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Sorting Algorithms in 
General
Sorting: Permuting a sequence of numbers into ascending 

order 

O(n2) Sorting Algorithms: 

Insertion Sort, Bubble Sort

O(nlogn) Sorting Algorithms
Heap Sort: Based on Heap data structure
Quick Sort: Widely regarded as the “fastest” algorithm

Merge Sort: Stable algorithm; if two elements have the same 
value, then their relative position after sorting is the same

Is it possible to sort faster than O(nlogn) time?
Any comparison-based sorting must make at least O(nlogn) 
Comparisons in the worst-case

Linear-Time sorting algorithms for SMALL integers 



Insertion Sort  Algorithm

Consists of N-1 passes
For pass p = 1 through N-1, it ensures that the 
elements in position 0 through p are in sorted 
order.

Use the fact that the elements 0 through p-1 
are already known to be in sorted order.



Insertion Sort Algorithm
void insertionSort()

1 {

2 int

 
j;

3

 
for (int

 
p = 1; p < n; p++)

4 {

5 int tmp = a[p];

6

 
for (j = p; j > 0 && tmp

 
< a[j-1]; j--)

7

 
a[j] = a[j-1];

8

 
a[j] = tmp;

9 }

10

 
}



Insertion Sort Algorithm
Original 34 8 64 51 32 21 Position 

Moved

After 

p =1
8 34 64 51 32 21 1

After 

p = 2
8 34 64 51 32 21 0

After

p = 3
8 34 51 64 32 21 1

After 

p = 4
8 32 34 51 64 21 3

After

p = 5
8 21 32 34 51 64 4



Insertion Sort Algorithm

THEOREM 7.1

The average number of inversion in an 
array of N distinct elements is N(N-1)/4.



Insertion Sort Algorithm

THEOREM 7.1
The average number of inversion in an array of N distinct 
elements is N(N-1)/4.

Proof:
For any list L, consider L’, the list in reverse order.

Consider any pair of two elements in the list (x,y), with 
y > x.
In exactly one of L and L’, this ordered pair represents 
an inversion

The total number of these pairs in a list L and its reverse 
L’ is N(N-1)/2. 

Thus, an average list has half this amount.



Insertion Sort Algorithm

THEOREM 7.1
Any algorithm that sorts by exchanging adjacent 
elements requires Omega(N^2)

Proof:
Each swap removes only one inversion so Omega(N^2) 
swaps are required.



Divide and Conquer
This is more than just a military strategy, it is also 
a method of algorithm design that has created 
such efficient algorithms as Merge Sort, Quick 
Sort

In terms or algorithms, this method has three 
distinct steps:

Divide: If the input size is too large to deal with in a 
straightforward manner, divide the data into two or more 
disjoint subsets.

Recurse: Use divide and conquer to solve the 
subproblems associated with the data subsets.

Conquer: Take the solutions to the subproblems and 
“merge” these solutions into a solution for the original 
problem.



Merge Sort

Divide: 
If S has at least two elements, remove all the elements 

from S and put them into two sequences, S 1 and S 2 , 
each containing about half of the elements of S. (i.e. S 1 
contains the first n/2⎤

 
elements and S 2 contains the 

remaining n/2⎦
 

elements.

Recurse: Recursive sort sequences S 1 and S 2 .

Conquer: Merge the sorted sequences S 1 and S 2 
into a unique sorted sequence S.



Merge(A,p,q,r)
n1 <-

 

q – p + 1

n2 <-

 

r – q
create arrays L[1..n1+1] and R[1..n2+1]

for i <-

 

1 to n1

do L[i] <-

 

A[p+i-1]

for j <-

 

1 to n2

do R[j] <-

 

A[q+j]

L[n1+1] <-

 

infinity

R[n2+1] <-

 

infinity



Merge(A,p,q,r)
i <-

 

1

j <-

 

1

for k <-

 

p to r

do if L[i] <= R[j]

then A[k] <-

 

L[I]

i <-

 

i + 1

else A[k] <-

 

R[j]

j <-

 

j + 1

Loop Invariant:

At the start of each iteration for the for-loop above, the subarray

 

A[p..k-1] 
contains the k-p smallest elements of L[1..n1+1] and R[1..n2+1], in sorted 
order. Moreover, L[I] and R[j] are the smallest elements of their arrays that 
have not been copied back into A.



