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The Logarithm

Formal Definition
For any B, N > 0, logBN = K if B K = N.
If (the base) B is omitted, it defaults to 2 in computer 
science.

Examples:
log 32 = 5 (because 25 = 32)

log 1024 = 10

log 1048576 = 20

log  1 billion = about 30

The logarithm grows much more slowly than N, 
and slower than the square root of N.
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Static Searching

Given an integer X and an array A, return the 
position of X in A or an indication that it is not 
present. If X occurs more than once, return any 
occurrence. The array A is not altered.

If input array is not sorted, solution is to use a 
sequential search. Running times:

Unsuccessful search: O( N ); every item is examined

Successful search:

Worst case: O( N ); every item is examined

Average case: O( N ); half the items are examined

Can we do better if we know the array is sorted?
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Binary Search

Yes! Use a binary search.

Look in the middle
Case 1: If X is less than the item in the middle, then look 
in the subarray to the left of the middle

Case 2: If X is greater than the item in the middle, then 
look in the subarray to the right of the middle

Case 3: If X is equal to the item in the middle, then we 
have a match

Base Case: If the subarray is empty, X is not found.

This is logarithmic by the repeated halving 
principle.
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Binary Search Continued

Can do one comparison per iteration instead of 
two by changing the base case.

See online code for details.

Average case and worst case in revised algorithm 
are identical. 1 + log N comparisons (rounded 
down to the nearest integer) are used. Example: If 
N = 1,000,000, then 20 element comparisons are 
used. Sequential search would be 25,000 times 
more costly on average.

Back to interfaces
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Binary Search Algorithm
int binarySearch(int a[], int x)
{

int low = 0, high = a.length - 1;
while( low <= high )
{

int mid = ( low + high ) / 2;
if( a[ mid ] < x )

low = mid + 1;
else if( a [ mid ] > x)

high = mid – 1;
else

return mid;
}
return NOT_FOUND;

}
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Binary Search

Binary Search is an example of a data structure 
implementation:

Insert: O ( N ) time per operation, because we must 
insert and maintain the array in sorted order.

Delete: O ( N ) time per operation, because we must 
slide elements that are to the right of the deleted element 
over one spot to maintain contiguity.

Find: O( log N ) time per operation, via binary search.

In this course we examine different data structures. 
Generally we allow Insert, Delete, and Find, but 
Find and Delete are usually restricted. Example: in 
a stack, only last item is accessible.
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Long pow(x, int  n)

Long pow(long x, int n)
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Exponentiation – O(n)
public static long pow( long x, int n )
{

if( n == 0 )
return 1;

if( n == 1 )
return x;

return x*pow( x, n-1);
}
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Exponentiation – O(lon  n)
public static long pow( long x, int n )
{

if( n == 0 )
return 1;

if( n == 1 )
return x;

if( isEven( n ) )
return pow( x * x, n / 2 );

else
return pow( x * x, n / 2 ) * x;

}
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Maximum Subsequence Sum 
Problem

Examine a problem with several 
different solutions.

Will look at four algorithms

Some algorithms much easier to code 
than others

Some algorithms much easier to prove 
correct than others

Some algorithms much, much faster (or 
slower) than others
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The Problem

Maximum Contiguous Subsequence Sum Problem
Given (possibly negative integers) A1, A2, …, AN, find 
(and identify the sequence corresponding to) the 
maximum value of (Ai + Ai+1 + …+ Aj ).

The maximum contiguous subsequence sum is 
zero if all the integers are negative. (Why?)

Examples (maximum subsequences are 
underlined)

-2, 11, -4, 13, -4, 2

1, -3, 4, -2, -1, 6
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Brute Force Algorithm
int MaxSubSum1( const vector<int> & A)
{

int MaxSum = 0;
for( int i = 0; i < A.size(); i++ )

for( int j = i; j < A.size(); j++ )
{

int ThisSum = 0;
for( int k = i; k <= j; k++ )

ThisSum += A[ k ];
if( ThisSum > MaxSum )

MaxSum = ThisSum;
}

return MaxSum;
}
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Subsequence Generation in 
the Cubic Algorithm

a1 a2 a3 a4 a5a0

i=0

i=1

i=2

i=3
i=4
i=5

ㅓ=1
ㅓ=2

ㅓ=6
ㅓ=5

ㅓ=4
ㅓ=3
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Analysis

Loop of size N inside of loop of size N inside of 
loop of size N means O( N 3 ), or cubic algorithm.

