string1, string2); // copy string2 into string1
18 cout << "string1 = " << string1 << endl;
19
20 copy2(string3, string4); // copy string4 into string3
21 cout << "string3 = " << string3 << endl;
22 return 0; // indicates successful termination
23 } // end main

86

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_21.cpp

(2 of 2)

24
25 // copy s2 to s1 using array notation
26 void copy1(char * s1, const char * s2)
27 {
28 // copying occurs in the for header
29 for (int i = 0; (s1[i] = s2[i]) != '\0'; i++)
30 ; // do nothing in body
31 } // end function copy1
32
33 // copy s2 to s1 using pointer notation
34 void copy2(char *s1, const char *s2)
35 {
36 // copying occurs in the for header
37 for (; (*s1 = *s2) != '\0'; s1++, s2++)
38 ; // do nothing in body
39 } // end function copy2

string1 = Hello
string3 = Good Bye

Use array subscript notation to copy
string in s2 to character array s1

Use pointer notation to copy string
in s2 to character array in s1

Increment both pointers to point to
next elements in corresponding arrays

87

© 2006 Pearson Education, Inc. All rights reserved.

8.10 Arrays of Pointers

• Arrays can contain pointers
– Commonly used to store array of strings (string array)

• Array does not store strings, only pointers to strings
• Example

– const char *suit[4] =
{ "Hearts", "Diamonds", "Clubs", "Spades" };

• Each element of suit points to a char * (string)
• suit array has fixed size (4), but strings can be of any size
• Commonly used with command-line arguments to function
main

88

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.22 | Graphical representation of the suit array.

89

© 2006 Pearson Education, Inc. All rights reserved.

8.11 Case Study: Card Shuffling and
Dealing Simulation

• Card shuffling program
– Use an array of pointers to strings, to store suit names
– Use a double scripted array (suit-by-value)
– Place 1-52 into the array to specify the order in which the

cards are dealt

• Indefinite postponement (starvation)
– An algorithm executing for an indefinitely long period

• Due to randomness

90

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.23 | Two-dimensional array representation of a deck of cards.

91

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 8.3

Sometimes algorithms that emerge in a “natural”
way can contain subtle performance problems
such as indefinite postponement. Seek algorithms
that avoid indefinite postponement.

92

© 2006 Pearson Education, Inc. All rights reserved.

8.11 Case Study: Card Shuffling and
Dealing Simulation (Cont.)

• Pseudocode for shuffling and dealing
simulation

For each of the 52 cards

Place card number in randomly
selected unoccupied slot of deck

For each of the 52 cards

Find card number in deck array
and print face and suit of card

Choose slot of deck randomly

While chosen slot of deck has
been previously chosen

Choose slot of deck randomly

Place card number in chosen
slot of deck

For each slot of the deck array
If slot contains card number

Print the face and suit of the
card

Second refinement Third refinementFirst refinement

Initialize the suit array
Initialize the face array
Initialize the deck array

Shuffle the deck

Deal 52 cards

93

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_24.cpp

(1 of 1)

 1 Initialize the suit array

 2 Initialize the face array

 3 Initialize the deck array

 4

 5 For each of the 52 cards

 6 Choose slot of deck randomly

 7

 8 While slot of deck has been previously chosen

 9 Choose slot of deck randomly

10

11 Place card number in chosen slot of deck

12

13 For each of the 52 cards

14 For each slot of deck array

15 If slot contains desired card number

16 Print the face and suit of the card

94

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_25.cpp

(1 of 1)

 1 // Fig. 8.25: DeckOfCards.h

 2 // Definition of class DeckOfCards that

 3 // represents a deck of playing cards.

 4
 5 // DeckOfCards class definition

 6 class DeckOfCards

 7 {

 8 public:

 9 DeckOfCards(); // constructor initializes deck

10 void shuffle(); // shuffles cards in deck
11 void deal(); // deals cards in deck
12 private:
13 int deck[4][13]; // represents deck of cards
14 }; // end class DeckOfCards

95

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_26.cpp

(1 of 4)

 1 // Fig. 8.26: DeckOfCards.cpp

 2 // Member-function definitions for class DeckOfCards that simulates

 3 // the shuffling and dealing of a deck of playing cards.

