
1

© 2006 Pearson Education, Inc. All rights reserved.

1010

Classes: A Deeper
Look, Part 2

2

© 2006 Pearson Education, Inc. All rights reserved.

But what, to serve our private ends, Forbids the
cheating of our friends?

— Charles Churchill

Instead of this absurd division into sexes they ought
to class people as static and dynamic.

— Evelyn Waugh

Have no friends not equal to yourself.
— Confucius

3

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:

To specify const (constant) objects and const member
functions.
To create objects composed of other objects.
To use friend functions and friend classes.
To use the this pointer.
To create and destroy objects dynamically with operators new
and delete, respectively.
To use static data members and member functions.
The concept of a container class.
The notion of iterator classes that walk through the elements of
container classes.
To use proxy classes to hide implementation details from a
class's clients.

4

© 2006 Pearson Education, Inc. All rights reserved.

10.1 Introduction
10.2 const (Constant) Objects and const Member Functions
10.3 Composition: Objects as Members of Classes
10.4 friend Functions and friend Classes
10.5 Using the this Pointer
10.6 Dynamic Memory Management with Operators new and delete
10.7 static Class Members
10.8 Data Abstraction and Information Hiding

10.8.1 Example: Array Abstract Data Type
10.8.2 Example: String Abstract Data Type
10.8.3 Example: Queue Abstract Data Type

10.9 Container Classes and Iterators
10.10 Proxy Classes
10.11 Wrap-Up

5

© 2006 Pearson Education, Inc. All rights reserved.

10.1 Introduction

•const objects and const member functions
– Prevent modifications of objects
– Enforce the principle of least privilege

• Composition
– Classes having objects of other classes as members

• Friendship
– Enables class designer to specify that certain non-member

functions can access the class’s non-public members

6

© 2006 Pearson Education, Inc. All rights reserved.

10.1 Introduction (Cont.)

•this pointer
• Dynamic memory management

– new and delete operators

•static class members
• Proxy classes

– Hide implementation details of a class from clients

• Pointer-base strings
– Used in C legacy code from the last two decades

7

© 2006 Pearson Education, Inc. All rights reserved.

10.2 const (Constant) Objects and const
Member Functions

• Principle of least privilege
– One of the most fundamental principles of good software

engineering
– Applies to objects, too

•const objects
– Keyword const
– Specifies that an object is not modifiable
– Attempts to modify the object will result in compilation

errors

8

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.1

Declaring an object as const helps enforce
the principle of least privilege. Attempts to
modify the object are caught at compile time
rather than causing execution-time errors.
Using const properly is crucial to proper
class design, program design and coding.

9

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 10.1

Declaring variables and objects const can
improve performance—today’s sophisticated
optimizing compilers can perform certain
optimizations on constants that cannot be
performed on variables.

10

© 2006 Pearson Education, Inc. All rights reserved.

10.2 const (Constant) Objects and const
Member Functions (Cont.)

•const member functions
– Only const member function can be called for const

objects
– Member functions declared const are not allowed to

modify the object
– A function is specified as const both in its prototype and

in its definition
– const declarations are not allowed for constructors and

destructors

11

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.1

Defining as const a member function that
modifies a data member of an object is a
compilation error.

12

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.2

Defining as const a member function that
calls a non-const member function of the
class on the same instance of the class is a
compilation error.

13

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.3

Invoking a non-const member function
on a const object is a compilation error.

14

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.2

A const member function can be overloaded
with a non-const version. The compiler chooses
which overloaded member function to use based
on the object on which the function is invoked. If
the object is const, the compiler uses the const
version. If the object is not const, the compiler
uses the non-const version.

15

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.4

Attempting to declare a constructor or destructor
const is a compilation error.

16

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.h

(1 of 2)

 1 // Fig. 10.1: Time.h

 2 // Definition of class Time.

 3 // Member functions defined in Time.cpp.

 4 #ifndef TIME_H

 5 #define TIME_H

 6
 7 class Time

 8 {

 9 public:

10 Time(int = 0, int = 0, int = 0); // default constructor
11
12 // set functions
13 void setTime(int, int, int); // set time
14 void setHour(int); // set hour
15 void setMinute(int); // set minute
16 void setSecond(int); // set second
17
18 // get functions (normally declared const)
19 int getHour() const; // return hour
20 int getMinute() const; // return minute
21 int getSecond() const; // return second

const keyword to indicate that member
function cannot modify the object

17

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.h

(2 of 2)

22
23 // print functions (normally declared const)
24 void printUniversal() const; // print universal time
25 void printStandard(); // print standard time (should be const)
26 private:
27 int hour; // 0 - 23 (24-hour clock format)
28 int minute; // 0 - 59
29 int second; // 0 - 59
30 }; // end class Time
31
32 #endif

18

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(1 of 3)

 1 // Fig. 10.2: Time.cpp

 2 // Member-function definitions for class Time.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9
10 #include "Time.h" // include definition of class Time
11
12 // constructor function to initialize private data;
13 // calls member function setTime to set variables;
14 // default values are 0 (see class definition)
15 Time::Time(int hour, int minute, int second)
16 {
17 setTime(hour, minute, second);
18 } // end Time constructor
19
20 // set hour, minute and second values
21 void Time::setTime(int hour, int minute, int second)
22 {
23 setHour(hour);
24 setMinute(minute);
25 setSecond(second);
26 } // end function setTime

19

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(2 of 3)

27
28 // set hour value
29 void Time::setHour(int h)
30 {
31 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
32 } // end function setHour
33
34 // set minute value
35 void Time::setMinute(int m)
36 {
37 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
38 } // end function setMinute
39
40 // set second value
41 void Time::setSecond(int s)
42 {
43 second = (s >= 0 && s < 60) ? s : 0; // validate second
44 } // end function setSecond
45
46 // return hour value
47 int Time::getHour() const // get functions should be const
48 {
49 return hour;
50 } // end function getHour

const keyword in function definition,
as well as in function prototype

20

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(3 of 3)

51
52 // return minute value
53 int Time::getMinute() const
54 {
55 return minute;
56 } // end function getMinute
57
58 // return second value
59 int Time::getSecond() const
60 {
61 return second;
62 } // end function getSecond
63
64 // print Time in universal-time format (HH:MM:SS)
65 void Time::printUniversal() const
66 {
67 cout << setfill('0') << setw(2) << hour << ":"
68 << setw(2) << minute << ":" << setw(2) << second;
69 } // end function printUniversal
70
71 // print Time in standard-time format (HH:MM:SS AM or PM)
72 void Time::printStandard() // note lack of const declaration
73 {
74 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
75 << ":" << setfill('0') << setw(2) << minute
76 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
77 } // end function printStandard

21

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_03.cpp

(1 of 2)

 1 // Fig. 10.3: fig10_03.cpp

 2 // Attempting to access a const object with non-const member functions.

