
Sorting

Data Structures and Algorithms

Kyuseok Shim

SoEECS, SNU.

Sorting Algorithms in
General
Sorting: Permuting a sequence of numbers into ascending

order

O(n2) Sorting Algorithms:

Insertion Sort, Bubble Sort

O(nlogn) Sorting Algorithms
Heap Sort: Based on Heap data structure
Quick Sort: Widely regarded as the “fastest” algorithm

Merge Sort: Stable algorithm; if two elements have the same
value, then their relative position after sorting is the same

Is it possible to sort faster than O(nlogn) time?
Any comparison-based sorting must make at least O(nlogn)
Comparisons in the worst-case

Linear-Time sorting algorithms for SMALL integers

Insertion Sort Algorithm

Consists of N-1 passes
For pass p = 1 through N-1, it ensures that the
elements in position 0 through p are in sorted
order.

Use the fact that the elements 0 through p-1
are already known to be in sorted order.

Insertion Sort Algorithm
void insertionSort()

1 {

2 int

j;

3

for (int

p = 1; p < n; p++)

4 {

5 int tmp = a[p];

6

for (j = p; j > 0 && tmp

< a[j-1]; j--)

7

a[j] = a[j-1];

8

a[j] = tmp;

9 }

10

}

Insertion Sort Algorithm
Original 34 8 64 51 32 21 Position

Moved

After

p =1
8 34 64 51 32 21 1

After

p = 2
8 34 64 51 32 21 0

After

p = 3
8 34 51 64 32 21 1

After

p = 4
8 32 34 51 64 21 3

After

p = 5
8 21 32 34 51 64 4

Insertion Sort Algorithm

THEOREM 7.1

The average number of inversion in an
array of N distinct elements is N(N-1)/4.

Insertion Sort Algorithm

THEOREM 7.1
The average number of inversion in an array of N distinct
elements is N(N-1)/4.

Proof:
For any list L, consider L’, the list in reverse order.

Consider any pair of two elements in the list (x,y), with
y > x.
In exactly one of L and L’, this ordered pair represents
an inversion

The total number of these pairs in a list L and its reverse
L’ is N(N-1)/2.

Thus, an average list has half this amount.

Insertion Sort Algorithm

THEOREM 7.1
Any algorithm that sorts by exchanging adjacent
elements requires Omega(N^2)

Proof:
Each swap removes only one inversion so Omega(N^2)
swaps are required.

Divide and Conquer
This is more than just a military strategy, it is also
a method of algorithm design that has created
such efficient algorithms as Merge Sort, Quick
Sort

In terms or algorithms, this method has three
distinct steps:

Divide: If the input size is too large to deal with in a
straightforward manner, divide the data into two or more
disjoint subsets.

Recurse: Use divide and conquer to solve the
subproblems associated with the data subsets.

Conquer: Take the solutions to the subproblems and
“merge” these solutions into a solution for the original
problem.

Merge Sort

Divide:
If S has at least two elements, remove all the elements

from S and put them into two sequences, S 1 and S 2 ,
each containing about half of the elements of S. (i.e. S 1
contains the first n/2⎤

elements and S 2 contains the

remaining n/2⎦

elements.

Recurse: Recursive sort sequences S 1 and S 2 .

Conquer: Merge the sorted sequences S 1 and S 2
into a unique sorted sequence S.

Merge(A,p,q,r)
n1 <-

q – p + 1

n2 <-

r – q
create arrays L[1..n1+1] and R[1..n2+1]

for i <-

1 to n1

do L[i] <-

A[p+i-1]

for j <-

1 to n2

do R[j] <-

A[q+j]

L[n1+1] <-

infinity

R[n2+1] <-

infinity

Merge(A,p,q,r)
i <-

1

j <-

1

for k <-

p to r

do if L[i] <= R[j]

then A[k] <-

L[I]

i <-

i + 1

else A[k] <-

R[j]

j <-

j + 1

Loop Invariant:

At the start of each iteration for the for-loop above, the subarray

A[p..k-1]
contains the k-p smallest elements of L[1..n1+1] and R[1..n2+1], in sorted
order. Moreover, L[I] and R[j] are the smallest elements of their arrays that
have not been copied back into A.