Slight over-estimate (a factor of 6) that results 
from some loops being of size less than N is not 
important.
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Actual Running Time

For N = 100, actual time is 0.47 seconds on a 
particular computer.

Can use this to estimate time for larger inputs:

T( N ) = cN 3

T( 10N ) = c(10N)3

 
= 1000cN 3

 
= 1000T( N )

Inputs size increases by a factor of 10 means that 
running time increases by a factor of 1,000.

For N = 1000, estimate an actual time of 470 
seconds. (Actual was 449 seconds).

For N = 10,000, estimate 449000 seconds (6 
days).
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How To Improve

Remove a loop; not always possible.

Here it is: innermost loop is unnecessary 
because it throws away information.

ThisSum for next j is easily obtained from 
old value of ThisSum:

Need Ai + A i+1 + … + A j-1 + Aj

Just computed Ai +A i+1 + …+ A j-1

What we need is what we just computed + Aj
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The Better Algorithm

int MaxSubSum2( const vector<int> &A)
{

int MaxSum = 0;
for( int i = 0; i < A.size(); i++ )
{

int ThisSum = 0;
for( int j = i; j < A.size(); j++ )
{

ThisSum += A[ j ];
if( ThisSum > MaxSum )

MaxSum = ThisSum;
}

}
return MaxSum;

}
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Analysis

Same logic as before: now the running time is 
quadratic, or O( N 2 )

As we will see, this algorithm is still usable for 
inputs in the tens of thousands.

Recall that the cubic algorithm was not practical 
for this amount of input.
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Actual running time

For N = 100, actual time is 0.011 seconds on the 
same particular computer.

Can use this to estimate time for larger inputs:

T( N ) = cN 2

T( 10N ) = c(10N)2

 
= 100cN 2

 
= 100T( N )

Inputs size increases by a factor of 10 means that 
running time increases by a factor of 100.

For N = 1000, estimate a running time of 1.11 
seconds. (Actual was 1.12 seconds).

For N = 10,000, estimate 111 seconds (= actual).
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Recursive Algorithm

Use a divide-and-conquer approach.

The maximum subsequence either
lies entirely in the first half

lies entirely in the second half

starts somewhere in the first half, goes to the last 
element in the first half, continues at the first element in 
the second half, ends somewhere in the second half. 

Compute all three possibilities, and use the 
maximum.

First two possibilities easily computed recursively.
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Computing the Third Case

Easily done with two loops; see the code

For maximum sum that starts in the first half and 
extends to the last element in the first half, use a 
right-to-left scan starting at the last element in 
the first half.

For the other maximum sum, do a left-to-right 
scan, starting at the first element in the first half.

4 -3 5 -2 -1 2 6 -2
4* 0 3 -2 -1 1 7* 5
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Coding Details

The code is more involved; see the online source.

Make sure you have a base case that handles 
zero-element arrays.

Use a public static driver with a private recursive 
routine.

Recursion rules:
Have a base case

Make progress to the base case

Assume it works

Avoid computing the same solution twice
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Analysis

Let T( N ) = the time for an algorithm to solve a 
problem of size N.

Then T( 1 ) = 1 (1 will be the quantum time unit; 
remember that constants don't matter).

T( N ) = 2 T( N / 2 ) + N
Two recursive calls, each of size N / 2. The time to solve 
each recursive call is T( N / 2 ) by the above definition

Case three takes O( N ) time; we use N, because we will 
throw out the constants eventually.
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int maxSumRec( const vector<int> &A, int left, int right )

{

if( left == right )  // Base case

if( A[left] > 0)

return A[left];

else

return 0;

int center = ( left + right ) / 2;

int maxLeftSum = maxSumRec( A, left, center );

int maxRightSum = maxSumRec( A, center + 1, right );

int maxLeftBorderSum = 0, maxRightBorderSum = 0;
int leftBorderSum = 0, rightBorderSum = 0;

for( int i = center; i >= left; i-- )   {

leftBorderSum += A[ i ];

if( leftBorderSum > maxLeftBorderSum )

maxLeftBorderSum = leftBorderSum;