 3 #include "Time.h" // include Time class definition

 4
 5 int main()

 6 {

 7 Time wakeUp(6, 45, 0); // non-constant object

 8 const Time noon(12, 0, 0); // constant object

 9
10 // OBJECT MEMBER FUNCTION
11 wakeUp.setHour(18); // non-const non-const
12
13 noon.setHour(12); // const non-const
14
15 wakeUp.getHour(); // non-const const
16
17 noon.getMinute(); // const const
18 noon.printUniversal(); // const const
19
20 noon.printStandard(); // const non-const
21 return 0;
22 } // end main

Cannot invoke non-const member
functions on a const object

22

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_03.cpp

(2 of 2)

Borland C++ command-line compiler error messages:

Warning W8037 fig10_03.cpp 13: Non-const function Time::setHour(int)

 called for const object in function main()

Warning W8037 fig10_03.cpp 20: Non-const function Time::printStandard()
 called for const object in function main()

Microsoft Visual C++.NET compiler error messages:

C:\cpphtp5_examples\ch10\Fig10_01_03\fig10_03.cpp(13) : error C2662:
 'Time::setHour' : cannot convert 'this' pointer from 'const Time' to
 'Time &'

 Conversion loses qualifiers

C:\cpphtp5_examples\ch10\Fig10_01_03\fig10_03.cpp(20) : error C2662:
 'Time::printStandard' : cannot convert 'this' pointer from 'const Time' to
 'Time &'

 Conversion loses qualifiers

GNU C++ compiler error messages:

fig10_03.cpp:13: error: passing `const Time' as `this' argument of
 `void Time::setHour(int)' discards qualifiers

fig10_03.cpp:20: error: passing `const Time' as `this' argument of

 `void Time::printStandard()' discards qualifiers

23

© 2006 Pearson Education, Inc. All rights reserved.

10.2 const (Constant) Objects and const
Member Functions (Cont.)

• Member initializer
– Required for initializing

• const data members
• Data members that are references

– Can be used for any data member

• Member initializer list
– Appears between a constructor’s parameter list and the left

brace that begins the constructor’s body
– Separated from the parameter list with a colon (:)
– Each member initializer consists of the data member name

followed by parentheses containing the member’s initial value
– Multiple member initializers are separated by commas
– Executes before the body of the constructor executes

24

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Increment.h

(1 of 1)

 1 // Fig. 10.4: Increment.h

 2 // Definition of class Increment.

 3 #ifndef INCREMENT_H

 4 #define INCREMENT_H

 5
 6 class Increment

 7 {

 8 public:

 9 Increment(int c = 0, int i = 1); // default constructor

10
11 // function addIncrement definition
12 void addIncrement()
13 {
14 count += increment;
15 } // end function addIncrement
16
17 void print() const; // prints count and increment
18 private:
19 int count;
20 const int increment; // const data member
21 }; // end class Increment
22
23 #endif

const data member that must be
initialized using a member initializer

25

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Increment.cpp

(1 of 1)

 1 // Fig. 10.5: Increment.cpp

 2 // Member-function definitions for class Increment demonstrate using a

 3 // member initializer to initialize a constant of a built-in data type.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "Increment.h" // include definition of class Increment

 9
10 // constructor
11 Increment::Increment(int c, int i)
12 : count(c), // initializer for non-const member
13 increment(i) // required initializer for const member
14 {
15 // empty body
16 } // end constructor Increment
17
18 // print count and increment values
19 void Increment::print() const
20 {
21 cout << "count = " << count << ", increment = " << increment << endl;
22 } // end function print

Colon (:) marks the start of a member initializer list

Member initializer for non-const member count

Required member initializer for const member increment

26

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_06.cpp

(1 of 1)

 1 // Fig. 10.6: fig10_06.cpp

 2 // Program to test class Increment.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include "Increment.h" // include definition of class Increment

 7
 8 int main()

 9 {

10 Increment value(10, 5);
11
12 cout << "Before incrementing: ";
13 value.print();
14
15 for (int j = 1; j <= 3; j++)
16 {
17 value.addIncrement();
18 cout << "After increment " << j << ": ";
19 value.print();
20 } // end for
21
22 return 0;
23 } // end main

Before incrementing: count = 10, increment = 5

After increment 1: count = 15, increment = 5
After increment 2: count = 20, increment = 5
After increment 3: count = 25, increment = 5

27

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.3

A const object cannot be modified by assignment,
so it must be initialized. When a data member of a
class is declared const, a member initializer must
be used to provide the constructor with the initial
value of the data member for an object of the class.
The same is true for references.

28

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.5

Not providing a member initializer for a const
data member is a compilation error.

29

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.4

Constant data members (const objects and
const variables) and data members declared
as references must be initialized with member
initializer syntax; assignments for these types
of data in the constructor body are not
allowed.

30

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 10.1

Declare as const all of a class’s member functions
that do not modify the object in which they operate.
Occasionally this may seem inappropriate, because
you will have no intention of creating const
objects of that class or accessing objects of that
class through const references or pointers to
const. Declaring such member functions const
does offer a benefit, though. If the member
function is inadvertently written to modify the
object, the compiler will issue an error message.

31

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Increment.h

(1 of 1)

 1 // Fig. 10.7: Increment.h

 2 // Definition of class Increment.

 3 #ifndef INCREMENT_H

 4 #define INCREMENT_H

 5
 6 class Increment

 7 {

 8 public:

 9 Increment(int c = 0, int i = 1); // default constructor

10
11 // function addIncrement definition
12 void addIncrement()
13 {
14 count += increment;
15 } // end function addIncrement
16
17 void print() const; // prints count and increment
18 private:
19 int count;
20 const int increment; // const data member
21 }; // end class Increment
22
23 #endif

Member function declared const to prevent
errors in situations where an Increment

object is treated as a const object

32

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Increment.cpp

(1 of 1)

 1 // Fig. 10.8: Increment.cpp

 2 // Attempting to initialize a constant of

 3 // a built-in data type with an assignment.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "Increment.h" // include definition of class Increment

 9
10 // constructor; constant member 'increment' is not initialized
11 Increment::Increment(int c, int i)
12 {
13 count = c; // allowed because count is not constant
14 increment = i; // ERROR: Cannot modify a const object
15 } // end constructor Increment
16
17 // print count and increment values
18 void Increment::print() const
19 {
20 cout << "count = " << count << ", increment = " << increment << endl;
21 } // end function print

It is an error to modify a const data member; data member
increment must be initialized with a member initializer

33

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_09.cpp

(1 of 2)

 1 // Fig. 10.9: fig10_09.cpp

 2 // Program to test class Increment.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include "Increment.h" // include definition of class Increment

 7
 8 int main()

 9 {

10 Increment value(10, 5);
11
12 cout << "Before incrementing: ";
13 value.print();
14
15 for (int j = 1; j <= 3; j++)
16 {
17 value.addIncrement();
18 cout << "After increment " << j << ": ";
19 value.print();
20 } // end for
21
22 return 0;
23 } // end main

34

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_09.cpp

(2 of 2)

Borland C++ command-line compiler error message:

Error E2024 Increment.cpp 14: Cannot modify a const object in function
 Increment::Increment(int,int)

Microsoft Visual C++.NET compiler error messages:

C:\cpphtp5_examples\ch10\Fig10_07_09\Increment.cpp(12) : error C2758:
 'Increment::increment' : must be initialized in constructor
 base/member initializer list

 C:\cpphtp5_examples\ch10\Fig10_07_09\Increment.h(20) :
 see declaration of 'Increment::increment'

C:\cpphtp5_examples\ch10\Fig10_07_09\Increment.cpp(14) : error C2166:
 l-value specifies const object

GNU C++ compiler error messages:

Increment.cpp:12: error: uninitialized member 'Increment::increment' with

 'const' type 'const int'

Increment.cpp:14: error: assignment of read-only data-member
 `Increment::increment'

35

© 2006 Pearson Education, Inc. All rights reserved.