8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

A … 2 4 5 1 2 3 … A … 1 4 5 1 2 3 …
k k

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞ L 2 4 5 ∞ R 1 2 3 ∞

I j i j

(a) (b)

8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

A … 1 2 5 1 2 3 … A … 1 2 2 1 2 3 …
k k

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞ L 2 4 5 ∞ R 1 2 3 ∞

i j i j

(c) (d)

8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

A … 1 2 2 3 2 3 … A … 1 2 2 3 4 3 …
k k

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞ L 2 4 5 ∞ R 1 2 3 ∞

i j i j

(e) (f)

8 9 10 11 12 13 14 15

A … 1 2 2 3 4 5 …
k

` 1 2 3 4 1 2 3 4

L 2 4 5 ∞ R 1 2 3 ∞

i j

(g)

Merge Sort Tree
85 24 63 45 17 31 96 50

85 24 63 45

85 24

85 24

85 24 63 45 17 31 96 50

85 24 63 45

24 85

85 24

Merge

Recursively
Divide

85 24 63 45 17 31 96 50

24 45 63 85

24 85

85 24

45 63

63 45

Merge

Q2: How much memory is needed for merge sort?

Q1: How deep is this tree?

17 31 50 96

17 31

17 31

50 96

96 50

Merge Sort

MergeSort(A,p,r)
if p < r

Then q = floor((p+r)/2)

MergeSort(A,p,q)

MergeSort(A,q+1,r)

Merge(A,p,q,r)

Merge() is the procedure to merge two sorted
lists.

Merge Sort Analysis

)log(log)(

log
1

)1(=)(

)
2

(2=)(

1=)1(
:equation Recurrence

nnOnnnnT

nT
n
nT

nnTnT

T

=+=

+

+

Merge Sort

Merging two half arrays S1, S2 into a full
array S requires three pointers, one for S1,
another for S2, and the other for S.

The formal analysis result coincides with
the intuitive count of the big Oh, namely,
the area taken by the merge sort tree.

The amount of memory needed for merge
sort

An extra array

Quick Sort
Given an array A[1...r]

Divide: The array A[1...r] is partitioned into two
nonempty subarrays A[1...p-1] and A[p+1...r]
around the pivot A[p] such that all elements in
A[1...p-1] <= A[p] <= all elements in A[p+1...r]
Conquer: Each of A[1...p] and A[p+1...r] are sorted
by recursive calls to Quick sort

Qucksort(A,1,r) {
if (1 >= r) return;
p=Partition(A,1,r);
Quicksort(A,1,p-1);
Quicksort(A,p+1,r);

}

Quick Sort: Partition
Shaded region: not yet partitioned, white region: Partitioned

5 3 2 6 4 1 3 7

A[1...r]

i j

7 3 2 6 4 1 3 75
i j

5 3 2 6 4 1 3 75
i j

73

i
j

3 3 2 1 4 5 7 6
i

j

5 3 2 6 4 1 3 7573 73 2 5 3 2 6 4 1 3 76 7 53 73 2 1

A[1...p-1]
A[p+1...r]

i j

First, choose the pivot somehow, let’s say, it is A[0]=5.
Second, Move the pivot at the end of the array.
Move i to the right until finding the element > the pivot, and
Move j to the left until finding the element < the pivot.

Finally, swap the pivot with the i-th element

Pivot

Performance of Quick Sort

T n T i T n i n Y T

n
T n T n n

T n n n
T i n
O n

T n T n

T n
O n n

i

n

n n

n

n

() () () (()) ())

()

(log)

= + − − + = =

+
=

=

=∑

1 0 1 0

1
1
2 1

1

2

2
2

2 2

2

4

Performance depends on the selection of pivot
: divide - and 1 element

 () = (-) +
 = (-) + (-) +
 = () +

: divide and elements

 () = 2 () +

 = 2 () +

worst- case partitioning

best - case partitioning

Performance of Quick Sort-
Cont.
Average-case partitioning:

This average performance requires good
selection of pivot!

Median-of-Partitioning: take the median of the
left, right, and center elements in A[l...r]

Assume that the size of a partition is equally likely (that is
probability is

The average value of () of (- -) is

We already know () = () from the average case analysis of
unbalanced binary search tree

1

1

2

1 0

1

0

1

n

n

n

T i T n i T j

T n T j n
T n O n n

j

n

j

n

)

()

() [()]
log

=

−

=

−

∑

∑= +

Average Time Complexity

Average Time Complexity

T(n) T(1) n+1

= ---

+ 2 c sigma 1/i

n+1 2 i = 3

Sigma 1/i = O(log n)

Thus, T(n) = O(n log n)

	슬라이드 번호 1
	Sorting Algorithms in General
	Insertion Sort Algorithm
	Insertion Sort Algorithm
	Insertion Sort Algorithm
	Insertion Sort Algorithm
	Insertion Sort Algorithm
	Insertion Sort Algorithm
	Divide and Conquer
	Merge Sort
	Merge(A,p,q,r)
	Merge(A,p,q,r)
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	Merge Sort Tree
	Merge Sort
	Merge Sort Analysis
	Merge Sort
	Quick Sort
	Quick Sort: Partition
	Performance of Quick Sort
	Performance of Quick Sort-Cont.
	Average Time Complexity
	Average Time Complexity

