
1

© 2006 Pearson Education, Inc. All rights reserved.

99
Classes:

A Deeper Look,
Part 1

2

© 2006 Pearson Education, Inc. All rights reserved.

My object all sublime I shall achieve in time.
— W. S. Gilbert

Is it a world to hide virtues in?
— William Shakespeare

Don’t be “consistent,” but be simply true.
— Oliver Wendell Holmes, Jr.

This above all: to thine own self be true.
— William Shakespeare

3

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:

How to use a preprocessor wrapper to prevent multiple definition
errors caused by including more than one copy of a header file in a
source-code file.
To understand class scope and accessing class members via the
name of an object, a reference to an object or a pointer to an
object.
To define constructors with default arguments.
How destructors are used to perform "termination housekeeping"
on an object before it is destroyed.
When constructors and destructors are called and the order in
which they are called.
The logic errors that may occur when a public member function
of a class returns a reference to private data.
To assign the data members of one object to those of another
object by default memberwise assignment.

4

© 2006 Pearson Education, Inc. All rights reserved.

9.1 Introduction
9.2 Time Class Case Study
9.3 Class Scope and Accessing Class Members
9.4 Separating Interface from Implementation
9.5 Access Functions and Utility Functions
9.6 Time Class Case Study: Constructors with Default

Arguments
9.7 Destructors
9.8 When Constructors and Destructors Are Called
9.9 Time Class Case Study: A Subtle Trap—Returning a

Reference to a private Data Member
9.10 Default Memberwise Assignment
9.11 Software Reusability
9.12 (Optional) Software Engineering Case Study: Starting to

Program the Classes of the ATM System
9.13 Wrap-Up

5

© 2006 Pearson Education, Inc. All rights reserved.

9.1 Introduction

• Integrated Time class case study
• Preprocessor wrapper
• Three types of “handles” on an object

– Name of an object
– Reference to an object
– Pointer to an object

• Class functions
– Predicate functions
– Utility functions

6

© 2006 Pearson Education, Inc. All rights reserved.

9.1 Introduction (Cont.)

• Passing arguments to constructors
• Using default arguments in a constructor
• Destructor

– Performs “termination housekeeping”

7

© 2006 Pearson Education, Inc. All rights reserved.

9.2 Time Class Case Study

• Preprocessor wrappers
– Prevents code from being included more than once

• #ifndef – “if not defined”
– Skip this code if it has been included already

• #define

– Define a name so this code will not be included again
• #endif

– If the header has been included previously
• Name is defined already and the header file is not included again

– Prevents multiple-definition errors
– Example

• #ifndef TIME_H
#define TIME_H
… // code
#endif

8

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.h

(1 of 1)

 1 // Fig. 9.1: Time.h

 2 // Declaration of class Time.

 3 // Member functions are defined in Time.cpp

 4
 5 // prevent multiple inclusions of header file

 6 #ifndef TIME_H

 7 #define TIME_H

 8
 9 // Time class definition

10 class Time
11 {
12 public:
13 Time(); // constructor
14 void setTime(int, int, int); // set hour, minute and second
15 void printUniversal(); // print time in universal-time format
16 void printStandard(); // print time in standard-time format
17 private:
18 int hour; // 0 - 23 (24-hour clock format)
19 int minute; // 0 - 59
20 int second; // 0 - 59
21 }; // end class Time
22
23 #endif

Preprocessor directive #ifndef determines whether a name is defined

Preprocessor directive #define defines a name (e.g., TIME_H)

Preprocessor directive #endif marks the end of the
code that should not be included multiple times

9

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 9.1

For clarity and readability, use each access
specifier only once in a class definition. Place
public members first, where they are easy to
locate.

10

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.1

Each element of a class should have private
visibility unless it can be proven that the element
needs public visibility. This is another example
of the principle of least privilege.

11

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 9.1

Use #ifndef, #define and #endif
preprocessor directives to form a preprocessor
wrapper that prevents header files from being
included more than once in a program.

12

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 9.2

Use the name of the header file in upper case with
the period replaced by an underscore in the
#ifndef and #define preprocessor directives
of a header file.

13

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(1 of 2)

 1 // Fig. 9.2: Time.cpp

 2 // Member-function definitions for class Time.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9
10 #include "Time.h" // include definition of class Time from Time.h
11
12 // Time constructor initializes each data member to zero.
13 // Ensures all Time objects start in a consistent state.
14 Time::Time()
15 {
16 hour = minute = second = 0;
17 } // end Time constructor
18
19 // set new Time value using universal time; ensure that
20 // the data remains consistent by setting invalid values to zero
21 void Time::setTime(int h, int m, int s)
22 {
23 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
24 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
25 second = (s >= 0 && s < 60) ? s : 0; // validate second
26 } // end function setTime

Ensure that hour, minute and
second values remain valid

14

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(2 of 2)

27
28 // print Time in universal-time format (HH:MM:SS)
29 void Time::printUniversal()
30 {
31 cout << setfill('0') << setw(2) << hour << ":"
32 << setw(2) << minute << ":" << setw(2) << second;
33 } // end function printUniversal
34
35 // print Time in standard-time format (HH:MM:SS AM or PM)
36 void Time::printStandard()
37 {
38 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12) << ":"
39 << setfill('0') << setw(2) << minute << ":" << setw(2)
40 << second << (hour < 12 ? " AM" : " PM");
41 } // end function printStandard

Using setfill stream manipulator to specify a fill character

15

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_03.cpp

(1 of 2)

 1 // Fig. 9.3: fig09_03.cpp
 2 // Program to test class Time.
 3 // NOTE: This file must be compiled with Time.cpp.
 4 #include <iostream>
 5 using std::cout;
 6 using std::endl;
 7
 8 #include "Time.h" // include definition of class Time from Time.h
 9
10 int main()
11 {
12 Time t; // instantiate object t of class Time
13
14 // output Time object t's initial values
15 cout << "The initial universal time is ";
16 t.printUniversal(); // 00:00:00
17 cout << "\nThe initial standard time is ";
18 t.printStandard(); // 12:00:00 AM
19
20 t.setTime(13, 27, 6); // change time
21
22 // output Time object t's new values
23 cout << "\n\nUniversal time after setTime is ";
24 t.printUniversal(); // 13:27:06
25 cout << "\nStandard time after setTime is ";
26 t.printStandard(); // 1:27:06 PM
27
28 t.setTime(99, 99, 99); // attempt invalid settings

16

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_03.cpp

(2 of 2)

29
30 // output t's values after specifying invalid values
31 cout << "\n\nAfter attempting invalid settings:"
32 << "\nUniversal time: ";
33 t.printUniversal(); // 00:00:00
34 cout << "\nStandard time: ";
35 t.printStandard(); // 12:00:00 AM
36 cout << endl;
37 return 0;
38 } // end main

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

After attempting invalid settings:

Universal time: 00:00:00

Standard time: 12:00:00 AM

17

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 9.1

Attempting to initialize a non-static data
member of a class explicitly in the class definition
is a syntax error.