 4 #include <iostream>

 5 using std::cout;

 6 using std::left;

 7 using std::right;

 8
 9 #include <iomanip>

10 using std::setw;
11
12 #include <cstdlib> // prototypes for rand and srand
13 using std::rand;
14 using std::srand;
15
16 #include <ctime> // prototype for time
17 using std::time;
18
19 #include "DeckOfCards.h" // DeckOfCards class definition
20

96

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_26.cpp

(2 of 4)

21 // DeckOfCards default constructor initializes deck
22 DeckOfCards::DeckOfCards()
23 {
24 // loop through rows of deck
25 for (int row = 0; row <= 3; row++)
26 {
27 // loop through columns of deck for current row
28 for (int column = 0; column <= 12; column++)
29 {
30 deck[row][column] = 0; // initialize slot of deck to 0
31 } // end inner for
32 } // end outer for
33
34 srand(time(0)); // seed random number generator
35 } // end DeckOfCards default constructor
36
37 // shuffle cards in deck
38 void DeckOfCards::shuffle()
39 {
40 int row; // represents suit value of card
41 int column; // represents face value of card
42
43 // for each of the 52 cards, choose a slot of the deck randomly
44 for (int card = 1; card <= 52; card++)
45 {
46 do // choose a new random location until unoccupied slot is found
47 {
48 row = rand() % 4; // randomly select the row
49 column = rand() % 13; // randomly select the column
50 } while(deck[row][column] != 0); // end do...while

Current position is at randomly
selected row and column

97

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_26.cpp

(3 of 4)

51
52 // place card number in chosen slot of deck
53 deck[row][column] = card;
54 } // end for
55 } // end function shuffle
56
57 // deal cards in deck
58 void DeckOfCards::deal()
59 {
60 // initialize suit array
61 static const char *suit[4] =
62 { "Hearts", "Diamonds", "Clubs", "Spades" };
63
64 // initialize face array
65 static const char *face[13] =
66 { "Ace", "Deuce", "Three", "Four", "Five", "Six", "Seven",
67 "Eight", "Nine", "Ten", "Jack", "Queen", "King" };

suit array contains pointers to char arrays

face array contains pointers to char arrays

98

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_26.cpp

(4 of 4)

68
69 // for each of the 52 cards
70 for (int card = 1; card <= 52; card++)
71 {
72 // loop through rows of deck
73 for (int row = 0; row <= 3; row++)
74 {
75 // loop through columns of deck for current row
76 for (int column = 0; column <= 12; column++)
77 {
78 // if slot contains current card, display card
79 if (deck[row][column] == card)
80 {
81 cout << setw(5) << right << face[column]
82 << " of " << setw(8) << left << suit[row]
83 << (card % 2 == 0 ? '\n' : '\t');
84 } // end if
85 } // end innermost for
86 } // end inner for
87 } // end outer for
88 } // end function deal

Cause face to be output right
justified in field of 5 characters

Cause suit to be output left
justified in field of 8 characters

99

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_27.cpp

(1 of 2)

 1 // Fig. 8.27: fig08_27.cpp

 2 // Card shuffling and dealing program.

 3 #include "DeckOfCards.h" // DeckOfCards class definition

 4
 5 int main()

 6 {

 7 DeckOfCards deckOfCards; // create DeckOfCards object

 8

 9 deckOfCards.shuffle(); // shuffle the cards in the deck

10 deckOfCards.deal(); // deal the cards in the deck
11 return 0; // indicates successful termination
12 } // end main

100

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_27.cpp

(2 of 2)

 Nine of Spades Seven of Clubs

 Five of Spades Eight of Clubs

Queen of Diamonds Three of Hearts

 Jack of Spades Five of Diamonds

 Jack of Diamonds Three of Diamonds

Three of Clubs Six of Clubs

 Ten of Clubs Nine of Diamonds

 Ace of Hearts Queen of Hearts

Seven of Spades Deuce of Spades

 Six of Hearts Deuce of Clubs

 Ace of Clubs Deuce of Diamonds

 Nine of Hearts Seven of Diamonds

 Six of Spades Eight of Diamonds

 Ten of Spades King of Hearts

 Four of Clubs Ace of Spades

 Ten of Hearts Four of Spades

Eight of Hearts Eight of Spades

 Jack of Hearts Ten of Diamonds

 Four of Diamonds King of Diamonds

Seven of Hearts King of Spades

Queen of Spades Four of Hearts

 Nine of Clubs Six of Diamonds

Deuce of Hearts Jack of Clubs

 King of Clubs Three of Spades

Queen of Clubs Five of Clubs

 Five of Hearts Ace of Diamonds

101

© 2006 Pearson Education, Inc. All rights reserved.

8.12 Function Pointers

• Pointers to functions
– Contain addresses of functions

• Similar to how array name is address of first element
• Function name is starting address of code that defines

function

• Function pointers can be
– Passed to functions
– Returned from functions
– Stored in arrays
– Assigned to other function pointers

102

© 2006 Pearson Education, Inc. All rights reserved.