10.3 Composition: Objects as Members
of Classes

• Composition
– Sometimes referred to as a has-a relationship
– A class can have objects of other classes as members
– Example

• AlarmClock object with a Time object as a member

36

© 2006 Pearson Education, Inc. All rights reserved.

10.3 Composition: Objects as Members
of Classes (Cont.)

• Initializing member objects
– Member initializers pass arguments from the object’s

constructor to member-object constructors
– Member objects are constructed in the order in which they are

declared in the class definition
• Not in the order they are listed in the constructor’s member

initializer list
• Before the enclosing class object (host object) is constructed

– If a member initializer is not provided
• The member object’s default constructor will be called implicitly

37

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.5

A common form of software reusability is
composition, in which a class has objects of
other classes as members.

38

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Date.h

(1 of 1)

 1 // Fig. 10.10: Date.h

 2 // Date class definition; Member functions defined in Date.cpp

 3 #ifndef DATE_H

 4 #define DATE_H

 5
 6 class Date

 7 {

 8 public:

 9 Date(int = 1, int = 1, int = 1900); // default constructor

10 void print() const; // print date in month/day/year format
11 ~Date(); // provided to confirm destruction order
12 private:
13 int month; // 1-12 (January-December)
14 int day; // 1-31 based on month
15 int year; // any year
16
17 // utility function to check if day is proper for month and year
18 int checkDay(int) const;
19 }; // end class Date
20
21 #endif

39

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Date.cpp

(1 of 3)

 1 // Fig. 10.11: Date.cpp

 2 // Member-function definitions for class Date.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Date.h" // include Date class definition

 8
 9 // constructor confirms proper value for month; calls

10 // utility function checkDay to confirm proper value for day
11 Date::Date(int mn, int dy, int yr)
12 {
13 if (mn > 0 && mn <= 12) // validate the month
14 month = mn;
15 else
16 {
17 month = 1; // invalid month set to 1
18 cout << "Invalid month (" << mn << ") set to 1.\n";
19 } // end else
20
21 year = yr; // could validate yr
22 day = checkDay(dy); // validate the day
23
24 // output Date object to show when its constructor is called
25 cout << "Date object constructor for date ";
26 print();
27 cout << endl;
28 } // end Date constructor

40

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Date.cpp

(2 of 3)

29
30 // print Date object in form month/day/year
31 void Date::print() const
32 {
33 cout << month << '/' << day << '/' << year;
34 } // end function print
35
36 // output Date object to show when its destructor is called
37 Date::~Date()
38 {
39 cout << "Date object destructor for date ";
40 print();
41 cout << endl;
42 } // end ~Date destructor

41

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Date.cpp

(3 of 3)

43
44 // utility function to confirm proper day value based on
45 // month and year; handles leap years, too
46 int Date::checkDay(int testDay) const
47 {
48 static const int daysPerMonth[13] =
49 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
50
51 // determine whether testDay is valid for specified month
52 if (testDay > 0 && testDay <= daysPerMonth[month])
53 return testDay;
54
55 // February 29 check for leap year
56 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
57 (year % 4 == 0 && year % 100 != 0)))
58 return testDay;
59
60 cout << "Invalid day (" << testDay << ") set to 1.\n";
61 return 1; // leave object in consistent state if bad value
62 } // end function checkDay

42

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Employee.h

(1 of 1)

 1 // Fig. 10.12: Employee.h

 2 // Employee class definition.

 3 // Member functions defined in Employee.cpp.

 4 #ifndef EMPLOYEE_H

 5 #define EMPLOYEE_H

 6
 7 #include "Date.h" // include Date class definition

 8
 9 class Employee

10 {
11 public:
12 Employee(const char * const, const char * const,
13 const Date &, const Date &);
14 void print() const;
15 ~Employee(); // provided to confirm destruction order
16 private:
17 char firstName[25];
18 char lastName[25];
19 const Date birthDate; // composition: member object
20 const Date hireDate; // composition: member object
21 }; // end class Employee
22
23 #endif

Parameters to be passed via member
initializers to the constructor for class Date

const objects of class Date as members

43

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Employee.cpp

(1 of 2)

 1 // Fig. 10.13: Employee.cpp

 2 // Member-function definitions for class Employee.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstring> // strlen and strncpy prototypes

 8 using std::strlen;

 9 using std::strncpy;

10
11 #include "Employee.h" // Employee class definition
12 #include "Date.h" // Date class definition
13
14 // constructor uses member initializer list to pass initializer
15 // values to constructors of member objects birthDate and hireDate
16 // [Note: This invokes the so-called "default copy constructor" which the
17 // C++ compiler provides implicitly.]
18 Employee::Employee(const char * const first, const char * const last,
19 const Date &dateOfBirth, const Date &dateOfHire)
20 : birthDate(dateOfBirth), // initialize birthDate
21 hireDate(dateOfHire) // initialize hireDate
22 {
23 // copy first into firstName and be sure that it fits
24 int length = strlen(first);
25 length = (length < 25 ? length : 24);
26 strncpy(firstName, first, length);
27 firstName[length] = '\0';

Member initializers that pass arguments to
Date’s implicit default copy constructor

44

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Employee.cpp

(2 of 2)

28
29 // copy last into lastName and be sure that it fits
30 length = strlen(last);
31 length = (length < 25 ? length : 24);
32 strncpy(lastName, last, length);
33 lastName[length] = '\0';
34
35 // output Employee object to show when constructor is called
36 cout << "Employee object constructor: "
37 << firstName << ' ' << lastName << endl;
38 } // end Employee constructor
39
40 // print Employee object
41 void Employee::print() const
42 {
43 cout << lastName << ", " << firstName << " Hired: ";
44 hireDate.print();
45 cout << " Birthday: ";
46 birthDate.print();
47 cout << endl;
48 } // end function print
49
50 // output Employee object to show when its destructor is called
51 Employee::~Employee()
52 {
53 cout << "Employee object destructor: "
54 << lastName << ", " << firstName << endl;
55 } // end ~Employee destructor

45

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_14.cpp

(1 of 2)

 1 // Fig. 10.14: fig10_14.cpp

 2 // Demonstrating composition--an object with member objects.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Employee.h" // Employee class definition

 8
 9 int main()

10 {
11 Date birth(7, 24, 1949);
12 Date hire(3, 12, 1988);
13 Employee manager("Bob", "Blue", birth, hire);
14
15 cout << endl;
16 manager.print();
17
18 cout << "\nTest Date constructor with invalid values:\n";
19 Date lastDayOff(14, 35, 1994); // invalid month and day
20 cout << endl;
21 return 0;
22 } // end main

Passing objects to a host object constructor

46

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_14.cpp

(2 of 2)

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988

Employee object constructor: Bob Blue

Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Test Date constructor with invalid values:

Invalid month (14) set to 1.
Invalid day (35) set to 1.
Date object constructor for date 1/1/1994

Date object destructor for date 1/1/1994

Employee object destructor: Blue, Bob

Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949

47

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.6

A compilation error occurs if a member object is
not initialized with a member initializer and the
member object’s class does not provide a default
constructor (i.e., the member object’s class defines
one or more constructors, but none is a default
constructor).

