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Topics

Function/Procedure calls
Parameter passing
– Call by value
– Call by reference

Higher-Order Functions (HOFs)
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Function/Procedure calls
Why is a procedure call/invocation a universal feature in 
programming languages?
A procedure call involves a caller and a callee.
The caller and the callee involved in the same call should 
communicate to exchange information necessary for the 
call. Then, how?
– using global variables
– using parameters 

and returning 
values

void caller() {

. . .

x = callee(para);

z = outsider;

. . .

}

void caller() {

. . .

x = callee(para);

z = outsider;

. . .

}

void callee(int dummy) {

. . .

outsider = 10;

y = dummy – 3;

. . .

return y;

}

void callee(int dummy) {

. . .

outsider = 10;

y = dummy – 3;

. . .

return y;

}

int outsider;
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Some languages such as C++ supports explicit inlining.

Pros and cons of inlining
– It eliminates the overhead for procedure call.
– Reckless use may increase the code size.
– Inlined code is generally less readable and maintainable.

So, inlining is ideal for a small procedure invoked within frequently 
executed regions (e.g., loops).

Inlining

void foo() {
int x,y,z;
…
y = bar(z,99);
z = bar(88,y);
…

}

inline int bar(int a, b) {
int x,t;
x = a * b;
t = a - b;
return x / t;

} 

void foo() {
int x,y,z,x1,t,x2,t1;
…
x1 = z * 99;
t = z - 99;
y = x1 / t;
x2 = 88 * y;
t1 = 88 - y;
z = x2 / t1;
…

}
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Parameter passing
parameter/argument passing
– the study of the different ways of communication between a caller 

and a callee with parameters and results 

parameter passing methods
– call-by-value
– call-by-reference
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Call-by-value
When a procedure is called, the r-value of an actual 
argument is assigned to the l-value of the matching formal 
argument. 
secure because changes made on formal arguments do not 
affect the actual ones. 

i

j

k

p
int k = i;
void foo(int i, int* p) {

. . .
p = &k;

}
void bar() {

int j = 2;
int* q = &j;
. . .
foo(j+3, q);

}

q

p

2

just before foo returns

3

when foo is called

copy

+
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Call-by-value
can be expensive.
– Pascal type long_list = array [1..10000] of real;

var a : long_list;
procedure soar (d : long_list); 

. . . 
end;
begin

soar(a);
end; 

Typically, not appropriate if a callee wants to return 
multiple results.
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Call-by-reference/location
When a procedure is called, the l-value of an actual 
argument is shared with the matching dummy argument.

int k = 10;
void foo(int &i, int* &p) {

i = 7;
*p = i + *p;
p = &k;

}
void bar() {

int j = 2;
int* q = &j;
. . .
foo(j, q);
cout << j << *q;
foo(j+3, q);

}

q

pi

j 2

when foo(j,q) is called

q

p
10k

when foo(j,q) returns

error in principle, but…

j 14

i

2
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Evaluation order of operator/operands
Given an expression, should we always evaluate all the 
operands before the operator?

Yes! - almost all kinds of expressions → eager evaluation

No! - a few special expressions → lazy evaluation

Operator

oprand 1       oprand 2      oprand 3    . . . .     oprand n

3+4*2 a[i] = c + 9

x == 0 ? x = z * 5 : x = y * 2 m > 0 || n != -1

+

3 *

4 2

=

+

c 9

[]

ia

?:

=

x
*

==

0x

z 5

=

x
*

y 2

||

!=

n -

>

0m

1
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A procedure call as an expression
A procedure call is an expression which consists of a 
procedure id (operator) and actual arguments (operands).