8.12 Function Pointers (Cont.)

• Calling functions using pointers
– Assume function header parameter:

• bool (*compare) (int, int)

– Execute function from pointer with either
• (*compare) (int1, int2)

– Dereference pointer to function
OR
• compare(int1, int2)

– Could be confusing
• User may think compare is name of actual function

in program

103

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_28.cpp

(1 of 4)

 1 // Fig. 8.28: fig08_28.cpp

 2 // Multipurpose sorting program using function pointers.

 3 #include <iostream>

 4 using std::cout;

 5 using std::cin;

 6 using std::endl;

 7
 8 #include <iomanip>

 9 using std::setw;

10
11 // prototypes
12 void selectionSort(int [], const int, bool (*)(int, int));
13 void swap(int * const, int * const);
14 bool ascending(int, int); // implements ascending order
15 bool descending(int, int); // implements descending order
16
17 int main()
18 {
19 const int arraySize = 10;
20 int order; // 1 = ascending, 2 = descending
21 int counter; // array index
22 int a[arraySize] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
23
24 cout << "Enter 1 to sort in ascending order,\n"
25 << "Enter 2 to sort in descending order: ";
26 cin >> order;
27 cout << "\nData items in original order\n";

Parameter is pointer to function that
receives two integer parameters and
returns bool result

104

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_28.cpp

(2 of 4)

28
29 // output original array
30 for (counter = 0; counter < arraySize; counter++)
31 cout << setw(4) << a[counter];
32
33 // sort array in ascending order; pass function ascending
34 // as an argument to specify ascending sorting order
35 if (order == 1)
36 {
37 selectionSort(a, arraySize, ascending);
38 cout << "\nData items in ascending order\n";
39 } // end if
40
41 // sort array in descending order; pass function descending
42 // as an argument to specify descending sorting order
43 else
44 {
45 selectionSort(a, arraySize, descending);
46 cout << "\nData items in descending order\n";
47 } // end else part of if...else
48
49 // output sorted array
50 for (counter = 0; counter < arraySize; counter++)
51 cout << setw(4) << a[counter];
52
53 cout << endl;
54 return 0; // indicates successful termination
55 } // end main

Pass pointers to functions
ascending and
descending as parameters
to function selectionSort

105

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_28.cpp

(3 of 4)

56
57 // multipurpose selection sort; the parameter compare is a pointer to
58 // the comparison function that determines the sorting order
59 void selectionSort(int work[], const int size,
60 bool (*compare)(int, int))
61 {
62 int smallestOrLargest; // index of smallest (or largest) element
63
64 // loop over size - 1 elements
65 for (int i = 0; i < size - 1; i++)
66 {
67 smallestOrLargest = i; // first index of remaining vector
68
69 // loop to find index of smallest (or largest) element
70 for (int index = i + 1; index < size; index++)
71 if (!(*compare)(work[smallestOrLargest], work[index]))
72 smallestOrLargest = index;
73
74 swap(&work[smallestOrLargest], &work[i]);
75 } // end if
76 } // end function selectionSort
77
78 // swap values at memory locations to which
79 // element1Ptr and element2Ptr point
80 void swap(int * const element1Ptr, int * const element2Ptr)
81 {
82 int hold = *element1Ptr;
83 *element1Ptr = *element2Ptr;
84 *element2Ptr = hold;
85 } // end function swap

compare is a pointer to a
function that receives two
integer parameters and
returns a bool result

Parentheses necessary to
indicate pointer to function

Dereference pointer compare
to execute the function

106

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_28.cpp

(4 of 4)

86
87 // determine whether element a is less than
88 // element b for an ascending order sort
89 bool ascending(int a, int b)
90 {
91 return a < b; // returns true if a is less than b
92 } // end function ascending
93
94 // determine whether element a is greater than
95 // element b for a descending order sort
96 bool descending(int a, int b)
97 {
98 return a > b; // returns true if a is greater than b
99 } // end function descending

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1

Data items in original order
 2 6 4 8 10 12 89 68 45 37

Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 2

Data items in original order
 2 6 4 8 10 12 89 68 45 37

Data items in descending order
 89 68 45 37 12 10 8 6 4 2

107

© 2006 Pearson Education, Inc. All rights reserved.

8.12 Function Pointers (Cont.)

• Arrays of pointers to functions
– Menu-driven systems

• Pointers to each function stored in array of pointers to
functions

– All functions must have same return type and same
parameter types

• Menu choice determines subscript into array of function
pointers

108

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_29.cpp

(1 of 3)

 1 // Fig. 8.29: fig08_29.cpp

 2 // Demonstrating an array of pointers to functions.