48

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 10.2

Initialize member objects explicitly through
member initializers. This eliminates the overhead
of “doubly initializing” member objects—once
when the member object’s default constructor is
called and again when set functions are called in
the constructor body (or later) to initialize the
member object.

49

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.6

If a class member is an object of another class,
making that member object public does not
violate the encapsulation and hiding of that
member object’s private members. However,
it does violate the encapsulation and hiding of
the containing class’s implementation, so
member objects of class types should still be
private, like all other data members.

50

© 2006 Pearson Education, Inc. All rights reserved.

10.4 friend Functions and friend
Classes

•friend function of a class
– Defined outside that class’s scope

• Not a member function of that class
– Yet has the right to access the non-public (and public)

members of that class
– Standalone functions or entire classes may be declared to

be friends of a class
– Can enhance performance
– Often appropriate when a member function cannot be used

for certain operations

51

© 2006 Pearson Education, Inc. All rights reserved.

10.4 friend Functions and friend
Classes (Cont.)

• To declare a function as a friend of a class:
– Provide the function prototype in the class definition

preceded by keyword friend

• To declare a class as a friend of a class:
– Place a declaration of the form

friend class ClassTwo;
in the definition of class ClassOne

• All member functions of class ClassTwo are friends of
class ClassOne

52

© 2006 Pearson Education, Inc. All rights reserved.

10.4 friend Functions and friend
Classes (Cont.)

• Friendship is granted, not taken
– For class B to be a friend of class A, class A must explicitly

declare that class B is its friend

• Friendship relation is neither symmetric nor transitive
– If class A is a friend of class B, and class B is a friend of class C,

you cannot infer that class B is a friend of class A, that class C is a
friend of class B, or that class A is a friend of class C

• It is possible to specify overloaded functions as friends
of a class

– Each overloaded function intended to be a friend must be
explicitly declared as a friend of the class

53

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.7

Even though the prototypes for friend
functions appear in the class definition, friends
are not member functions.

54

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.8

Member access notions of private,
protected and public are not relevant to
friend declarations, so friend declarations
can be placed anywhere in a class definition.

55

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 10.1

Place all friendship declarations first inside the
class definition’s body and do not precede them
with any access specifier.

56

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.9

Some people in the OOP community feel that
“friendship” corrupts information hiding and
weakens the value of the object-oriented design
approach. In this text, we identify several
examples of the responsible use of friendship.

57

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_15.cpp

(1 of 2)

 1 // Fig. 10.15: fig10_15.cpp

 2 // Friends can access private members of a class.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 // Count class definition

 8 class Count

 9 {

10 friend void setX(Count &, int); // friend declaration
11 public:
12 // constructor
13 Count()
14 : x(0) // initialize x to 0
15 {
16 // empty body
17 } // end constructor Count
18
19 // output x
20 void print() const
21 {
22 cout << x << endl;
23 } // end function print
24 private:
25 int x; // data member
26 }; // end class Count

friend function declaration (can
appear anywhere in the class)

58

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_15.cpp

(2 of 2)

27
28 // function setX can modify private data of Count
29 // because setX is declared as a friend of Count (line 10)
30 void setX(Count &c, int val)
31 {
32 c.x = val; // allowed because setX is a friend of Count
33 } // end function setX
34
35 int main()
36 {
37 Count counter; // create Count object
38
39 cout << "counter.x after instantiation: ";
40 counter.print();
41
42 setX(counter, 8); // set x using a friend function
43 cout << "counter.x after call to setX friend function: ";
44 counter.print();
45 return 0;
46 } // end main

counter.x after instantiation: 0

counter.x after call to setX friend function: 8

friend function can modify Count’s private data

Calling a friend function; note that we
pass the Count object to the function

59

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_16.cpp

(1 of 3)

 1 // Fig. 10.16: fig10_16.cpp

 2 // Non-friend/non-member functions cannot access private data of a class.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 // Count class definition (note that there is no friendship declaration)

 8 class Count

 9 {

10 public:
11 // constructor
12 Count()
13 : x(0) // initialize x to 0
14 {
15 // empty body
16 } // end constructor Count
17
18 // output x
19 void print() const
20 {
21 cout << x << endl;
22 } // end function print
23 private:
24 int x; // data member
25 }; // end class Count

60

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_16.cpp

(2 of 3)

26
27 // function cannotSetX tries to modify private data of Count,
28 // but cannot because the function is not a friend of Count
29 void cannotSetX(Count &c, int val)
30 {
31 c.x = val; // ERROR: cannot access private member in Count
32 } // end function cannotSetX
33
34 int main()
35 {
36 Count counter; // create Count object
37
38 cannotSetX(counter, 3); // cannotSetX is not a friend
39 return 0;
40 } // end main

Non-friend function cannot
access the class’s private data

61

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_16.cpp

(3 of 3)

Borland C++ command-line compiler error message:

Error E2247 Fig10_16/fig10_16.cpp 31: 'Count::x' is not accessible in
 function cannotSetX(Count &,int)

Microsoft Visual C++.NET compiler error messages:

C:\cpphtp5_examples\ch10\Fig10_16\fig10_16.cpp(31) : error C2248: 'Count::x'
 : cannot access private member declared in class 'Count'

 C:\cpphtp5_examples\ch10\Fig10_16\fig10_16.cpp(24) : see declaration
 of 'Count::x'

 C:\cpphtp5_examples\ch10\Fig10_16\fig10_16.cpp(9) : see declaration
 of 'Count'

GNU C++ compiler error messages:

fig10_16.cpp:24: error: 'int Count::x' is private

fig10_16.cpp:31: error: within this context

62

© 2006 Pearson Education, Inc. All rights reserved.