18

© 2006 Pearson Education, Inc. All rights reserved.

9.2 Time Class Case Study (Cont.)

• Parameterized stream manipulator setfill
– Specifies the fill character

• Which is displayed when an output field wider than the
number of digits in the output value

• By default, fill characters appear to the left of the digits in the
number

– setfill is a “sticky” setting
• Applies for all subsequent values that are displayed in fields

wider than the value being displayed

19

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 9.2

Each sticky setting (such as a fill character or
floating-point precision) should be restored to its
previous setting when it is no longer needed.
Failure to do so may result in incorrectly
formatted output later in a program. Chapter 15,
Stream Input/Output, discusses how to reset the
fill character and precision.

20

© 2006 Pearson Education, Inc. All rights reserved.

9.2 Time Class Case Study (Cont.)

• Member function declared in a class definition
but defined outside that class definition

– Still within the class’s scope
– Known only to other members of the class unless referred

to via
• Object of the class
• Reference to an object of the class
• Pointer to an object of the class
• Binary scope resolution operator

• Member function defined in the body of a class
definition

– C++ compiler attempts to inline calls to the member
function

21

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 9.1

Defining a member function inside the class
definition inlines the member function (if the
compiler chooses to do so). This can improve
performance.

22

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.2

Defining a small member function inside the
class definition does not promote the best
software engineering, because clients of the
class will be able to see the implementation of
the function, and the client code must be
recompiled if the function definition changes.

23

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.3

Only the simplest and most stable member
functions (i.e., whose implementations are
unlikely to change) should be defined in the
class header.

24

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.4

Using an object-oriented programming approach
can often simplify function calls by reducing the
number of parameters to be passed. This benefit
of object-oriented programming derives from the
fact that encapsulating data members and
member functions within an object gives the
member functions the right to access the data
members.

25

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.5

Member functions are usually shorter than functions
in non-object-oriented programs, because the data
stored in data members have ideally been validated by
a constructor or by member functions that store new
data. Because the data is already in the object, the
member-function calls often have no arguments or at
least have fewer arguments than typical function calls
in non-object-oriented languages. Thus, the calls are
shorter, the function definitions are shorter and the
function prototypes are shorter. This facilitates many
aspects of program development.

26

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 9.3

The fact that member function calls generally
take either no arguments or substantially fewer
arguments than conventional function calls in
non-object-oriented languages reduces the
likelihood of passing the wrong arguments, the
wrong types of arguments or the wrong number
of arguments.

27

© 2006 Pearson Education, Inc. All rights reserved.

9.2 Time Class Case Study (Cont.)

• Using class Time
– Once class Time has been defined, it can be used in

declarations
• Time sunset;

• Time arrayOfTimes[5];

• Time &dinnerTime = sunset;

• Time *timePtr = &dinnerTime;

28

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 9.2

Objects contain only data, so objects are much smaller
than if they also contained member functions. Applying
operator sizeof to a class name or to an object of that
class will report only the size of the class’s data members.
The compiler creates one copy (only) of the member
functions separate from all objects of the class. All objects
of the class share this one copy. Each object, of course,
needs its own copy of the class’s data, because the data
can vary among the objects. The function code is
nonmodifiable (also called reentrant code or pure
procedure) and, hence, can be shared among all objects of
one class.

29

© 2006 Pearson Education, Inc. All rights reserved.

9.3 Class Scope and Accessing Class
Members

• Class scope contains
– Data members

• Variables declared in the class definition
– Member functions

• Functions declared in the class definition

• Nonmember functions are defined at file scope

30

© 2006 Pearson Education, Inc. All rights reserved.

9.3 Class Scope and Accessing Class
Members (Cont.)

• Within a class’s scope
– Class members are accessible by all member functions

• Outside a class’s scope
– public class members are referenced through a handle

• An object name
• A reference to an object
• A pointer to an object

31

© 2006 Pearson Education, Inc. All rights reserved.

9.3 Class Scope and Accessing Class
Members (Cont.)

• Variables declared in a member function
– Have block scope
– Known only to that function

• Hiding a class-scope variable
– In a member function, define a variable with the same

name as a variable with class scope
– Such a hidden variable can be accessed by preceding the

name with the class name followed by the scope resolution
operator (::)

32

© 2006 Pearson Education, Inc. All rights reserved.

9.3 Class Scope and Accessing Class
Members (Cont.)

• Dot member selection operator (.)
– Accesses the object’s members
– Used with an object’s name or with a reference to an object

• Arrow member selection operator (->)
– Accesses the object’s members
– Used with a pointer to an object

33

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_04.cpp

(1 of 2)

 1 // Fig. 9.4: fig09_04.cpp

 2 // Demonstrating the class member access operators . and ->

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 // class Count definition

 8 class Count

 9 {

10 public: // public data is dangerous
11 // sets the value of private data member x
12 void setX(int value)
13 {
14 x = value;
15 } // end function setX
16
17 // prints the value of private data member x
18 void print()
19 {
20 cout << x << endl;
21 } // end function print
22
23 private:
24 int x;
25 }; // end class Count

34

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_04.cpp

(2 of 2)

26
27 int main()
28 {
29 Count counter; // create counter object
30 Count *counterPtr = &counter; // create pointer to counter
31 Count &counterRef = counter; // create reference to counter
32
33 cout << "Set x to 1 and print using the object's name: ";
34 counter.setX(1); // set data member x to 1
35 counter.print(); // call member function print
36
37 cout << "Set x to 2 and print using a reference to an object: ";
38 counterRef.setX(2); // set data member x to 2
39 counterRef.print(); // call member function print
40
41 cout << "Set x to 3 and print using a pointer to an object: ";
42 counterPtr->setX(3); // set data member x to 3
43 counterPtr->print(); // call member function print
44 return 0;
45 } // end main

Set x to 1 and print using the object's name: 1

Set x to 2 and print using a reference to an object: 2

Set x to 3 and print using a pointer to an object: 3

Using the dot member selection operator with an object

Using the dot member selection operator with a reference

Using the arrow member selection operator with a pointer

35

© 2006 Pearson Education, Inc. All rights reserved.