 3 #include <iostream>

 4 using std::cout;

 5 using std::cin;

 6 using std::endl;

 7
 8 // function prototypes -- each function performs similar actions

 9 void function0(int);

10 void function1(int);
11 void function2(int);
12
13 int main()
14 {
15 // initialize array of 3 pointers to functions that each
16 // take an int argument and return void
17 void (*f[3])(int) = { function0, function1, function2 };
18
19 int choice;
20
21 cout << "Enter a number between 0 and 2, 3 to end: ";
22 cin >> choice;

Array initialized with
names of three functions

109

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_29.cpp

(2 of 3)

23
24 // process user's choice
25 while ((choice >= 0) && (choice < 3))
26 {
27 // invoke the function at location choice in
28 // the array f and pass choice as an argument
29 (*f[choice])(choice);
30
31 cout << "Enter a number between 0 and 2, 3 to end: ";
32 cin >> choice;
33 } // end while
34
35 cout << "Program execution completed." << endl;
36 return 0; // indicates successful termination
37 } // end main
38
39 void function0(int a)
40 {
41 cout << "You entered " << a << " so function0 was called\n\n";
42 } // end function function0
43
44 void function1(int b)
45 {
46 cout << "You entered " << b << " so function1 was called\n\n";
47 } // end function function1

Call chosen function by dereferencing
corresponding element in array

110

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_29.cpp

(3 of 3)

48
49 void function2(int c)
50 {
51 cout << "You entered " << c << " so function2 was called\n\n";
52 } // end function function2

Enter a number between 0 and 2, 3 to end: 0
You entered 0 so function0 was called

Enter a number between 0 and 2, 3 to end: 1
You entered 1 so function1 was called

Enter a number between 0 and 2, 3 to end: 2
You entered 2 so function2 was called

Enter a number between 0 and 2, 3 to end: 3
Program execution completed.

111

© 2006 Pearson Education, Inc. All rights reserved.

8.13 Introduction to Pointer-Based String
Processing

• Standard Library functions for string processing
– Appropriate for developing text-processing software

112

© 2006 Pearson Education, Inc. All rights reserved.

8.13.1 Fundamentals of Characters and
Pointer-Based Strings

• Character constant
– Integer value represented as character in single quotes

• Example
– 'z' is integer value of z

• 122 in ASCII
– '\n' is integer value of newline

• 10 in ASCII

113

© 2006 Pearson Education, Inc. All rights reserved.

8.13.1 Fundamentals of Characters and
Pointer-Based Strings (Cont.)

• String
– Series of characters treated as single unit
– Can include letters, digits, special characters +, -, *, ...
– String literal (string constants)

• Enclosed in double quotes, for example:
"I like C++“

• Have static storage class
– Array of characters, ends with null character '\0'
– String is constant pointer

• Pointer to string’s first character
– Like arrays

114

© 2006 Pearson Education, Inc. All rights reserved.

8.13.1 Fundamentals of Characters and
Pointer-Based Strings (Cont.)

• String assignment
– Character array

• char color[] = "blue";

– Creates 5 element char array color
• Last element is '\0'

– Variable of type char *
• char *colorPtr = "blue";

– Creates pointer colorPtr to letter b in string "blue"
• "blue" somewhere in memory

– Alternative for character array
• char color[] = { 'b', 'l', 'u', 'e', '\0' };

115

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.15

Not allocating sufficient space in a character
array to store the null character that terminates
a string is an error.

116

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.16

Creating or using a C-style string that does not
contain a terminating null character can lead to
logic errors.

117

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 8.4

When storing a string of characters in a character
array, be sure that the array is large enough to
hold the largest string that will be stored. C++
allows strings of any length to be stored. If a string
is longer than the character array in which it is to
be stored, characters beyond the end of the array
will overwrite data in memory following the array,
leading to logic errors.

118

© 2006 Pearson Education, Inc. All rights reserved.

8.13.1 Fundamentals of Characters and
Pointer-Based Strings (Cont.)

• Reading strings
– Assign input to character array word[20]

• cin >> word;

– Reads characters until whitespace or EOF
– String could exceed array size

• cin >> setw(20) >> word;

– Reads only up to 19 characters (space reserved
for '\0')

119

© 2006 Pearson Education, Inc. All rights reserved.

8.13.1 Fundamentals of Characters and
Pointer-Based Strings (Cont.)

•cin.getline

– Read line of text
• cin.getline(array, size, delimiter);

– Copies input into specified array until either
• One less than size is reached
• delimiter character is input

• Example
– char sentence[80];
cin.getline(sentence, 80, '\n');

120

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.17

Processing a single character as a char *
string can lead to a fatal runtime error. A
char * string is a pointer—probably a
respectably large integer. However, a character
is a small integer (ASCII values range 0–255).
On many systems, dereferencing a char value
causes an error, because low memory addresses
are reserved for special purposes such as
operating system interrupt handlers—so
“memory access violations” occur.