8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

A … 2 4 5 1 2 3 … A … 1 4 5 1 2 3 …
k k

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞ L 2 4 5 ∞ R 1 2 3 ∞

I j i j

( a ) ( b )



8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

A … 1 2 5 1 2 3 … A … 1 2 2 1 2 3 …
k k

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞ L 2 4 5 ∞ R 1 2 3 ∞

i j i j

( c ) ( d )



8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

A … 1 2 2 3 2 3 … A … 1 2 2 3 4 3 …
k k

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞ L 2 4 5 ∞ R 1 2 3 ∞

i j i j

( e ) ( f )



8 9 10 11 12 13 14 15

A … 1 2 2 3 4 5 …
k

` 1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

( g )



Merge Sort Tree
85 24 63 45 17 31 96 50

85 24 63 45

85 24

85 24

85 24 63 45 17 31 96 50

85 24 63 45

24 85

85 24

Merge

Recursively
Divide

85 24 63 45 17 31 96 50

24 45 63 85

24 85

85 24

45 63

63 45

Merge

Q2: How much memory is needed for merge sort?

Q1: How deep is this tree?

17 31 50 96

17 31

17 31

50 96

96 50



Merge Sort

MergeSort(A,p,r)
if p < r

Then q = floor((p+r)/2)

MergeSort(A,p,q)

MergeSort(A,q+1,r)

Merge(A,p,q,r)

Merge() is the procedure to merge two sorted 
lists.



Merge Sort Analysis
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Merge Sort

Merging two half arrays S1, S2 into a full 
array S requires three pointers, one for S1, 
another for S2, and the other for S.

The formal analysis result coincides with 
the intuitive count of the big Oh, namely, 
the area taken by the merge sort tree.

The amount of memory needed for merge 
sort 

An extra array



Quick Sort
Given an array A[1...r]

Divide: The array A[1...r] is partitioned  into two 
nonempty subarrays A[1...p-1] and A[p+1...r]
around the pivot A[p] such that all elements in 
A[1...p-1] <= A[p] <= all elements in A[p+1...r]
Conquer: Each of A[1...p] and A[p+1...r] are sorted 
by recursive calls to Quick sort

Qucksort(A,1,r) {
if (1 >= r) return;
p=Partition(A,1,r);
Quicksort(A,1,p-1);
Quicksort(A,p+1,r);

}



Quick Sort: Partition
Shaded region: not yet partitioned, white region: Partitioned

5  3  2  6  4  1  3  7

A[1...r]

i j

7  3  2  6  4  1  3  75
i j

5  3  2  6  4  1  3  75
i j

73

i
j

3  3  2  1  4  5 7 6
i

j

5  3  2  6  4  1  3  7573 73  2 5  3  2  6  4  1  3  76  7  53 73  2  1

A[1...p-1]
A[p+1...r]

i j

First, choose the pivot somehow, let’s say, it is A[0]=5.
Second, Move the pivot at the end of the array.
Move i to the right until finding the element > the pivot, and 
Move j to the left until finding the element < the pivot.

Finally, swap the pivot with the i-th element

Pivot



Performance of Quick Sort
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Performance depends on the selection of pivot
: divide -  and 1 element

 ( ) = ( - ) +
 = ( - ) + ( - ) +
 = ( ) +
 

: divide  and  elements

 ( ) = 2 ( ) +

 = 2 ( ) +
 

worst- case partitioning

best - case partitioning



Performance of Quick Sort-  
Cont.
Average-case partitioning:

This average performance requires good 
selection of pivot!

Median-of-Partitioning: take the median of the 
left, right, and center elements in A[l...r]

Assume that the size of a partition is equally likely ( that is 
probability is 

The average value of ( ) of ( - - ) is 

We already know ( ) = ( ) from the average case analysis of
unbalanced binary search tree
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Average Time Complexity



Average Time Complexity

T(n)      T(1)           n+1

---
 

=  ---
 

+ 2 c  sigma 1/i

n+1        2              i = 3

Sigma 1/i = O(log n)

Thus, T(n) = O(n log n)  
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