9.4 Separating Interface from
Implementation

• Separating a class definition and the class’s
member-function definitions

– Makes it easier to modify programs
• Changes in the class’s implementation do not affect the client

as long as the class’s interface remains unchanged
– Things are not quite this rosy

• Header files do contain some portions of the
implementation and hint about others

– Inline functions need to be defined in header file
– private members are listed in the class definition in

the header file

36

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.6

Clients of a class do not need access to the class’s
source code in order to use the class. The clients do,
however, need to be able to link to the class’s object
code (i.e., the compiled version of the class). This
encourages independent software vendors (ISVs) to
provide class libraries for sale or license. The ISVs
provide in their products only the header files and the
object modules. No proprietary information is
revealed—as would be the case if source code were
provided. The C++ user community benefits by
having more ISV-produced class libraries available.

37

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.7

Information important to the interface to a class
should be included in the header file. Information
that will be used only internally in the class and
will not be needed by clients of the class should be
included in the unpublished source file. This is yet
another example of the principle of least privilege.

38

© 2006 Pearson Education, Inc. All rights reserved.

9.5 Access Functions and Utility
Functions

• Access functions
– Can read or display data
– Can test the truth or falsity of conditions

• Such functions are often called predicate functions
• For example, isEmpty function for a class capable of

holding many objects

• Utility functions (also called helper functions)
– private member functions that support the operation of

the class’s public member functions
– Not part of a class’s public interface

• Not intended to be used by clients of a class

39

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

SalesPerson.h

(1 of 1)

 1 // Fig. 9.5: SalesPerson.h

 2 // SalesPerson class definition.

 3 // Member functions defined in SalesPerson.cpp.

 4 #ifndef SALESP_H

 5 #define SALESP_H

 6
 7 class SalesPerson

 8 {

 9 public:

10 SalesPerson(); // constructor
11 void getSalesFromUser(); // input sales from keyboard
12 void setSales(int, double); // set sales for a specific month
13 void printAnnualSales(); // summarize and print sales
14 private:
15 double totalAnnualSales(); // prototype for utility function
16 double sales[12]; // 12 monthly sales figures
17 }; // end class SalesPerson
18
19 #endif

Prototype for a private utility function

40

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

SalesPerson.cpp

(1 of 3)

 1 // Fig. 9.6: SalesPerson.cpp

 2 // Member functions for class SalesPerson.

 3 #include <iostream>

 4 using std::cout;

 5 using std::cin;

 6 using std::endl;

 7 using std::fixed;

 8
 9 #include <iomanip>

10 using std::setprecision;
11
12 #include "SalesPerson.h" // include SalesPerson class definition
13
14 // initialize elements of array sales to 0.0
15 SalesPerson::SalesPerson()
16 {
17 for (int i = 0; i < 12; i++)
18 sales[i] = 0.0;
19 } // end SalesPerson constructor

41

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

SalesPerson.cpp

(2 of 3)

20
21 // get 12 sales figures from the user at the keyboard
22 void SalesPerson::getSalesFromUser()
23 {
24 double salesFigure;
25
26 for (int i = 1; i <= 12; i++)
27 {
28 cout << "Enter sales amount for month " << i << ": ";
29 cin >> salesFigure;
30 setSales(i, salesFigure);
31 } // end for
32 } // end function getSalesFromUser
33
34 // set one of the 12 monthly sales figures; function subtracts
35 // one from month value for proper subscript in sales array
36 void SalesPerson::setSales(int month, double amount)
37 {
38 // test for valid month and amount values
39 if (month >= 1 && month <= 12 && amount > 0)
40 sales[month - 1] = amount; // adjust for subscripts 0-11
41 else // invalid month or amount value
42 cout << "Invalid month or sales figure" << endl;
43 } // end function setSales

42

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

SalesPerson.cpp

(3 of 3)

44
45 // print total annual sales (with the help of utility function)
46 void SalesPerson::printAnnualSales()
47 {
48 cout << setprecision(2) << fixed
49 << "\nThe total annual sales are: $"
50 << totalAnnualSales() << endl; // call utility function
51 } // end function printAnnualSales
52
53 // private utility function to total annual sales
54 double SalesPerson::totalAnnualSales()
55 {
56 double total = 0.0; // initialize total
57
58 for (int i = 0; i < 12; i++) // summarize sales results
59 total += sales[i]; // add month i sales to total
60
61 return total;
62 } // end function totalAnnualSales

Calling a private utility function

Definition of a private utility function

43

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_07.cpp

(1 of 1)

 1 // Fig. 9.7: fig09_07.cpp

 2 // Demonstrating a utility function.

 3 // Compile this program with SalesPerson.cpp

 4
 5 // include SalesPerson class definition from SalesPerson.h

 6 #include "SalesPerson.h"

 7
 8 int main()

 9 {

10 SalesPerson s; // create SalesPerson object s
11
12 s.getSalesFromUser(); // note simple sequential code;
13 s.printAnnualSales(); // no control statements in main
14 return 0;
15 } // end main

Enter sales amount for month 1: 5314.76
Enter sales amount for month 2: 4292.38
Enter sales amount for month 3: 4589.83
Enter sales amount for month 4: 5534.03
Enter sales amount for month 5: 4376.34
Enter sales amount for month 6: 5698.45
Enter sales amount for month 7: 4439.22
Enter sales amount for month 8: 5893.57
Enter sales amount for month 9: 4909.67
Enter sales amount for month 10: 5123.45
Enter sales amount for month 11: 4024.97
Enter sales amount for month 12: 5923.92

The total annual sales are: $60120.59

44

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.8

A phenomenon of object-oriented programming
is that once a class is defined, creating and
manipulating objects of that class often involve
issuing only a simple sequence of member-
function calls—few, if any, control statements
are needed. By contrast, it is common to have
control statements in the implementation of a
class’s member functions.

45

© 2006 Pearson Education, Inc. All rights reserved.