121

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.18

Passing a string as an argument to a function
when a character is expected is a compilation
error.

122

© 2006 Pearson Education, Inc. All rights reserved.

8.13.2 String Manipulation Functions of
the String-Handling Library

• String handling library <cstring> provides
functions to

– Manipulate string data
– Compare strings
– Search strings for characters and other strings
– Tokenize strings (separate strings into logical pieces)

• Data type size_t
– Defined to be an unsigned integral type

• Such as unsigned int or unsigned long
– In header file <cstring>

123

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.30 | String-manipulation functions of the string-handling library. (Part 1 of 2)

 Function prototype Function description

 char *strcpy(char *s1, const char *s2);

Copies the string s2 into the character array s1. The value of s1
is returned.

 char *strncpy(char *s1, const char *s2, size_t n);

Copies at most n characters of the string s2 into the character
array s1. The value of s1 is returned.

 char *strcat(char *s1, const char *s2);

Appends the string s2 to s1. The first character of s2 overwrites
the terminating null character of s1. The value of s1 is returned.

 char *strncat(char *s1, const char *s2, size_t n);

Appends at most n characters of string s2 to string s1. The first
character of s2 overwrites the terminating null character of s1.
The value of s1 is returned.

 int strcmp(const char *s1, const char *s2);

Compares the string s1 with the string s2. The function returns a
value of zero, less than zero (usually –1) or greater than zero
(usually 1) if s1 is equal to, less than or greater than s2,
respectively.

124

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 8.30 | String-manipulation functions of the string-handling library. (Part 2 of 2)

 Function prototype Function description

 int strncmp(const char *s1, const char *s2, size_t n);

Compares up to n characters of the string s1 with the string s2. The
function returns zero, less than zero or greater than zero if the n-
character portion of s1 is equal to, less than or greater than the
corresponding n-character portion of s2, respectively.

 char *strtok(char *s1, const char *s2);

A sequence of calls to strtok breaks string s1 into “tokens”—logical
pieces such as words in a line of text. The string is broken up based on
the characters contained in string s2. For instance, if we were to
break the string "this:is:a:string" into tokens based on the
character ':', the resulting tokens would be "this", "is", "a" and
"string". Function strtok returns only one token at a time,
however. The first call contains s1 as the first argument, and
subsequent calls to continue tokenizing the same string contain NULL
as the first argument. A pointer to the current token is returned by
each call. If there are no more tokens when the function is called,
NULL is returned.

 size_t strlen(const char *s);

Determines the length of string s. The number of characters preceding
the terminating null character is returned.

125

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.19

Forgetting to include the <cstring> header file
when using functions from the string-handling
library causes compilation errors.

126

© 2006 Pearson Education, Inc. All rights reserved.

8.13.2 String Manipulation Functions of
the String-Handling Library (Cont.)

• Copying strings
– char *strcpy(char *s1, const char *s2)

• Copies second argument into first argument
– First argument must be large enough to store string and

terminating null character
– char *strncpy(char *s1, const char *s2,

size_t n)

• Specifies number of characters to be copied from second
argument into first argument

– Does not necessarily copy terminating null character

127

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.20

When using strncpy, the terminating null
character of the second argument (a char *
string) will not be copied if the number of
characters specified by strncpy’s third
argument is not greater than the second
argument’s length. In that case, a fatal error
may occur if the programmer does not
manually terminate the resulting char *
string with a null character.

128

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_31.cpp

(1 of 2)

 1 // Fig. 8.31: fig08_31.cpp

 2 // Using strcpy and strncpy.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstring> // prototypes for strcpy and strncpy

 8 using std::strcpy;

 9 using std::strncpy;

10
11 int main()
12 {
13 char x[] = "Happy Birthday to You"; // string length 21
14 char y[25];
15 char z[15];
16
17 strcpy(y, x); // copy contents of x into y
18
19 cout << "The string in array x is: " << x
20 << "\nThe string in array y is: " << y << '\n';

<cstring> contains prototypes
for strcpy and strncpy

Copy entire string in array x into array y

129

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_31.cpp

(2 of 2)

21
22 // copy first 14 characters of x into z
23 strncpy(z, x, 14); // does not copy null character
24 z[14] = '\0'; // append '\0' to z's contents
25
26 cout << "The string in array z is: " << z << endl;
27 return 0; // indicates successful termination
28 } // end main

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

Copy first 14 characters of array x
into array y. Note that this does not
write terminating null character

Append terminating null character

String to copy

Copied string using strcpy

Copied first 14 characters
using strncpy

130

© 2006 Pearson Education, Inc. All rights reserved.