10.5 Using the this Pointer

• Member functions know which object’s data members to
manipulate

– Every object has access to its own address through a pointer
called this (a C++ keyword)

– An object’s this pointer is not part of the object itself
– The this pointer is passed (by the compiler) as an implicit

argument to each of the object’s non-static member functions

• Objects use the this pointer implicitly or explicitly
– Implicitly when accessing members directly
– Explicitly when using keyword this
– Type of the this pointer depends on the type of the object and

whether the executing member function is declared const

63

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_17.cpp

(1 of 2)

 1 // Fig. 10.17: fig10_17.cpp

 2 // Using the this pointer to refer to object members.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 class Test

 8 {

 9 public:

10 Test(int = 0); // default constructor
11 void print() const;
12 private:
13 int x;
14 }; // end class Test
15
16 // constructor
17 Test::Test(int value)
18 : x(value) // initialize x to value
19 {
20 // empty body
21 } // end constructor Test

64

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_17.cpp

(2 of 2)

22
23 // print x using implicit and explicit this pointers;
24 // the parentheses around *this are required
25 void Test::print() const
26 {
27 // implicitly use the this pointer to access the member x
28 cout << " x = " << x;
29
30 // explicitly use the this pointer and the arrow operator
31 // to access the member x
32 cout << "\n this->x = " << this->x;
33
34 // explicitly use the dereferenced this pointer and
35 // the dot operator to access the member x
36 cout << "\n(*this).x = " << (*this).x << endl;
37 } // end function print
38
39 int main()
40 {
41 Test testObject(12); // instantiate and initialize testObject
42
43 testObject.print();
44 return 0;
45 } // end main

 x = 12
 this->x = 12
(*this).x = 12

Implicitly using the this pointer to access member x

Explicitly using the this pointer to access member x

Using the dereferenced this
pointer and the dot operator

65

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.7

Attempting to use the member selection operator
(.) with a pointer to an object is a compilation
error—the dot member selection operator may be
used only with an lvalue such as an object’s name,
a reference to an object or a dereferenced pointer
to an object.

66

© 2006 Pearson Education, Inc. All rights reserved.

10.5 Using the this Pointer (Cont.)

• Cascaded member-function calls
– Multiple functions are invoked in the same statement
– Enabled by member functions returning the dereferenced
this pointer

– Example
• t.setMinute(30).setSecond(22);

– Calls t.setMinute(30);
– Then calls t.setSecond(22);

67

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.h

(1 of 2)

 1 // Fig. 10.18: Time.h

 2 // Cascading member function calls.

 3
 4 // Time class definition.

 5 // Member functions defined in Time.cpp.

 6 #ifndef TIME_H

 7 #define TIME_H

 8
 9 class Time

10 {
11 public:
12 Time(int = 0, int = 0, int = 0); // default constructor
13
14 // set functions (the Time & return types enable cascading)
15 Time &setTime(int, int, int); // set hour, minute, second
16 Time &setHour(int); // set hour
17 Time &setMinute(int); // set minute
18 Time &setSecond(int); // set second

set functions return Time & to enable cascading

68

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.h

(2 of 2)

19
20 // get functions (normally declared const)
21 int getHour() const; // return hour
22 int getMinute() const; // return minute
23 int getSecond() const; // return second
24
25 // print functions (normally declared const)
26 void printUniversal() const; // print universal time
27 void printStandard() const; // print standard time
28 private:
29 int hour; // 0 - 23 (24-hour clock format)
30 int minute; // 0 - 59
31 int second; // 0 - 59
32 }; // end class Time
33
34 #endif

69

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(1 of 3)

 1 // Fig. 10.19: Time.cpp

 2 // Member-function definitions for Time class.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9
10 #include "Time.h" // Time class definition
11
12 // constructor function to initialize private data;
13 // calls member function setTime to set variables;
14 // default values are 0 (see class definition)
15 Time::Time(int hr, int min, int sec)
16 {
17 setTime(hr, min, sec);
18 } // end Time constructor
19
20 // set values of hour, minute, and second
21 Time &Time::setTime(int h, int m, int s) // note Time & return
22 {
23 setHour(h);
24 setMinute(m);
25 setSecond(s);
26 return *this; // enables cascading
27 } // end function setTime

 Returning dereferenced this pointer enables cascading

70

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(2 of 3)

28
29 // set hour value
30 Time &Time::setHour(int h) // note Time & return
31 {
32 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
33 return *this; // enables cascading
34 } // end function setHour
35
36 // set minute value
37 Time &Time::setMinute(int m) // note Time & return
38 {
39 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
40 return *this; // enables cascading
41 } // end function setMinute
42
43 // set second value
44 Time &Time::setSecond(int s) // note Time & return
45 {
46 second = (s >= 0 && s < 60) ? s : 0; // validate second
47 return *this; // enables cascading
48 } // end function setSecond
49
50 // get hour value
51 int Time::getHour() const
52 {
53 return hour;
54 } // end function getHour

71

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Time.cpp

(3 of 3)

55
56 // get minute value
57 int Time::getMinute() const
58 {
59 return minute;
60 } // end function getMinute
61
62 // get second value
63 int Time::getSecond() const
64 {
65 return second;
66 } // end function getSecond
67
68 // print Time in universal-time format (HH:MM:SS)
69 void Time::printUniversal() const
70 {
71 cout << setfill('0') << setw(2) << hour << ":"
72 << setw(2) << minute << ":" << setw(2) << second;
73 } // end function printUniversal
74
75 // print Time in standard-time format (HH:MM:SS AM or PM)
76 void Time::printStandard() const
77 {
78 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
79 << ":" << setfill('0') << setw(2) << minute
80 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
81 } // end function printStandard

72

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_20.cpp

(1 of 2)

 1 // Fig. 10.20: fig10_20.cpp

 2 // Cascading member function calls with the this pointer.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Time.h" // Time class definition

 8
 9 int main()

10 {
11 Time t; // create Time object
12
13 // cascaded function calls
14 t.setHour(18).setMinute(30).setSecond(22);
15
16 // output time in universal and standard formats
17 cout << "Universal time: ";
18 t.printUniversal();
19
20 cout << "\nStandard time: ";
21 t.printStandard();
22
23 cout << "\n\nNew standard time: ";
24
25 // cascaded function calls
26 t.setTime(20, 20, 20).printStandard();
27 cout << endl;
28 return 0;
29 } // end main

Cascaded function calls using the reference
returned by one function call to invoke the next

Note that these calls must appear in the
order shown, because printStandard

does not return a reference to t

73

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_20.cpp

(2 of 2)

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time: 8:20:20 PM

74

© 2006 Pearson Education, Inc. All rights reserved.

10.6 Dynamic Memory Management with
Operators new and delete

• Dynamic memory management
– Enables programmers to allocate and deallocate memory

for any built-in or user-defined type
– Performed by operators new and delete
– For example, dynamically allocating memory for an array

instead of using a fixed-size array

75

© 2006 Pearson Education, Inc. All rights reserved.

10.6 Dynamic Memory Management with
Operators new and delete (Cont.)

• Operator new
– Allocates (i.e., reserves) storage of the proper size for an

object at execution time
– Calls a constructor to initialize the object
– Returns a pointer of the type specified to the right of new
– Can be used to dynamically allocate any fundamental type

(such as int or double) or any class type
• Free store

– Sometimes called the heap
– Region of memory assigned to each program for storing

objects created at execution time

76

© 2006 Pearson Education, Inc. All rights reserved.

10.6 Dynamic Memory Management with
Operators new and delete (Cont.)

• Operator delete
– Destroys a dynamically allocated object
– Calls the destructor for the object
– Deallocates (i.e., releases) memory from the free store
– The memory can then be reused by the system to allocate

other objects

77

© 2006 Pearson Education, Inc. All rights reserved.