}

for( int i = center + 1; i <= right; i++ )    {

rightBorderSum += A[ i ];

if( rightBorderSum > maxRightBorderSum )

maxRightBorderSum = rightBorderSum;

}

return max3( maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum );

}
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Bottom Line

T( 1 ) = 1 = 1 * 1

T( 2 ) = 2 * T( 1 ) + 2 = 4 = 2 * 2

T( 4 ) = 2 * T( 2 ) + 4 = 12 = 4 * 3

T( 8 ) = 2 * T( 3 ) + 8 = 32 = 8 * 4

T( 16 ) = 2 * T( 4 ) + 16 = 80 = 16 * 5

T( 32 ) = 2 * T( 5 ) + 32 = 192 = 32 * 6

T( 64 ) = 2 * T( 6 ) + 64 = 448 = 64 * 7

T( N ) = N( 1 + log N ) = O( N log N )



27

N log N

Any recursive algorithm that solves two half-sized 
problems and does linear non-recursive work to 
combine/split these solutions will always take    
O( N log N ) time because the above analysis will 
always hold.

This is a very significant improvement over 
quadratic.

It is still not as good as O( N ), but is not that far 
away either. There is a linear-time algorithm for 
this problem; see the online code. The running time 
is clear, but the correctness is non-trivial. 

Space Complexity?
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The Logarithm

Formal Definition
For any B, N > 0, logBN = K if B K = N.
If (the base) B is omitted, it defaults to 2 in computer 
science.

Examples:
log 32 = 5 (because 25 = 32)

log 1024 = 10

log 1048576 = 20

log  1 billion = about 30

The logarithm grows much more slowly than N, 
and slower than the square root of N.
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Static Searching

Given an integer X and an array A, return the 
position of X in A or an indication that it is not 
present. If X occurs more than once, return any 
occurrence. The array A is not altered.

If input array is not sorted, solution is to use a 
sequential search. Running times:

Unsuccessful search: O( N ); every item is examined

Successful search:

Worst case: O( N ); every item is examined

Average case: O( N ); half the items are examined

Can we do better if we know the array is sorted?
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Binary Search

Yes! Use a binary search.

Look in the middle
Case 1: If X is less than the item in the middle, then look 
in the subarray to the left of the middle

Case 2: If X is greater than the item in the middle, then 
look in the subarray to the right of the middle

Case 3: If X is equal to the item in the middle, then we 
have a match

Base Case: If the subarray is empty, X is not found.

This is logarithmic by the repeated halving 
principle.
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Binary Search Continued

Can do one comparison per iteration instead of 
two by changing the base case.

See online code for details.

Average case and worst case in revised algorithm 
are identical. 1 + log N comparisons (rounded 
down to the nearest integer) are used. Example: If 
N = 1,000,000, then 20 element comparisons are 
used. Sequential search would be 25,000 times 
more costly on average.

Back to interfaces
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Binary Search Algorithm
int binarySearch(int a[], int x)
{

int low = 0, high = a.length - 1;
while( low <= high )
{

int mid = ( low + high ) / 2;
if( a[ mid ] < x )

low = mid + 1;
else if( a [ mid ] > x)

high = mid – 1;
else

return mid;
}
return NOT_FOUND;

}
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Binary Search

Binary Search is an example of a data structure 
implementation:

Insert: O ( N ) time per operation, because we must 
insert and maintain the array in sorted order.

Delete: O ( N ) time per operation, because we must 
slide elements that are to the right of the deleted element 
over one spot to maintain contiguity.

Find: O( log N ) time per operation, via binary search.

In this course we examine different data structures. 
Generally we allow Insert, Delete, and Find, but 
Find and Delete are usually restricted. Example: in 
a stack, only last item is accessible.
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Long pow(x, int  n)

Long pow(long x, int n)
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Exponentiation – O(n)
public static long pow( long x, int n )
{

if( n == 0 )
return 1;

if( n == 1 )
return x;

return pow( x * x, n / 2 );
}
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Exponentiation – O(lon  n)
public static long pow( long x, int n )
{

if( n == 0 )
return 1;

if( n == 1 )
return x;

if( isEven( n ) )
return pow( x * x, n / 2 );

else
return pow( x * x, n / 2 ) * x;

}
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