9.6 Time Class Case Study: Constructors
with Default Arguments

• Constructors can specify default arguments
– Can initialize data members to a consistent state

• Even if no values are provided in a constructor call
– Constructor that defaults all its arguments is also a

default constructor
• Can be invoked with no arguments
• Maximum of one default constructor per class

46

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.h

(1 of 2)

 1 // Fig. 9.8: Time.h

 2 // Declaration of class Time.

 3 // Member functions defined in Time.cpp.

 4
 5 // prevent multiple inclusions of header file

 6 #ifndef TIME_H

 7 #define TIME_H

 8
 9 // Time abstract data type definition

10 class Time
11 {
12 public:
13 Time(int = 0, int = 0, int = 0); // default constructor
14
15 // set functions
16 void setTime(int, int, int); // set hour, minute, second
17 void setHour(int); // set hour (after validation)
18 void setMinute(int); // set minute (after validation)
19 void setSecond(int); // set second (after validation)

Prototype of a constructor with default arguments

47

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.h

(2 of 2)

20
21 // get functions
22 int getHour(); // return hour
23 int getMinute(); // return minute
24 int getSecond(); // return second
25
26 void printUniversal(); // output time in universal-time format
27 void printStandard(); // output time in standard-time format
28 private:
29 int hour; // 0 - 23 (24-hour clock format)
30 int minute; // 0 - 59
31 int second; // 0 - 59
32 }; // end class Time
33
34 #endif

48

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(1 of 3)

 1 // Fig. 9.9: Time.cpp

 2 // Member-function definitions for class Time.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9
10 #include "Time.h" // include definition of class Time from Time.h
11
12 // Time constructor initializes each data member to zero;
13 // ensures that Time objects start in a consistent state
14 Time::Time(int hr, int min, int sec)
15 {
16 setTime(hr, min, sec); // validate and set time
17 } // end Time constructor
18
19 // set new Time value using universal time; ensure that
20 // the data remains consistent by setting invalid values to zero
21 void Time::setTime(int h, int m, int s)
22 {
23 setHour(h); // set private field hour
24 setMinute(m); // set private field minute
25 setSecond(s); // set private field second
26 } // end function setTime

Parameters could receive the default values

49

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(2 of 3)

27
28 // set hour value
29 void Time::setHour(int h)
30 {
31 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
32 } // end function setHour
33
34 // set minute value
35 void Time::setMinute(int m)
36 {
37 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
38 } // end function setMinute
39
40 // set second value
41 void Time::setSecond(int s)
42 {
43 second = (s >= 0 && s < 60) ? s : 0; // validate second
44 } // end function setSecond
45
46 // return hour value
47 int Time::getHour()
48 {
49 return hour;
50 } // end function getHour
51
52 // return minute value
53 int Time::getMinute()
54 {
55 return minute;
56 } // end function getMinute

50

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(3 of 3)

57
58 // return second value
59 int Time::getSecond()
60 {
61 return second;
62 } // end function getSecond
63
64 // print Time in universal-time format (HH:MM:SS)
65 void Time::printUniversal()
66 {
67 cout << setfill('0') << setw(2) << getHour() << ":"
68 << setw(2) << getMinute() << ":" << setw(2) << getSecond();
69 } // end function printUniversal
70
71 // print Time in standard-time format (HH:MM:SS AM or PM)
72 void Time::printStandard()
73 {
74 cout << ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12)
75 << ":" << setfill('0') << setw(2) << getMinute()
76 << ":" << setw(2) << getSecond() << (hour < 12 ? " AM" : " PM");
77 } // end function printStandard

51

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.9

If a member function of a class already provides
all or part of the functionality required by a
constructor (or other member function) of the
class, call that member function from the
constructor (or other member function). This
simplifies the maintenance of the code and
reduces the likelihood of an error if the
implementation of the code is modified. As a
general rule: Avoid repeating code.

52

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.10

Any change to the default argument values
of a function requires the client code to be
recompiled (to ensure that the program still
functions correctly).

53

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_10.cpp

(1 of 3)

 1 // Fig. 9.10: fig09_10.cpp

 2 // Demonstrating a default constructor for class Time.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Time.h" // include definition of class Time from Time.h

 8
 9 int main()

10 {
11 Time t1; // all arguments defaulted
12 Time t2(2); // hour specified; minute and second defaulted
13 Time t3(21, 34); // hour and minute specified; second defaulted
14 Time t4(12, 25, 42); // hour, minute and second specified
15 Time t5(27, 74, 99); // all bad values specified
16
17 cout << "Constructed with:\n\nt1: all arguments defaulted\n ";
18 t1.printUniversal(); // 00:00:00
19 cout << "\n ";
20 t1.printStandard(); // 12:00:00 AM
21
22 cout << "\n\nt2: hour specified; minute and second defaulted\n ";
23 t2.printUniversal(); // 02:00:00
24 cout << "\n ";
25 t2.printStandard(); // 2:00:00 AM

Initializing Time objects
using 0, 1, 2 and 3 arguments

54

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_10.cpp

(2 of 3)

26
27 cout << "\n\nt3: hour and minute specified; second defaulted\n ";
28 t3.printUniversal(); // 21:34:00
29 cout << "\n ";
30 t3.printStandard(); // 9:34:00 PM
31
32 cout << "\n\nt4: hour, minute and second specified\n ";
33 t4.printUniversal(); // 12:25:42
34 cout << "\n ";
35 t4.printStandard(); // 12:25:42 PM
36
37 cout << "\n\nt5: all invalid values specified\n ";
38 t5.printUniversal(); // 00:00:00
39 cout << "\n ";
40 t5.printStandard(); // 12:00:00 AM
41 cout << endl;
42 return 0;
43 } // end main

55

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_10.cpp

(3 of 3)

Constructed with:

t1: all arguments defaulted

 00:00:00
 12:00:00 AM

t2: hour specified; minute and second defaulted

 02:00:00
 2:00:00 AM

t3: hour and minute specified; second defaulted

 21:34:00
 9:34:00 PM

t4: hour, minute and second specified

 12:25:42
 12:25:42 PM

t5: all invalid values specified

 00:00:00
 12:00:00 AM

Invalid values passed to constructor,
so object t5 contains all default data

56

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 9.2

A constructor can call other member functions
of the class, such as set or get functions, but
because the constructor is initializing the object,
the data members may not yet be in a consistent
state. Using data members before they have
been properly initialized can cause logic errors.

57

© 2006 Pearson Education, Inc. All rights reserved.