10.6 Dynamic Memory Management with
Operators new and delete (Cont.)

• Initializing an object allocated by new
– Initializer for a newly created fundamental-type variable

• Example
– double *ptr = new double(3.14159);

– Specify a comma-separated list of arguments to the
constructor of an object

• Example
– Time *timePtr = new Time(12, 45, 0);

78

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.8

Not releasing dynamically allocated memory
when it is no longer needed can cause the
system to run out of memory prematurely.
This is sometimes called a “memory leak.”

79

© 2006 Pearson Education, Inc. All rights reserved.

10.6 Dynamic Memory Management with
Operators new and delete (Cont.)

•new operator can be used to allocate arrays
dynamically

– Dynamically allocate a 10-element integer array:
int *gradesArray = new int[10];

– Size of a dynamically allocated array
• Specified using any integral expression that can be evaluated

at execution time

80

© 2006 Pearson Education, Inc. All rights reserved.

10.6 Dynamic Memory Management with
Operators new and delete (Cont.)

• Delete a dynamically allocated array:
delete [] gradesArray;

– This deallocates the array to which gradesArray points
– If the pointer points to an array of objects

• First calls the destructor for every object in the array
• Then deallocates the memory

– If the statement did not include the square brackets ([])
and gradesArray pointed to an array of objects

• Only the first object in the array would have a destructor call

81

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.9

Using delete instead of delete [] for arrays
of objects can lead to runtime logic errors. To
ensure that every object in the array receives a
destructor call, always delete memory allocated
as an array with operator delete []. Similarly,
always delete memory allocated as an individual
element with operator delete.

82

© 2006 Pearson Education, Inc. All rights reserved.

10.7 static Class Members

•static data member
– Only one copy of a variable shared by all objects of a class

• “Class-wide” information
• A property of the class shared by all instances, not a property

of a specific object of the class
– Declaration begins with keyword static

83

© 2006 Pearson Education, Inc. All rights reserved.

10.7 static Class Members (Cont.)

•static data member (Cont.)
– Example

• Video game with Martians and other space creatures
– Each Martian needs to know the martianCount
– martianCount should be static class-wide data
– Every Martian can access martianCount as if it were

a data member of that Martian
– Only one copy of martianCount exists

– May seem like global variables but have class scope
– Can be declared public, private or protected

84

© 2006 Pearson Education, Inc. All rights reserved.

10.7 static Class Members (Cont.)

•static data member (Cont.)
– Fundamental-type static data members

• Initialized by default to 0
• If you want a different initial value, a static data member can be

initialized once (and only once)
– A const static data member of int or enum type

• Can be initialized in its declaration in the class definition
– All other static data members

• Must be defined at file scope (i.e., outside the body of the class
definition)

• Can be initialized only in those definitions
– static data members of class types (i.e., static member

objects) that have default constructors
• Need not be initialized because their default constructors will be

called

85

© 2006 Pearson Education, Inc. All rights reserved.

10.7 static Class Members (Cont.)

•static data member (Cont.)
– Exists even when no objects of the class exist

• To access a public static class member when no objects
of the class exist

– Prefix the class name and the binary scope resolution
operator (::) to the name of the data member

– Example
• Martian::martianCount

– Also accessible through any object of that class
• Use the object’s name, the dot operator and the name of the

member
– Example

• myMartian.martianCount

86

© 2006 Pearson Education, Inc. All rights reserved.

10.7 static Class Members (Cont.)

•static member function
– Is a service of the class, not of a specific object of the class

•static applied to an item at file scope
– That item becomes known only in that file
– The static members of the class need to be available

from any client code that accesses the file
• So we cannot declare them static in the .cpp file—we

declare them static only in the .h file.

87

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 10.3

Use static data members to save storage
when a single copy of the data for all objects
of a class will suffice.

88

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.10

A class’s static data members and static
member functions exist and can be used even if
no objects of that class have been instantiated.

89

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.10

It is a compilation error to include keyword
static in the definition of a static data
members at file scope.

90

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_21.cpp

(1 of 1)

 1 // Fig. 10.21: Employee.h

 2 // Employee class definition.

 3 #ifndef EMPLOYEE_H

 4 #define EMPLOYEE_H

 5
 6 class Employee

 7 {

 8 public:

 9 Employee(const char * const, const char * const); // constructor

10 ~Employee(); // destructor
11 const char *getFirstName() const; // return first name
12 const char *getLastName() const; // return last name
13
14 // static member function
15 static int getCount(); // return number of objects instantiated
16 private:
17 char *firstName;
18 char *lastName;
19
20 // static data
21 static int count; // number of objects instantiated
22 }; // end class Employee
23
24 #endif

Function prototype for static member function

static data member keeps track of number
of Employee objects that currently exist

91

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Employee.cpp

(1 of 3)

 1 // Fig. 10.22: Employee.cpp

 2 // Member-function definitions for class Employee.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstring> // strlen and strcpy prototypes

 8 using std::strlen;

 9 using std::strcpy;

10
11 #include "Employee.h" // Employee class definition
12
13 // define and initialize static data member at file scope
14 int Employee::count = 0;
15
16 // define static member function that returns number of
17 // Employee objects instantiated (declared static in Employee.h)
18 int Employee::getCount()
19 {
20 return count;
21 } // end static function getCount

static data member is defined and
initialized at file scope in the .cpp file

static member function can access
only static data, because the function

might be called when no objects exist

92

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Employee.cpp

(2 of 3)

22
23 // constructor dynamically allocates space for first and last name and
24 // uses strcpy to copy first and last names into the object
25 Employee::Employee(const char * const first, const char * const last)
26 {
27 firstName = new char[strlen(first) + 1];
28 strcpy(firstName, first);
29
30 lastName = new char[strlen(last) + 1];
31 strcpy(lastName, last);
32
33 count++; // increment static count of employees
34
35 cout << "Employee constructor for " << firstName
36 << ' ' << lastName << " called." << endl;
37 } // end Employee constructor
38
39 // destructor deallocates dynamically allocated memory
40 Employee::~Employee()
41 {
42 cout << "~Employee() called for " << firstName
43 << ' ' << lastName << endl;
44
45 delete [] firstName; // release memory
46 delete [] lastName; // release memory
47
48 count--; // decrement static count of employees
49 } // end ~Employee destructor

Dynamically allocating char arrays

Non-static member function (i.e., constructor)
can modify the class’s static data members

Deallocating memory reserved for arrays

93

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Employee.cpp

(3 of 3)

50
51 // return first name of employee
52 const char *Employee::getFirstName() const
53 {
54 // const before return type prevents client from modifying
55 // private data; client should copy returned string before
56 // destructor deletes storage to prevent undefined pointer
57 return firstName;
58 } // end function getFirstName
59
60 // return last name of employee
61 const char *Employee::getLastName() const
62 {
63 // const before return type prevents client from modifying
64 // private data; client should copy returned string before
65 // destructor deletes storage to prevent undefined pointer
66 return lastName;
67 } // end function getLastName

94

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_23.cpp

(1 of 2)