Parameter passing models determine …
1. how to map actual arguments to formal arguments.
2. the evaluation order of operands and operators: eager or lazy. 

eager evaluation: call-by-value, cal-by-reference, call-by-sharing 

lazy evaluation: call-by-name, call-by-need

foo(x+2,bar(y-1)) foo()

bar()
,

+

x 2 -
y 1

write a+b write()

+

a b
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Why lazy evaluation?

necessary to prevent infinite loops in 
recursion.
// Suppose that C++ if-expression ?: does not use lazy evaluation, but 

eager evaluation.
int fac(int n) { return (n == 0 ? 1 : n*fac(n - 1)); }

// Now, what happens if we call fac(2)?
fac(2) → (2==0 ? 1 : 2*fac(1)) 

→ (2==0 ? 1 : n*(1==0 ? 1 : 1*fac(0))) 
→ (2==0 ? 1 : n*(1==0 ? 1 : 1*(0==0 ? 1 : 1*fac(-1)))) 
→ (2==0 ? 1 : n*(1==0 ? 1 : 1*(0==0 ? 1 : 1*(-1==0 ? 1 : 

1*fac(-2)))))
. . .

C++ allows lazy evaluation for if-expressions 
and relational operations. 
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Traditional view of functions
Ordinary data objects have first-class values.

The traditional view of a function f : D → R
“a static piece of code for mapping values of first-class input values 
to first-class output values”

Such functions are said to be first-order. 

In many programming languages such as C/C++, Java, and 
Fortran, functions are first-order.

integers, real numbers, 
characters, strings …
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Higher-order functions
In some other languages called functional programming 
languages, functions themselves are considered as first-
class values so that they can be passed as inputs to and 
returned as outputs from other functions.
Higher-Order Function (or Functional) a function that 
takes functions as parameters or returns as outputs
– HOFs are the essence of functional languages.

HOFs are a powerful features of a functional language.
– Treating functions as values increase the expressive power of a 
language. functions handling functions : sums, derivatives

– They help abstract out common control patterns, leading to very 
concise programs. repetitive applications of similar tasks
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HOFs taking functions as parameters
The summation in mathematics (denoted by the notation Σ)
is a HOF since it takes a function f as a parameter.

The HOF can be represented with type expressions:
sum : (α→β) ×

 
int ×

 
int→β

 
when the function f : α→β

Notation Σ makes a mathematical expression concise & brief 
by capturing the common patterns among the expression.
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HOFs in non-functional languages
Many non-functional languages support HOFs that take 
functions as parameters (Fortran, C++, . . .)
They typically use pointers to support function as arguments. 

C++ void (*efct) (string); // pointer to function 

They allow two operations on the function pointers.
– take the address of functions from the pointers
– call the functions thru the addresses

void error(string s) { . . . }
void announce(string t) { . . . }
efct = &error; // efct points to function error
efct(“Divided by zero”); // call error thru efct
efct = &announce; // now, efct points to function announce
efct("No more assignment for 프방

 

!");  // call announce thru efct

The pointers can be passed to other functions as arguments or results. 

They are not as flexible as functional languages
int inc(int i) { . . . }
efct = &inc; // illegal: since “inc” has different types of

return value and input arguments of “efct”
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Blocks
A block 
– is a section of code that consists of a set of declarations and a 

sequence of statements.
– provides its own environment or scope for variables. 
– allocates storage to variables local to a block when execution enters 

the block; the storage is deallocated when the block is exited. 
– is delimited by keywords or special characters 

• procedure bodies ex: Fortran →

 
function . . . end

• begin/end ex: Algol → begin . . end

• special characters ex: C →

 
{ . . . }

The programming languages that allow programs to define 
blocks are called block-structured languages. 
– block-structured: Pascal, PL/I, Algol, C/C++, Scheme 
– non-block-structured: Cobol, Basic, Assembly 
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Terminology for blocks
A block enclosed by other blocks is called a nested block. A 
block enclosing other blocks is called a nesting block.
The variables declared (or bound) in a block are called 
local variables. Bindings of local variables of a block are 
visible only inside the block. 
The declarations of local variables in a block are implicitly 
inherited by nested blocks. It is not allowed to export a 
declaration to nesting blocks. 
Non-local variables of a block are those whose declarations 
are implicitly inherited from nesting blocks. They are not 
bound in the block, but bound in one of the nesting blocks. 
Global variables are those bound in the outermost nesting 
block; thereby, their bindings are visible in entire program, 
and they are accessible anywhere in a program.
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Types of blocks
Disjoint block structure
– The body of a procedure is a 

block. 
– There is no nesting of blocks. 