9.7 Destructors

• Destructor
– A special member function
– Name is the tilde character (~) followed by the class name,

e.g., ~Time
– Called implicitly when an object is destroyed

• For example, this occurs as an automatic object is destroyed
when program execution leaves the scope in which that
object was instantiated

– Does not actually release the object’s memory
• It performs termination housekeeping
• Then the system reclaims the object’s memory

– So the memory may be reused to hold new objects

58

© 2006 Pearson Education, Inc. All rights reserved.

9.7 Destructors (Cont.)

• Destructor (Cont.)
– Receives no parameters and returns no value

• May not specify a return type—not even void
– A class may have only one destructor

• Destructor overloading is not allowed
– If the programmer does not explicitly provide a destructor,

the compiler creates an “empty” destructor

59

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 9.3

It is a syntax error to attempt to pass arguments
to a destructor, to specify a return type for a
destructor (even void cannot be specified), to
return values from a destructor or to overload a
destructor.

60

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.11

As we will see in the remainder of the book,
constructors and destructors have much greater
prominence in C++ and object-oriented
programming than is possible to convey after
only our brief introduction here.

61

© 2006 Pearson Education, Inc. All rights reserved.

9.8 When Constructors and Destructors
Are Called

• Constructors and destructors
– Called implicitly by the compiler

• Order of these function calls depends on the order in which
execution enters and leaves the scopes where the objects are
instantiated

– Generally,
• Destructor calls are made in the reverse order of the

corresponding constructor calls
– However,

• Storage classes of objects can alter the order in which
destructors are called

62

© 2006 Pearson Education, Inc. All rights reserved.

9.8 When Constructors and Destructors
Are Called (Cont.)

• For objects defined in global scope
– Constructors are called before any other function

(including main) in that file begins execution
– The corresponding destructors are called when main

terminates
• Function exit

– Forces a program to terminate immediately
• Does not execute the destructors of automatic objects

– Often used to terminate a program when an error is detected
• Function abort

– Performs similarly to function exit
• But forces the program to terminate immediately without

allowing the destructors of any objects to be called
– Usually used to indicate an abnormal termination of the

program

63

© 2006 Pearson Education, Inc. All rights reserved.

9.8 When Constructors and Destructors
Are Called (Cont.)

• For an automatic local object
– Constructor is called when that object is defined
– Corresponding destructor is called when execution leaves

the object’s scope

• For automatic objects
– Constructors and destructors are called each time

execution enters and leaves the scope of the object
– Automatic object destructors are not called if the program

terminates with an exit or abort function

64

© 2006 Pearson Education, Inc. All rights reserved.

9.8 When Constructors and Destructors
Are Called (Cont.)

• For a static local object
– Constructor is called only once

• When execution first reaches where the object is defined
– Destructor is called when main terminates or the program

calls function exit
• Destructor is not called if the program terminates with a call

to function abort

• Global and static objects are destroyed in the
reverse order of their creation

65

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

CreateAndDestroy.h

(1 of 1)

 1 // Fig. 9.11: CreateAndDestroy.h

 2 // Definition of class CreateAndDestroy.

 3 // Member functions defined in CreateAndDestroy.cpp.

 4 #include <string>

 5 using std::string;

 6
 7 #ifndef CREATE_H

 8 #define CREATE_H

 9
10 class CreateAndDestroy
11 {
12 public:
13 CreateAndDestroy(int, string); // constructor
14 ~CreateAndDestroy(); // destructor
15 private:
16 int objectID; // ID number for object
17 string message; // message describing object
18 }; // end class CreateAndDestroy
19
20 #endif

Prototype for destructor

66

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

CreateAndDestroy
.cpp

(1 of 1)

 1 // Fig. 9.12: CreateAndDestroy.cpp

 2 // Member-function definitions for class CreateAndDestroy.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "CreateAndDestroy.h"// include CreateAndDestroy class definition

 8

 9 // constructor

10 CreateAndDestroy::CreateAndDestroy(int ID, string messageString)
11 {
12 objectID = ID; // set object's ID number
13 message = messageString; // set object's descriptive message
14
15 cout << "Object " << objectID << " constructor runs "
16 << message << endl;
17 } // end CreateAndDestroy constructor
18
19 // destructor
20 CreateAndDestroy::~CreateAndDestroy()
21 {
22 // output newline for certain objects; helps readability
23 cout << (objectID == 1 || objectID == 6 ? "\n" : "");
24
25 cout << "Object " << objectID << " destructor runs "
26 << message << endl;
27 } // end ~CreateAndDestroy destructor

Defining the class’s destructor

67

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig09_13.cpp

(1 of 3)

 1 // Fig. 9.13: fig09_13.cpp

 2 // Demonstrating the order in which constructors and

 3 // destructors are called.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "CreateAndDestroy.h" // include CreateAndDestroy class definition

 9
10 void create(void); // prototype
11
12 CreateAndDestroy first(1, "(global before main)"); // global object
13
14 int main()
15 {
16 cout << "\nMAIN FUNCTION: EXECUTION BEGINS" << endl;
17 CreateAndDestroy second(2, "(local automatic in main)");
18 static CreateAndDestroy third(3, "(local static in main)");
19
20 create(); // call function to create objects
21
22 cout << "\nMAIN FUNCTION: EXECUTION RESUMES" << endl;
23 CreateAndDestroy fourth(4, "(local automatic in main)");
24 cout << "\nMAIN FUNCTION: EXECUTION ENDS" << endl;
25 return 0;
26 } // end main

Object created outside of main

Local automatic object created in main

Local static object created in main

Local automatic object created in main

68

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig09_13.cpp

(2 of 3)

27
28 // function to create objects
29 void create(void)
30 {
31 cout << "\nCREATE FUNCTION: EXECUTION BEGINS" << endl;
32 CreateAndDestroy fifth(5, "(local automatic in create)");
33 static CreateAndDestroy sixth(6, "(local static in create)");
34 CreateAndDestroy seventh(7, "(local automatic in create)");
35 cout << "\nCREATE FUNCTION: EXECUTION ENDS" << endl;
36 } // end function create

Local automatic object created in create

Local static object created in create

Local automatic object created in create

69

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig09_13.cpp

(3 of 3)

Object 1 constructor runs (global before main)

MAIN FUNCTION: EXECUTION BEGINS

Object 2 constructor runs (local automatic in main)
Object 3 constructor runs (local static in main)

CREATE FUNCTION: EXECUTION BEGINS

Object 5 constructor runs (local automatic in create)
Object 6 constructor runs (local static in create)
Object 7 constructor runs (local automatic in create)

CREATE FUNCTION: EXECUTION ENDS

Object 7 destructor runs (local automatic in create)
Object 5 destructor runs (local automatic in create)

MAIN FUNCTION: EXECUTION RESUMES

Object 4 constructor runs (local automatic in main)

MAIN FUNCTION: EXECUTION ENDS

Object 4 destructor runs (local automatic in main)
Object 2 destructor runs (local automatic in main)

Object 6 destructor runs (local static in create)
Object 3 destructor runs (local static in main)

Object 1 destructor runs (global before main)

70

© 2006 Pearson Education, Inc. All rights reserved.