8.13.2 String Manipulation Functions of
the String-Handling Library (Cont.)

• Concatenating strings
– char *strcat(char *s1, const char *s2)

• Appends second argument to first argument
– First character of second argument replaces null

character terminating first argument
– You must ensure first argument large enough to store

concatenated result and null character
– char *strncat(char *s1, const char *s2,

size_t n)

• Appends specified number of characters from second
argument to first argument

– Appends terminating null character to result

131

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_32.cpp

(1 of 2)

 1 // Fig. 8.32: fig08_32.cpp

 2 // Using strcat and strncat.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstring> // prototypes for strcat and strncat

 8 using std::strcat;

 9 using std::strncat;

10
11 int main()
12 {
13 char s1[20] = "Happy "; // length 6
14 char s2[] = "New Year "; // length 9
15 char s3[40] = "";
16
17 cout << "s1 = " << s1 << "\ns2 = " << s2;
18
19 strcat(s1, s2); // concatenate s2 to s1 (length 15)
20
21 cout << "\n\nAfter strcat(s1, s2):\ns1 = " << s1 << "\ns2 = " << s2;
22
23 // concatenate first 6 characters of s1 to s3
24 strncat(s3, s1, 6); // places '\0' after last character
25
26 cout << "\n\nAfter strncat(s3, s1, 6):\ns1 = " << s1
27 << "\ns3 = " << s3;

<cstring> contains prototypes
for strcat and strncat

Append s2 to s1

Append first 6 characters of s1 to s3

132

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_32.cpp

(2 of 2)

28
29 strcat(s3, s1); // concatenate s1 to s3
30 cout << "\n\nAfter strcat(s3, s1):\ns1 = " << s1
31 << "\ns3 = " << s3 << endl;
32 return 0; // indicates successful termination
33 } // end main

s1 = Happy
s2 = New Year

After strcat(s1, s2):
s1 = Happy New Year
s2 = New Year

After strncat(s3, s1, 6):
s1 = Happy New Year
s3 = Happy

After strcat(s3, s1):
s1 = Happy New Year
s3 = Happy Happy New Year

Append s1 to s3

133

© 2006 Pearson Education, Inc. All rights reserved.

8.13.2 String Manipulation Functions of
the String-Handling Library (Cont.)

• Comparing strings
– int strcmp(const char *s1, const char
*s2)

• Compares character by character
• Returns

– Zero if strings are equal
– Negative value if first string is less than second string
– Positive value if first string is greater than second string

– int strncmp(const char *s1,
const char *s2, size_t n)

• Compares up to specified number of characters
– Stops if it reaches null character in one of arguments

134

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.21

Assuming that strcmp and strncmp return
one (a true value) when their arguments are
equal is a logic error. Both functions return zero
(C++'s false value) for equality. Therefore, when
testing two strings for equality, the result of the
strcmp or strncmp function should be
compared with zero to determine whether the
strings are equal.

135

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_33.cpp

(1 of 2)

 1 // Fig. 8.33: fig08_33.cpp

 2 // Using strcmp and strncmp.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <iomanip>

 8 using std::setw;

 9
10 #include <cstring> // prototypes for strcmp and strncmp
11 using std::strcmp;
12 using std::strncmp;
13
14 int main()
15 {
16 char *s1 = "Happy New Year";
17 char *s2 = "Happy New Year";
18 char *s3 = "Happy Holidays";
19
20 cout << "s1 = " << s1 << "\ns2 = " << s2 << "\ns3 = " << s3
21 << "\n\nstrcmp(s1, s2) = " << setw(2) << strcmp(s1, s2)
22 << "\nstrcmp(s1, s3) = " << setw(2) << strcmp(s1, s3)
23 << "\nstrcmp(s3, s1) = " << setw(2) << strcmp(s3, s1);
24
25 cout << "\n\nstrncmp(s1, s3, 6) = " << setw(2)
26 << strncmp(s1, s3, 6) << "\nstrncmp(s1, s3, 7) = " << setw(2)
27 << strncmp(s1, s3, 7) << "\nstrncmp(s3, s1, 7) = " << setw(2)
28 << strncmp(s3, s1, 7) << endl;
29 return 0; // indicates successful termination
30 } // end main

<cstring> contains prototypes
for strcmp and strncmp

Compare s1 and s2

Compare s1 and s3

Compare s3 and s1

Compare up to 6 characters of s1 and s3

Compare up to 7 characters of s1 and s3

Compare up to 7 characters of s3 and s1

136

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_33.cpp

(2 of 2)

s1 = Happy New Year

s2 = Happy New Year

s3 = Happy Holidays

strcmp(s1, s2) = 0

strcmp(s1, s3) = 1

strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0

strncmp(s1, s3, 7) = 1

strncmp(s3, s1, 7) = -1

137

© 2006 Pearson Education, Inc. All rights reserved.