Nested block structure
– A block contains other blocks 

nested inside it.

ex: Fortran
main

proc 1

proc 2

proc 3

ex: Pascal, Algol, C, Scheme

main

proc 1

proc 2

proc 3

main

{

}

{     }

proc 1

proc 2

{     }

. 
. 

.. 
. 

.. 
. 

.
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Nested block structure
C

int x, j;

main() {
int i, k(10);
float z(5);
. . .

. . .

. . .
}

{  int k, n;
. . .

. . .
}

{  int z;
. . .foo(z)

}

{  float w(3), x;
. . .

}

char foo(int n) {
int i, m;
char c;
. . .

. . .
}

{  char d;
int m;
. . .

}

block1

block2

block3

block4

block5

block6

block7

Blocks communicate with non-locals or parameters.

compare
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Advantages of block structure
The block structure improves readability of programming 
by delimiting the scope of a binding, whiling nested blocks 
allow some bindings to be shared.

The storage location of shared bindings can be used for 
communication between different blocks.

It saves storage because the binding of a variable needs to 
be remembered only as long as the innermost nesting block 
is executed.

Upon return of a block, the storage for the local variables can be 
deallocated unless a variable is static. 

It provides a mechanism for structuring programs, which 
may improve writability of programming.

For instance, a given task is decomposed to several subtasks. A 
main procedure performs the whole task by distributing the subtasks 
to its sub-procedures within it. 
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Problems w/ globals in block structure
It is generally difficult to exercise sharing bindings (or 
declarations) effectively.
So, there is a tendency to move the declarations to the 
outermost block, which results in many global variables in 
a program. This exacerbates the following problems:

Side-effects: Debugging/maintaining programs are more difficult 
Indiscriminate accesses: Due to implicit inheritance of bindings, 
all bindings in a block can be accessed by all nested blocks even 
when they are not supposed to. This results in less secure code.
e.g.) typos in a nested block may not be recognized, and yet 

producing incorrect output.
Screening problems: The visibility of a declaration in a block can 
be accidentally lost when a variable with the same name is re-
declared in an intervening nested block. This often happens when a 
program is large.
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Implementation of block structure
When a program block is invoked in a block-structured 
language, the body of the block is executed.
Each execution of the body is called an activation of the 
block. 
Associated with each activation of a block is storage of the 
variables declared in the block and any additional 
information needed for the activation.
The storage associated with an activation is called an 
activation record (AR). 
Components of an AR may vary depending on languages.
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Activation record

Local variables

Formal arguments

Return values

Return address

Saved states

Static link

Dynamic link

The size of storage for local variables can be 
easily calculated at compile time if the language 
uses static type binding.

If the block is a function which has to return the 
result, storage is allocated in the activation record.

In order to resume execution of the caller after 
the current block is exited, the address of the 
caller's code to return to should be kept.

Miscellaneous info about the caller site when 
this block was invoked.

It points to the activation record of its innermost 
enclosing block.

It points to the activation record of the caller.

If the block is a procedure, additional storage is 
needed for arguments
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Storage types for the implementation
Static location
– The addresses of static variables are fixed before run time.
– Some storage is reserved for the variables at compile time. 

Stack 
– A stack is used to manage allocation/deallocation of ARs. 
– A language that holds ARs in a stack is said to obey a stack-discipline.

Most traditional imperative programming languages such as C 
and Pascal obey the discipline. 