9.9 Time Class Case Study: A Subtle Trap—
Returning a Reference to a private Data Member

• Returning a reference to an object
– Alias for the name of an object

• An acceptable lvalue that can receive a value
– May be used on the left side of an assignment statement

• If a function returns a const reference
– That reference cannot be used as a modifiable lvalue

– One (dangerous) way to use this capability
• A public member function of a class returns a reference to

a private data member of that class
– Client code could alter private data
– Same problem would occur if a pointer to private

data were returned

71

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.h

(1 of 1)

 1 // Fig. 9.14: Time.h

 2 // Declaration of class Time.

 3 // Member functions defined in Time.cpp

 4
 5 // prevent multiple inclusions of header file

 6 #ifndef TIME_H

 7 #define TIME_H

 8
 9 class Time

10 {
11 public:
12 Time(int = 0, int = 0, int = 0);
13 void setTime(int, int, int);
14 int getHour();
15 int &badSetHour(int); // DANGEROUS reference return
16 private:
17 int hour;
18 int minute;
19 int second;
20 }; // end class Time
21
22 #endif

Prototype for function that
returns a reference

72

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(1 of 2)

 1 // Fig. 9.15: Time.cpp

 2 // Member-function definitions for Time class.

 3 #include "Time.h" // include definition of class Time

 4
 5 // constructor function to initialize private data;

 6 // calls member function setTime to set variables;

 7 // default values are 0 (see class definition)

 8 Time::Time(int hr, int min, int sec)

 9 {

10 setTime(hr, min, sec);
11 } // end Time constructor
12
13 // set values of hour, minute and second
14 void Time::setTime(int h, int m, int s)
15 {
16 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
17 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
18 second = (s >= 0 && s < 60) ? s : 0; // validate second
19 } // end function setTime

73

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(2 of 2)

20
21 // return hour value
22 int Time::getHour()
23 {
24 return hour;
25 } // end function getHour
26
27 // POOR PROGRAMMING PRACTICE:
28 // Returning a reference to a private data member.
29 int &Time::badSetHour(int hh)
30 {
31 hour = (hh >= 0 && hh < 24) ? hh : 0;
32 return hour; // DANGEROUS reference return
33 } // end function badSetHour

Returning a reference to a private

data member = DANGEROUS!

74

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig09_16.cpp

(1 of 2)

 1 // Fig. 9.16: fig09_16.cpp

 2 // Demonstrating a public member function that

 3 // returns a reference to a private data member.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "Time.h" // include definition of class Time

 9
10 int main()
11 {
12 Time t; // create Time object
13
14 // initialize hourRef with the reference returned by badSetHour
15 int &hourRef = t.badSetHour(20); // 20 is a valid hour
16
17 cout << "Valid hour before modification: " << hourRef;
18 hourRef = 30; // use hourRef to set invalid value in Time object t
19 cout << "\nInvalid hour after modification: " << t.getHour();

Modifying a private data member
through a returned reference

75

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig09_16.cpp

(2 of 2)

20
21 // Dangerous: Function call that returns
22 // a reference can be used as an lvalue!
23 t.badSetHour(12) = 74; // assign another invalid value to hour
24
25 cout << "\n\n***\n"
26 << "POOR PROGRAMMING PRACTICE!!!!!!!!\n"
27 << "t.badSetHour(12) as an lvalue, invalid hour: "
28 << t.getHour()
29 << "\n***" << endl;
30 return 0;
31 } // end main

Valid hour before modification: 20
Invalid hour after modification: 30

POOR PROGRAMMING PRACTICE!!!!!!!!

t.badSetHour(12) as an lvalue, invalid hour: 74

Modifying private data by using
a function call as an lvalue

76

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 9.4

Returning a reference or a pointer to a
private data member breaks the
encapsulation of the class and makes the client
code dependent on the representation of the
class’s data. So, returning pointers or references
to private data is a dangerous practice that
should be avoided.

77

© 2006 Pearson Education, Inc. All rights reserved.

9.10 Default Memberwise Assignment

• Default memberwise assignment
– Assignment operator (=)

• Can be used to assign an object to another object of the same
type

– Each data member of the right object is assigned to the
same data member in the left object

• Can cause serious problems when data members contain
pointers to dynamically allocated memory

78

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Date.h

(1 of 1)

 1 // Fig. 9.17: Date.h

 2 // Declaration of class Date.

 3 // Member functions are defined in Date.cpp

 4
 5 // prevent multiple inclusions of header file

 6 #ifndef DATE_H

 7 #define DATE_H

 8
 9 // class Date definition

10 class Date
11 {
12 public:
13 Date(int = 1, int = 1, int = 2000); // default constructor
14 void print();
15 private:
16 int month;
17 int day;
18 int year;
19 }; // end class Date
20
21 #endif

79

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Date.cpp

(1 of 1)

 1 // Fig. 9.18: Date.cpp

 2 // Member-function definitions for class Date.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Date.h" // include definition of class Date from Date.h

 8
 9 // Date constructor (should do range checking)

10 Date::Date(int m, int d, int y)
11 {
12 month = m;
13 day = d;
14 year = y;
15 } // end constructor Date
16
17 // print Date in the format mm/dd/yyyy
18 void Date::print()
19 {
20 cout << month << '/' << day << '/' << year;
21 } // end function print

80

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_19.cpp

(1 of 1)

 1 // Fig. 9.19: fig09_19.cpp

 2 // Demonstrating that class objects can be assigned

 3 // to each other using default memberwise assignment.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "Date.h" // include definition of class Date from Date.h

 9
10 int main()
11 {
12 Date date1(7, 4, 2004);
13 Date date2; // date2 defaults to 1/1/2000
14
15 cout << "date1 = ";
16 date1.print();
17 cout << "\ndate2 = ";
18 date2.print();
19
20 date2 = date1; // default memberwise assignment
21
22 cout << "\n\nAfter default memberwise assignment, date2 = ";
23 date2.print();
24 cout << endl;
25 return 0;
26 } // end main

date1 = 7/4/2004
date2 = 1/1/2000

After default memberwise assignment, date2 = 7/4/2004

Memberwise assignment assigns data
members of date1 to date2

date2 now stores the
same date as date1

81

© 2006 Pearson Education, Inc. All rights reserved.