8.13.2 String Manipulation Functions of
the String-Handling Library (Cont.)

• Comparing strings (Cont.)
– Characters represented as numeric codes

• Strings compared using numeric codes
– Character codes / character sets

• ASCII
– “American Standard Code for Information Interchage”

• EBCDIC
– “Extended Binary Coded Decimal Interchange Code”

• Unicode

138

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 8.5

The internal numeric codes used to represent
characters may be different on different
computers, because these computers may use
different character sets.

139

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 8.6

Do not explicitly test for ASCII codes, as
in if (rating == 65); rather, use
the corresponding character constant, as
in if (rating == 'A').

140

© 2006 Pearson Education, Inc. All rights reserved.

8.13.2 String Manipulation Functions of
the String-Handling Library (Cont.)

• Tokenizing
– Breaking strings into tokens

• Tokens usually logical units, such as words (separated
by spaces)

• Separated by delimiting characters
– Example

• "This is my string" has 4 word tokens (separated
by spaces)

141

© 2006 Pearson Education, Inc. All rights reserved.

8.13.2 String Manipulation Functions of
the String-Handling Library (Cont.)

• Tokenizing (Cont.)
– char *strtok(char *s1, const char *s2)

• Multiple calls required
– First call contains two arguments, string to be tokenized

and string containing delimiting characters
• Finds next delimiting character and replaces with

null character
– Subsequent calls continue tokenizing

• Call with first argument NULL
• Stores pointer to remaining string in a static

variable
• Returns pointer to current token

142

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_34.cpp

(1 of 2)

 1 // Fig. 8.34: fig08_34.cpp

 2 // Using strtok.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstring> // prototype for strtok

 8 using std::strtok;

 9
10 int main()
11 {
12 char sentence[] = "This is a sentence with 7 tokens";
13 char *tokenPtr;
14
15 cout << "The string to be tokenized is:\n" << sentence
16 << "\n\nThe tokens are:\n\n";
17
18 // begin tokenization of sentence
19 tokenPtr = strtok(sentence, " ");
20
21 // continue tokenizing sentence until tokenPtr becomes NULL
22 while (tokenPtr != NULL)
23 {
24 cout << tokenPtr << '\n';
25 tokenPtr = strtok(NULL, " "); // get next token
26 } // end while
27
28 cout << "\nAfter strtok, sentence = " << sentence << endl;
29 return 0; // indicates successful termination
30 } // end main

<cstring> contains
prototype for strtok

First call to strtok
begins tokenization

Subsequent calls to strtok with NULL
as first argument to indicate continuation

143

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_34.cpp

(2 of 2)

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:

This
is
a
sentence
with
7
tokens

After strtok, sentence = This

144

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 8.22

Not realizing that strtok modifies the string
being tokenized and then attempting to use that
string as if it were the original unmodified string
is a logic error.

145

© 2006 Pearson Education, Inc. All rights reserved.

8.13.2 String Manipulation Functions of
the String-Handling Library (Cont.)

• Determining string lengths
– size_t strlen(const char *s)

• Returns number of characters in string
– Terminating null character is not included in length
– This length is also the index of the terminating null

character

146

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig08_35.cpp

(1 of 1)

 1 // Fig. 8.35: fig08_35.cpp

 2 // Using strlen.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstring> // prototype for strlen

 8 using std::strlen;

 9
10 int main()
11 {
12 char *string1 = "abcdefghijklmnopqrstuvwxyz";
13 char *string2 = "four";
14 char *string3 = "Boston";
15
16 cout << "The length of \"" << string1 << "\" is " << strlen(string1)
17 << "\nThe length of \"" << string2 << "\" is " << strlen(string2)
18 << "\nThe length of \"" << string3 << "\" is " << strlen(string3)
19 << endl;
20 return 0; // indicates successful termination
21 } // end main