Heap
– A heap is more expensive but more flexible than a stack.

Typically, it is used for dynamic/pointer variables. 
– Functional languages use a heap for activation record allocation in 

order to treat functions/procedures as first-class citizens. (why?) 
– Also, some newer imperative programming languages such as  

Modula-3 and Oberon use a heap for AR allocation. 
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AR implemented in a stack
Some observations on uses of ARs
– Recursion has significant implications for language implementations 

of block structure. To support recursion, a separate AR has to be 
allocated for each procedure block invocation (why?) 

– When a block is exited, the life-time of the local variables ends. 
The AR is no longer needed after returning from the block. 

ARs can be efficiently managed with an LIFO stack.
f() { . . .}

g() {

static int i=0;

..f()..
if(i++==0) g()..

}

h() {

..g()..

}

main() {

..h()..f()..

}

main main mainmain

h

main

h

main

f

main

h

g

main

h

g

main

h

g

main

h

g

f

main

h

g

g

main

h

g

g

main

h

g

g

f
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Static and dynamic links in a stack
A dynamic link is used to restore 
access to the AR where the current 
block is activated: that is, the AR of 
the caller of the block.
A static link in an AR of a block points 
to the AR of the next nesting block.
Assume that X is a block whose AR is 
currently on the top of the stack when 
a new block Y is invoked. The dynamic 
and static link values of a new AR of Y 
are:

main
h
……

g
f
… h()…

f()…g()…
… g() …

h
f
g
g

main

dynamic

static

When h() is called twice

Static link는코

 드의 block 구조

 에

 

의해

 

결정됨
반면에 dynamic 
link는 어떤 함

 수를불렀을때

 결정됨
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Local accesses are fast:
address of a local variable = address of base of current AR + an offset

Nonlocal accesses are slower because they require extra 
pointers chasing following static or dynamic links.

Access to (non)-local data in a stack

…

1.2e+6
5.09

21…
…

c
y
x
i

AR for foo

offset

base address

heap

stack
foo (int i) {

double x, y;

char* c;

…

}

offset(x) = offset(i) + 4

offset(y) = offset(x) + 8

offset(c) = offset(y) + 8

...  = offset(c) + 4
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Storage allocation for static variables
A static variable declared in a block should retain its value 
between activations of the block.
– If static variables are stored in ARs, this requirement cannot be met 

because the AR for each activation is removed after the activation is 
killed and, thereby, the values of all the variables in the AR is lost.

– One solution is to store static variables in separate memory space 
with fixed addresses. For this, the compiler reserves some static 
storage space for static variables when it compiles the program.

Access to static data is fast:
address of static data = base address of static storage + offset

the base address and offsets can be determined at compile-time.

stack

base address of 
static storage

foo (int i) {
static int s = 0;
…
s++;
…

}

AR for foo
s α

… 4

…

α

Memory

s

address of s = α

 

+ 0
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…

Heap allocation/deallocation
If ARs are managed with a heap(the area of memory used for dynamic 
memory allocation), life times of the ARs need not be tied to the LIFO 
flow of control between activation.
Even after control returns from a procedure block, an AR for the block 
can stay in storage. That is, the local variables are bound as long as 
needed.
– Even in imperative languages, the size of an AR may not be determined 

when the AR is created because of dynamic arrays.
– So, languages that use a stack for AR allocation still need a heap to allocate 

dynamic structures and to put pointers to them in the AR.

The size of a pointer is fixed 
depending on machines.

AR for foo
p heap

stackfoo() {
int* p;
…

p = new int[5];
…

}
... ...
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Allocation of dynamic arrays/lists
Most languages support dynamic allocation primitives.
Pascal type item = ˆlist;

list = record
head : integer;
tail : item

end;
var p : item;
begin

new(p);
p^.head = 3;
p^.tail = nil; // p = {3}

C++ list* p = new list;
p->head = 3;
p->tail = ’\0’;

The primitives allocate storage for a list/struct/record on a heap 
and store a pointer to it in p that is located in the AR on a stack.
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use deallocation primitives: dispose (Pascal), 
delete (C++)

h() { ... int* p = f(); ... delete p; p = f(); … }

versatile and flexible, but more difficult and less secure because 
the user must deallocate dynamic arrays explicitly.