9.10 Default Memberwise Assignment
(Cont.)

• Copy constructor
– Enables pass-by-value for objects

• Used to copy original object’s values into new object to be
passed to a function or returned from a function

– Compiler provides a default copy constructor
• Copies each member of the original object into the

corresponding member of the new object (i.e., memberwise
assignment)

– Also can cause serious problems when data members
contain pointers to dynamically allocated memory

82

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 9.3

Passing an object by value is good from a security
standpoint, because the called function has no access to
the original object in the caller, but pass-by-value can
degrade performance when making a copy of a large
object. An object can be passed by reference by passing
either a pointer or a reference to the object. Pass-by-
reference offers good performance but is weaker from a
security standpoint, because the called function is given
access to the original object. Pass-by-const-reference is
a safe, good-performing alternative (this can be
implemented with a const reference parameter or with
a pointer-to-const-data parameter).

83

© 2006 Pearson Education, Inc. All rights reserved.

9.11 Software Reusability

• Many substantial class libraries exist and others
are being developed worldwide

• Software is increasingly being constructed from
existing, well-defined, carefully tested, well-
documented, portable, high-performance, widely
available components

• Rapid applications development (RAD)
– Speeds the development of powerful, high-quality software

through the mechanisms of reusable componentry

84

© 2006 Pearson Education, Inc. All rights reserved.

9.11 Software Reusability (Cont.)

• Problems to solve before realizing the full potential of
software reusability

– Cataloging schemes
– Licensing schemes
– Protection mechanisms to ensure that master copies of classes

are not corrupted
– Description schemes so that designers of new systems can easily

determine whether existing objects meet their needs
– Browsing mechanisms to determine what classes are available

and how closely they meet software developer requirements
– Research and development problems

• Great motivation to solve these problems
– Potential value of their solutions is enormous

85

© 2006 Pearson Education, Inc. All rights reserved.

9.12 (Optional) Software Engineering Case Study:
Starting to Program the Classes of the ATM System

• Visibility of an object’s attributes and operations
– Determined by access specifiers
– Data members normally have private visibility
– Member functions normally have public visibility
– Utility functions normally have private visibility

• UML Visibility Markers
– Placed before an operation or an attribute
– Plus sign (+) indicates public visibility
– Minus sign (–) indicates private visibility

86

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 9.20 | Class diagram with visibility markers.

87

© 2006 Pearson Education, Inc. All rights reserved.

9.12 (Optional) Software Engineering Case Study:
Starting to Program the Classes of the ATM System
(Cont.)

• UML Navigability Arrows
– Arrows with stick arrowheads in a class diagram
– Indicate in which direction an association can be traversed
– Based on the collaborations modeled in communication

and sequence diagrams
– Help determine which objects need references or pointers

to other objects
– Bidirectional navigability

• Indicated by arrows at both ends of an association or no
arrows at all

• Navigation can proceed in either direction across the
association

88

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 9.21 | Class diagram with navigability arrows.

89

© 2006 Pearson Education, Inc. All rights reserved.

9.12 (Optional) Software Engineering Case Study:
Starting to Program the Classes of the ATM System
(Cont.)

• Implementing a class from its UML design
– Use the name located in the first compartment of a class diagram

to define the class in a header file
– Use the attributes located in the class’s second compartment to

declare the data members
– Use the associations described in the class diagram to declare

references (or pointers, where appropriate) to other objects
• Use forward declarations for references to classes (where possible)

instead of including full header files
– Helps avoid circular includes

• Preprocessor problem that occurs when header file for
class A #includes header file for class B and vice versa

– Use the operations located in the class’s third compartment to
write the function prototypes of the class’s member functions

90

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig09_22.cpp

(1 of 1)

 1 // Fig. 9.22: Withdrawal.h

 2 // Definition of class Withdrawal that represents a withdrawal transaction

 3 #ifndef WITHDRAWAL_H

 4 #define WITHDRAWAL_H

 5
 6 class Withdrawal

 7 {

 8 }; // end class Withdrawal

 9
10 #endif // WITHDRAWAL_H

#ifndef, #define and #endif preprocessor
directives help prevent multiple-definition errors

Class name is based on the top
compartment of the class diagram

91

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Withdrawal.h

(1 of 1)

 1 // Fig. 9.23: Withdrawal.h

 2 // Definition of class Withdrawal that represents a withdrawal transaction

 3 #ifndef WITHDRAWAL_H

 4 #define WITHDRAWAL_H

 5
 6 class Withdrawal

 7 {

 8 private:

 9 // attributes

10 int accountNumber; // account to withdraw funds from
11 double amount; // amount to withdraw
12 }; // end class Withdrawal
13
14 #endif // WITHDRAWAL_H

Data members are based on the attributes in
the middle compartment of the class diagram

92

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Withdrawal.h

(1 of 1)

 1 // Fig. 9.24: Withdrawal.h

 2 // Definition of class Withdrawal that represents a withdrawal transaction

 3 #ifndef WITHDRAWAL_H

 4 #define WITHDRAWAL_H

 5
 6 #include "Screen.h" // include definition of class Screen

 7 #include "Keypad.h" // include definition of class Keypad

 8 #include "CashDispenser.h" // include definition of class CashDispenser

 9 #include "BankDatabase.h" // include definition of class BankDatabase

10
11 class Withdrawal
12 {
13 private:
14 // attributes
15 int accountNumber; // account to withdraw funds from
16 double amount; // amount to withdraw
17
18 // references to associated objects
19 Screen &screen; // reference to ATM’s screen
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 BankDatabase &bankDatabase; // reference to the account info database
23 }; // end class Withdrawal
24
25 #endif // WITHDRAWAL_H

References are based on the
associations in the class diagram

#include preprocessor directives for classes of associated objects

93

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Withdrawal.h

(1 of 1)