 1 // Fig. 10.23: fig10_23.cpp

 2 // Driver to test class Employee.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Employee.h" // Employee class definition

 8
 9 int main()

10 {
11 // use class name and binary scope resolution operator to
12 // access static number function getCount
13 cout << "Number of employees before instantiation of any objects is "
14 << Employee::getCount() << endl; // use class name
15
16 // use new to dynamically create two new Employees
17 // operator new also calls the object's constructor
18 Employee *e1Ptr = new Employee("Susan", "Baker");
19 Employee *e2Ptr = new Employee("Robert", "Jones");
20
21 // call getCount on first Employee object
22 cout << "Number of employees after objects are instantiated is "
23 << e1Ptr->getCount();
24
25 cout << "\n\nEmployee 1: "
26 << e1Ptr->getFirstName() << " " << e1Ptr->getLastName()
27 << "\nEmployee 2: "
28 << e2Ptr->getFirstName() << " " << e2Ptr->getLastName() << "\n\n";

Calling static member function using class
name and binary scope resolution operator

Dynamically creating Employees with new

Calling a static member function
through a pointer to an object of the class

95

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_23.cpp

(2 of 2)

29
30 delete e1Ptr; // deallocate memory
31 e1Ptr = 0; // disconnect pointer from free-store space
32 delete e2Ptr; // deallocate memory
33 e2Ptr = 0; // disconnect pointer from free-store space
34
35 // no objects exist, so call static member function getCount again
36 // using the class name and the binary scope resolution operator
37 cout << "Number of employees after objects are deleted is "
38 << Employee::getCount() << endl;
39 return 0;
40 } // end main

Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.
Employee constructor for Robert Jones called.
Number of employees after objects are instantiated is 2

Employee 1: Susan Baker

Employee 2: Robert Jones

~Employee() called for Susan Baker
~Employee() called for Robert Jones
Number of employees after objects are deleted is 0

Releasing memory to which a pointer points

Disconnecting a pointer from any space in memory

96

© 2006 Pearson Education, Inc. All rights reserved.

10.7 static Class Members (Cont.)

• Declare a member function static
– If it does not access non-static data members or non-
static member functions of the class

– A static member function does not have a this pointer
– static data members and static member functions

exist independently of any objects of a class
– When a static member function is called, there might

not be any objects of its class in memory

97

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.11

Some organizations specify in their software
engineering standards that all calls to static
member functions be made using the class
name and not an object handle.

98

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.11

Using the this pointer in a static member
function is a compilation error.

99

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 10.12

Declaring a static member function const is a
compilation error. The const qualifier indicates
that a function cannot modify the contents of the
object in which it operates, but static member
functions exist and operate independently of any
objects of the class.

100

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 10.2

After deleting dynamically allocated memory, set the
pointer that referred to that memory to 0. This
disconnects the pointer from the previously allocated
space on the free store. This space in memory could
still contain information, despite having been deleted.
By setting the pointer to 0, the program loses any
access to that free-store space, which, in fact, could
have already been reallocated for a different purpose.
If you didn't set the pointer to 0, your code could
inadvertently access this new information, causing
extremely subtle, nonrepeatable logic errors.

101

© 2006 Pearson Education, Inc. All rights reserved.

10.8 Data Abstraction and Information
Hiding

• Information Hiding
– A class normally hides implementation details from clients

• Data abstraction
– Client cares about what functionality a class offers, not

about how that functionality is implemented
• For example, a client of a stack class need not be concerned

with the stack’s implementation (e.g., a linked list)
– Programmers should not write code that depends on a

class’s implementation details

102

© 2006 Pearson Education, Inc. All rights reserved.

10.8 Data Abstraction and Information
Hiding (Cont.)

• Importance of data
– Elevated in C++ and object-oriented community

• Primary activities of object-oriented programming in C++
– Creation of types (i.e., classes)
– Expression of the interactions among objects of those

types
– Abstract data types (ADTs)

• Improve the program development process

103

© 2006 Pearson Education, Inc. All rights reserved.

10.8 Data Abstraction and Information
Hiding (Cont.)

• Abstract data types (ADTs)
– Essentially ways of representing real-world notions to some

satisfactory level of precision within a computer system
– Types like int, double, char and others are all ADTs

• e.g., int is an abstract representation of an integer
– Capture two notions:

• Data representation
• Operations that can be performed on the data

– C++ classes implement ADTs and their services

104

© 2006 Pearson Education, Inc. All rights reserved.

10.8.1 Example: Array Abstract Data Type

• Many array operations not built into C++
– e.g., subscript range checking

• Programmers can develop an array ADT as a
class that is preferable to “raw” arrays

– Can provide many helpful new capabilities

• C++ Standard Library class template vector

105

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.12

The programmer is able to create new types
through the class mechanism. These new types
can be designed to be used as conveniently as
the built-in types. Thus, C++ is an extensible
language. Although the language is easy to
extend with these new types, the base language
itself cannot be changed.

106

© 2006 Pearson Education, Inc. All rights reserved.

10.8.2 Example: String Abstract Data
Type

• No string data type among C++’s built-in data
types

– C++ is an intentionally sparse language
• Provides programmers with only the raw capabilities needed

to build a broad range of systems
• Designed to minimize performance burdens
• Designed to include mechanisms for creating and

implementing string abstract data types through classes
– C++ Standard Library class string

107

© 2006 Pearson Education, Inc. All rights reserved.

10.8.3 Example: Queue Abstract Data
Type

• Queue ADT
– Items returned in first-in, first-out (FIFO) order

• First item inserted in the queue is the first item removed from the
queue

– Hides an internal data representation that somehow keeps track
of the items currently waiting in line

– Good example of an abstract data type
• Clients invoke enqueue operation to put things in the queue one at a

time
• Clients invoke dequeue operation to get those things back one at a

time on demand
– C++ Standard Library queue class

108

© 2006 Pearson Education, Inc. All rights reserved.

10.9 Container Classes and Iterators

• Container classes (also called collection classes)
– Classes designed to hold collections of objects
– Commonly provide services such as insertion, deletion,

searching, sorting, and testing an item to determine
whether it is a member of the collection

– Examples
• Arrays
• Stacks
• Queues
• Trees
• Linked lists

109

© 2006 Pearson Education, Inc. All rights reserved.

10.9 Container Classes and Iterators
(Cont.)

• Iterator objects—or more simply iterators
– Commonly associated with container classes
– An object that “walks through” a collection, returning the

next item (or performing some action on the next item)
– A container class can have several iterators operating on it

at once
– Each iterator maintains its own “position” information

110

© 2006 Pearson Education, Inc. All rights reserved.

10.10 Proxy Classes

• Header files contain some portion of a class’s
implementation and hints about others

– For example, a class’s private members are listed in the
class definition in a header file

– Potentially exposes proprietary information to clients of
the class

111

© 2006 Pearson Education, Inc. All rights reserved.