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

<cstring> contains
prototype for strlen

Using strlen to
determine length
of strings

	8
	슬라이드 번호 2
	OBJECTIVES
	슬라이드 번호 4
	8.1 Introduction
	8.2	Pointer Variable Declarations and Initialization
	8.2	Pointer Variable Declarations and Initialization (Cont.)
	Common Programming Error 8.1
	Good Programming Practice 8.1
	Fig. 8.1 | Directly and indirectly referencing a variable.
	Error-Prevention Tip 8.1
	8.3	Pointer Operators	
	Fig. 8.2 | Graphical representation of a pointer pointing to a variable in memory.
	8.3	Pointer Operators (Cont.)
	Fig. 8.3 | Representation of y and yPtr in memory.
	Common Programming Error 8.2
	Common Programming Error 8.3
	Common Programming Error 8.4
	Portability Tip 8.1
	Outline
	Outline
	Fig. 8.5 | Operator precedence and associativity.
	8.4 Passing Arguments to Functions by Reference with Pointers
	8.4 Passing Arguments to Functions by Reference with Pointers (Cont.)
	Outline
	Common Programming Error 8.5
	Outline
	Software Engineering Observation 8.1
	Fig. 8.8 | Pass-by-value analysis of the program of Fig. 8.6.
	Fig. 8.9 | Pass-by-reference analysis (with a pointer argument) of the program of Fig. 8.7.
	8.5 Using const with Pointers
	Portability Tip 8.2
	Software Engineering Observation 8.2
	Error-Prevention Tip 8.2
	8.5 Using const with Pointers (Cont.)
	Outline
	Outline
	8.5 Using const with Pointers (Cont.)
	Outline
	Outline
	Outline
	Performance Tip 8.1
	Software Engineering Observation 8.3
	8.5 Using const with Pointers (Cont.)
	Outline
	Common Programming Error 8.6
	8.5 Using const with Pointers (Cont.)
	Outline
	Outline
	8.6 Selection Sort Using Pass-by-Reference
	Outline
	Outline
	Outline
	Software Engineering Observation 8.4
	8.7 sizeof Operators
	Common Programming Error 8.7
	Outline
	8.7 sizeof Operators (Cont.)
	Outline
	Outline
	Portability Tip 8.3
	Common Programming Error 8.8
	Performance Tip 8.2
	Error-Prevention Tip 8.3
	8.8 Pointer Expressions and Pointer Arithmetic
	8.8 Pointer Expressions and Pointer Arithmetic (Cont.)
	Portability Tip 8.4
	Fig. 8.18 | Array v and a pointer variable vPtr that points to v.
	Fig. 8.19 | Pointer vPtr after pointer arithmetic.
	Common Programming Error 8.9
	Common Programming Error 8.10
	Common Programming Error 8.11
	8.8 Pointer Expressions and Pointer Arithmetic (Cont.)
	Software Engineering Observation 8.5
	Common Programming Error 8.12
	Common Programming Error 8.13
	8.8 Pointer Expressions and Pointer Arithmetic (Cont.)
	8.9 Relationship Between Pointers and Arrays
	8.9 Relationship Between Pointers and Arrays (Cont.)
	Common Programming Error 8.14
	Good Programming Practice 8.2
	Outline
	Outline
	Outline
	Outline
	Outline
	8.10 Arrays of Pointers
	Fig. 8.22 | Graphical representation of the suit array.
	8.11 Case Study: Card Shuffling and Dealing Simulation
	Fig. 8.23 | Two-dimensional array representation of a deck of cards.
	Performance Tip 8.3
	8.11 Case Study: Card Shuffling and Dealing Simulation (Cont.)
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	8.12 Function Pointers
	8.12 Function Pointers (Cont.)
	Outline
	Outline
	Outline
	Outline
	8.12 Function Pointers (Cont.)
	Outline
	Outline
	Outline
	8.13 Introduction to Pointer-Based String Processing
	8.13.1 Fundamentals of Characters and Pointer-Based Strings
	8.13.1 Fundamentals of Characters and Pointer-Based Strings (Cont.)
	8.13.1 Fundamentals of Characters and Pointer-Based Strings (Cont.)
	Common Programming Error 8.15
	Common Programming Error 8.16
	Error-Prevention Tip 8.4
	8.13.1 Fundamentals of Characters and Pointer-Based Strings (Cont.)
	8.13.1 Fundamentals of Characters and Pointer-Based Strings (Cont.)
	Common Programming Error 8.17
	Common Programming Error 8.18
	8.13.2 String Manipulation Functions of the String-Handling Library
	Fig. 8.30 | String-manipulation functions of the string-handling library. (Part 1 of 2)
	Fig. 8.30 | String-manipulation functions of the string-handling library. (Part 2 of 2)
	Common Programming Error 8.19
	8.13.2 String Manipulation Functions of the String-Handling Library (Cont.)
	Common Programming Error 8.20
	Outline
	Outline
	8.13.2 String Manipulation Functions of the String-Handling Library (Cont.)
	Outline
	Outline
	8.13.2 String Manipulation Functions of the String-Handling Library (Cont.)
	Common Programming Error 8.21
	Outline
	Outline
	8.13.2 String Manipulation Functions of the String-Handling Library (Cont.)
	Portability Tip 8.5
	Portability Tip 8.6
	8.13.2 String Manipulation Functions of the String-Handling Library (Cont.)
	8.13.2 String Manipulation Functions of the String-Handling Library (Cont.)
	Outline
	Outline
	Common Programming Error 8.22
	8.13.2 String Manipulation Functions of the String-Handling Library (Cont.)
	Outline