 1 // Fig. 9.25: Withdrawal.h

 2 // Definition of class Withdrawal that represents a withdrawal transaction

 3 #ifndef WITHDRAWAL_H

 4 #define WITHDRAWAL_H

 5
 6 class Screen; // forward declaration of class Screen

 7 class Keypad; // forward declaration of class Keypad

 8 class CashDispenser; // forward declaration of class CashDispenser

 9 class BankDatabase; // forward declaration of class BankDatabase

10
11 class Withdrawal
12 {
13 private:
14 // attributes
15 int accountNumber; // account to withdraw funds from
16 double amount; // amount to withdraw
17
18 // references to associated objects
19 Screen &screen; // reference to ATM’s screen
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 BankDatabase &bankDatabase; // reference to the account info database
23 }; // end class Withdrawal
24
25 #endif // WITHDRAWAL_H

Forward declarations of classes for
which this class has references

94

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Withdrawal.h

(1 of 1)

 1 // Fig. 9.26: Withdrawal.h

 2 // Definition of class Withdrawal that represents a withdrawal transaction

 3 #ifndef WITHDRAWAL_H

 4 #define WITHDRAWAL_H

 5
 6 class Screen; // forward declaration of class Screen

 7 class Keypad; // forward declaration of class Keypad

 8 class CashDispenser; // forward declaration of class CashDispenser

 9 class BankDatabase; // forward declaration of class BankDatabase

10
11 class Withdrawal
12 {
13 public:
14 // operations
15 void execute(); // perform the transaction
16 private:
17 // attributes
18 int accountNumber; // account to withdraw funds from
19 double amount; // amount to withdraw
20
21 // references to associated objects
22 Screen &screen; // reference to ATM’s screen
23 Keypad &keypad; // reference to ATM's keypad
24 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
25 BankDatabase &bankDatabase; // reference to the account info database
26 }; // end class Withdrawal
27
28 #endif // WITHDRAWAL_H

Member functions are based on operations in
the bottom compartment of the class diagram

95

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 9.12

Several UML modeling tools can convert
UML-based designs into C++ code,
considerably speeding the implementation
process. For more information on these
“automatic” code generators, refer to the
Internet and Web resources listed at the
end of Section 2.8.

96

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Account.h

(1 of 1)

 1 // Fig. 9.27: Account.h

 2 // Account class definition. Represents a bank account.

 3 #ifndef ACCOUNT_H

 4 #define ACCOUNT_H

 5
 6 class Account

 7 {

 8 public:

 9 bool validatePIN(int); // is user-specified PIN correct?

10 double getAvailableBalance(); // returns available balance
11 double getTotalBalance(); // returns total balance
12 void credit(double); // adds an amount to the Account
13 void debit(double); // subtracts an amount from the Account
14 private:
15 int accountNumber; // account number
16 int pin; // PIN for authentication
17 double availableBalance; // funds available for withdrawal
18 double totalBalance; // funds available + funds waiting to clear
19 }; // end class Account
20
21 #endif // ACCOUNT_H

	9
	슬라이드 번호 2
	OBJECTIVES
	슬라이드 번호 4
	9.1 Introduction
	9.1 Introduction (Cont.)
	9.2 Time Class Case Study
	슬라이드 번호 8
	Good Programming Practice 9.1
	Software Engineering Observation 9.1
	Error-Prevention Tip 9.1
	Good Programming Practice 9.2
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	Common Programming Error 9.1
	9.2 Time Class Case Study (Cont.)
	Error-Prevention Tip 9.2
	9.2 Time Class Case Study (Cont.)
	Performance Tip 9.1
	Software Engineering Observation 9.2
	Software Engineering Observation 9.3
	Software Engineering Observation 9.4
	Software Engineering Observation 9.5
	Error-Prevention Tip 9.3
	9.2 Time Class Case Study (Cont.)
	Performance Tip 9.2
	9.3 Class Scope and Accessing Class Members
	9.3 Class Scope and Accessing Class Members (Cont.)
	9.3 Class Scope and Accessing Class Members (Cont.)
	9.3 Class Scope and Accessing Class Members (Cont.)
	슬라이드 번호 33
	슬라이드 번호 34
	9.4 Separating Interface from Implementation
	Software Engineering Observation 9.6
	Software Engineering Observation 9.7
	9.5 Access Functions and Utility Functions
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	Software Engineering Observation 9.8
	9.6 Time Class Case Study: Constructors with Default Arguments
	슬라이드 번호 46
	슬라이드 번호 47
	슬라이드 번호 48
	슬라이드 번호 49
	슬라이드 번호 50
	Software Engineering Observation 9.9
	Software Engineering Observation 9.10
	슬라이드 번호 53
	슬라이드 번호 54
	슬라이드 번호 55
	Common Programming Error 9.2
	9.7 Destructors
	9.7 Destructors (Cont.)
	Common Programming Error 9.3
	Software Engineering Observation 9.11
	9.8 When Constructors and Destructors Are Called
	9.8 When Constructors and Destructors Are Called (Cont.)
	9.8 When Constructors and Destructors Are Called (Cont.)
	9.8 When Constructors and Destructors Are Called (Cont.)
	슬라이드 번호 65
	슬라이드 번호 66
	슬라이드 번호 67
	슬라이드 번호 68
	슬라이드 번호 69
	9.9 Time Class Case Study: A Subtle Trap—Returning a Reference to a private Data Member
	슬라이드 번호 71
	슬라이드 번호 72
	슬라이드 번호 73
	슬라이드 번호 74
	슬라이드 번호 75
	Error-Prevention Tip 9.4
	9.10 Default Memberwise Assignment
	슬라이드 번호 78
	슬라이드 번호 79
	슬라이드 번호 80
	9.10 Default Memberwise Assignment (Cont.)
	Performance Tip 9.3
	9.11 Software Reusability
	9.11 Software Reusability (Cont.)
	9.12 (Optional) Software Engineering Case Study:�Starting to Program the Classes of the ATM System
	Fig. 9.20 | Class diagram with visibility markers.
	9.12 (Optional) Software Engineering Case Study:�Starting to Program the Classes of the ATM System (Cont.)
	Fig. 9.21 | Class diagram with navigability arrows.
	9.12 (Optional) Software Engineering Case Study:�Starting to Program the Classes of the ATM System (Cont.)
	슬라이드 번호 90
	슬라이드 번호 91
	슬라이드 번호 92
	슬라이드 번호 93
	슬라이드 번호 94
	Software Engineering Observation 9.12
	슬라이드 번호 96