10.10 Proxy Classes (Cont.)

• Proxy class
– Hides even the private data of a class from clients
– Knows only the public interface of your class
– Enables the clients to use your class’s services without

giving the client access to your class’s implementation
details

112

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Implementation.h

(1 of 1)

 1 // Fig. 10.24: Implementation.h

 2 // Header file for class Implementation

 3
 4 class Implementation

 5 {

 6 public:

 7 // constructor

 8 Implementation(int v)

 9 : value(v) // initialize value with v

10 {
11 // empty body
12 } // end constructor Implementation
13
14 // set value to v
15 void setValue(int v)
16 {
17 value = v; // should validate v
18 } // end function setValue
19
20 // return value
21 int getValue() const
22 {
23 return value;
24 } // end function getValue
25 private:
26 int value; // data that we would like to hide from the client
27 }; // end class Implementation

Class definition for the class that contains the
proprietary implementation we would like to hide

The data we would like to hide from the client

113

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Interface.h

(1 of 1)

 1 // Fig. 10.25: Interface.h

 2 // Header file for class Interface

 3 // Client sees this source code, but the source code does not reveal

 4 // the data layout of class Implementation.

 5
 6 class Implementation; // forward class declaration required by line 17

 7
 8 class Interface

 9 {

10 public:
11 Interface(int); // constructor
12 void setValue(int); // same public interface as
13 int getValue() const; // class Implementation has
14 ~Interface(); // destructor
15 private:
16 // requires previous forward declaration (line 6)
17 Implementation *ptr;
18 }; // end class Interface

 Using a pointer allows us to hide implementation
details of class Implementation

Declares Implementation as a data type
without including the class’s complete header file

public interface between client and hidden class

114

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Interface.cpp

(1 of 1)

 1 // Fig. 10.26: Interface.cpp

 2 // Implementation of class Interface--client receives this file only

 3 // as precompiled object code, keeping the implementation hidden.

 4 #include "Interface.h" // Interface class definition

 5 #include "Implementation.h" // Implementation class definition

 6
 7 // constructor

 8 Interface::Interface(int v)

 9 : ptr (new Implementation(v)) // initialize ptr to point to

10 { // a new Implementation object
11 // empty body
12 } // end Interface constructor
13
14 // call Implementation's setValue function
15 void Interface::setValue(int v)
16 {
17 ptr->setValue(v);
18 } // end function setValue
19
20 // call Implementation's getValue function
21 int Interface::getValue() const
22 {
23 return ptr->getValue();
24 } // end function getValue
25
26 // destructor
27 Interface::~Interface()
28 {
29 delete ptr;
30 } // end ~Interface destructor

Only location where Implementation.h
is included with #include

Setting the value of the hidden data via a pointer

Getting the value of the hidden data via a pointer

115

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig10_27.cpp

(1 of 1)

 1 // Fig. 10.27: fig10_27.cpp

 2 // Hiding a class’s private data with a proxy class.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Interface.h" // Interface class definition

 8
 9 int main()

10 {
11 Interface i(5); // create Interface object
12
13 cout << "Interface contains: " << i.getValue()
14 << " before setValue" << endl;
15
16 i.setValue(10);
17
18 cout << "Interface contains: " << i.getValue()
19 << " after setValue" << endl;
20 return 0;
21 } // end main

Interface contains: 5 before setValue

Interface contains: 10 after setValue

Only the header file for Interface is included
in the client code—no mention of the existence of

a separate class called Implementation

116

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.13

A proxy class insulates client code from
implementation changes.

	10
	슬라이드 번호 2
	OBJECTIVES
	슬라이드 번호 4
	10.1 Introduction
	10.1 Introduction (Cont.)
	10.2 const (Constant) Objects and const Member Functions
	Software Engineering Observation 10.1
	Performance Tip 10.1
	10.2 const (Constant) Objects and const Member Functions (Cont.)
	Common Programming Error 10.1
	Common Programming Error 10.2
	Common Programming Error 10.3
	Software Engineering Observation 10.2
	Common Programming Error 10.4
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	10.2 const (Constant) Objects and const Member Functions (Cont.)
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	Software Engineering Observation 10.3
	Common Programming Error 10.5
	Software Engineering Observation 10.4
	Error-Prevention Tip 10.1
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34
	10.3 Composition: Objects as Members of Classes
	10.3 Composition: Objects as Members of Classes (Cont.)
	Software Engineering Observation 10.5
	슬라이드 번호 38
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44
	슬라이드 번호 45
	슬라이드 번호 46
	Common Programming Error 10.6
	Performance Tip 10.2
	Software Engineering Observation 10.6
	10.4 friend Functions and friend Classes
	10.4 friend Functions and friend Classes (Cont.)
	10.4 friend Functions and friend Classes (Cont.)
	Software Engineering Observation 10.7
	Software Engineering Observation 10.8
	Good Programming Practice 10.1
	Software Engineering Observation 10.9
	슬라이드 번호 57
	슬라이드 번호 58
	슬라이드 번호 59
	슬라이드 번호 60
	슬라이드 번호 61
	10.5 Using the this Pointer
	슬라이드 번호 63
	슬라이드 번호 64
	Common Programming Error 10.7
	10.5 Using the this Pointer (Cont.)
	슬라이드 번호 67
	슬라이드 번호 68
	슬라이드 번호 69
	슬라이드 번호 70
	슬라이드 번호 71
	슬라이드 번호 72
	슬라이드 번호 73
	10.6 Dynamic Memory Management with Operators new and delete
	10.6 Dynamic Memory Management with Operators new and delete (Cont.)
	10.6 Dynamic Memory Management with Operators new and delete (Cont.)
	10.6 Dynamic Memory Management with Operators new and delete (Cont.)
	Common Programming Error 10.8
	10.6 Dynamic Memory Management with Operators new and delete (Cont.)
	10.6 Dynamic Memory Management with Operators new and delete (Cont.)
	Common Programming Error 10.9
	10.7 static Class Members
	10.7 static Class Members (Cont.)
	10.7 static Class Members (Cont.)
	10.7 static Class Members (Cont.)
	10.7 static Class Members (Cont.)
	Performance Tip 10.3
	Software Engineering Observation 10.10
	Common Programming Error 10.10
	슬라이드 번호 90
	슬라이드 번호 91
	슬라이드 번호 92
	슬라이드 번호 93
	슬라이드 번호 94
	슬라이드 번호 95
	10.7 static Class Members (Cont.)
	Software Engineering Observation 10.11
	Common Programming Error 10.11
	Common Programming Error 10.12
	Error-Prevention Tip 10.2
	10.8 Data Abstraction and Information Hiding
	10.8 Data Abstraction and Information Hiding (Cont.)
	10.8 Data Abstraction and Information Hiding (Cont.)
	10.8.1 Example: Array Abstract Data Type
	Software Engineering Observation 10.12
	10.8.2 Example: String Abstract Data Type
	10.8.3 Example: Queue Abstract Data Type
	10.9 Container Classes and Iterators
	10.9 Container Classes and Iterators (Cont.)
	10.10 Proxy Classes
	10.10 Proxy Classes (Cont.)
	슬라이드 번호 112
	슬라이드 번호 113
	슬라이드 번호 114
	슬라이드 번호 115
	Software Engineering Observation 10.13