How to deallocate dynamic data?
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Common errors w/ dynamic allocation
Explicit deallocation may cause dangling pointers.

void f () {
char* c = d = "this is a list";
delete c;
...
cout << d; //Error! The string may no longer exist

}

Mixing stack-allocated variables and pointers may cause 
errors.

float* g() {
float* s = new float;
float t;
...
return &t;

} // s is garbage if it is not explicitly deallocated in g
void h() {

float* r = g(); // no syntax error but r is a dangling pointer
...

}
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A function f is recursive if it contains an application of f in 
its definition.

How does Scheme implement recursion?

Recursion simplifies programming by exploiting the divide-
and-conquer method “divide a large problem into smaller ones”

Can you rewrite the finobacci function without using recursion, and 
find how many lines you need for your version?

Recursive structures

fib(4)
fib(3)

fib(2)fib(2)

fib(1)fib(1) fib(0) fib(1) fib(0)

C++ int fib(int n) {
return ((n==0||n==1) ?
1 : fib(n-1)+fib(n-2)));

}
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More facts about recursion
Recursion allows users to implement their algorithms in the 
applicative style rather than the imperative style.

Recursion can be expensive if not carefully used.
Compare these two functions that compute the factorial

function 1

function 2

function 3

main ………
………
………

main {
do this;
do that;
…
do this;
do that;

}

Applicative/Functional Programming Procedural/Imperative Programming

compute the factorial with recursion

int fac(int n) {

return (n==0 ? 1 : n*fac(n-1));
}

compute the factorial with iteration
int fac2(int n) {
int p = 1;
for (; n > 0; n--) p = n * p;

return p;
}
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Comparison of fac and fac2

The main problem with the recursive version is that fac needs more 
memory space and function calls as the problem size n increases. In 
contrast, fac2 always needs only 1 function call and 1 word regardless 
of the value of n. Suppose n is 1000!

Computation of fac(4)
fac(4)
4 * fac(3)
4 * (3 * fac(2))
4 * (3 * (2 * fac(1)))
4 * (3 * (2 * (1 * fac(0))))
4 * (3 * (2 * (1 * 1)))
4 * (3 * (2 * 1))
4 * (3 * 2))
4 * 6
24

Computation of fac2(4)
fac2(4)
p = 1 < ------- n = 4
p = 4 < ------- n = 3
p = 12 < ------- n = 2
p = 24 < ------- n = 1

n = 0

five function calls

four words to store the temporal data

one function call

one word to store the temporal data

return p
return 

function call
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Tail recursion
A function f is tail-recursive if it is a recursive function 
that returns either a value without needing recursion or 
the result of a recursive activation.
Ex: void fac3(int n, int& p) { if (n > 0) { p*=n; fac3(n-1,p);} }

cf: Neither fib nor fac is tail-recursive.

What are tail-recursive functions so great about?
– While still taking advantage of recursion, they can execute 

programs in constant space.

fac3(4, 1)
fac3(3, 4) five function calls
fac3(2, 12) one temporal variable
fac3(1, 24)
fac3(0, 24)

function call

re
tu

rn

This is contant r.w.t. problem size

no int!
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fib2(3,1,1)

fib2(2,2,1)

fib2(1,3,2)
fib2(0,5,3)

return

Application of tail recursion
Write a tail-recursive version of fib.

void fib2(int n, int& l, int& r) {
if (n > 0) { l+=r; r=l-r; fib2(n-1,l,r); }

}

fib2(4,1,0)
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