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Chapter 8. Mining Stream, Time-
Series, and Sequence Data

@ Mining data streams

@ Mining time-series data

@ Mining sequence patterns in transactional

databases

@ Mining sequence patterns in biological

data
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Ime-Series and Sequential Pattern
Mining

= Regression and trend analysis—A &~
statistical approach

= Similarity search in time-series analysis
= Sequential Pattern Mining

= Markov Chain

= Hidden Markov Model
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Mining Time-Series Data

= [Ime-series database

= Consists of sequences of values or events changing
with time

= Data is recorded at regular intervals
= Characteristic time-series components
= Trend, cycle, seasonal, irregular
= Applications
= Financial: stock price, inflation
= Industry: power consumption
= Scientific: experiment results
= Meteorological: precipitation
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Price History - International Business Machines Corp... (3M17/97 - 3/20/98)
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= A time series can be illustrated as a time-series graph
which describes a point moving with the passage of time
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Categories of Time-Series Movements

= Categories of Time-Series Movements

= Long-term or trend movements (trend curve): general direction in
which a time series is moving over a long interval of time

= Cyclic movements or cycle variations: long term oscillations about
a trend line or curve

= €.9., business cycles, may or may not be periodic
= Seasonal movements or seasonal variations

= i.e, almost identical patterns that a time series appears to
follow during corresponding months of successive years.

= Irregular or random movements

= Time series analysis: decomposition of a time series into these four
basic movements

= Additive Modal: TS=T+C+ S + |
= Multiplicative Modal: TS =T x C x S x |
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Estimation of Trend Curve

= The freehand method

= Fit the curve by looking at the graph

= Costly and barely reliable for large-scaled data mining
= The least-square method

= Find the curve minimizing the sum of the squares of
the deviation of points on the curve from the
corresponding data points

= The moving-average method
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Moving Average

= Moving average of order n

Y1 +4y2 +- +Yn Y2 T+Y3I T+ T Y+l Y3 TYL T T Ynt2

Tl T TL

= Smoothes the data
= Eliminates cyclic, seasonal and irregular movements
= Loses the data at the beginning or end of a series

= Sensitive to outliers (can be reduced by weighted
moving average)
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Trend Discovery in Time-Series (1):
Estimation of Seasonal Variations

= Seasonal index

= Set of numbers showing the relative values of a variable during
the months of the year

= E.g., if the sales during October, November, and December are
80%, 120%, and 140% of the average monthly sales for the
whole year, respectively, then 80, 120, and 140 are seasonal
index numbers for these months

s Deseasonalized data

« Data adjusted for seasonal variations for better trend and cyclic
analysis

= Divide the original monthly data by the seasonal index numbers
for the corresponding months
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Trend Discovery In Time-Series (2)

= Estimation of cyclic variations

= If (approximate) periodicity of cycles occurs, cyclic
Index can be constructed in much the same manner as
seasonal indexes

= Estimation of irregular variations

= By adjusting the data for trend, seasonal and cyclic
variations

= With the systematic analysis of the trend, cyclic, seasonal,
and irregular components, it is possible to make long- or
short-term predictions with reasonable quality
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Time-Series & Sequential Pattern Mining

= Regression and trend analysis—A

statistical approach
= Similarity search in time-series analysis :
= Sequential Pattern Mining
= Markov Chain

s Hidden Markov Model
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Similarity Search in Time-Series Analysis

= Normal database query finds exact match
= Similarity search finds data sequences that differ only
slightly from the given query sequence
= Two categories of similarity queries
= Whole matching: find a sequence that is similar to the
guery sequence
= Subseguence matching: find all pairs of similar
sequences
= Typical Applications
= Financial market
= Market basket data analysis
= Scientific databases

= Medical diagnosis
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Data Transformation

= Many techniques for signal analysis require the data to
be in the frequency domain

= Usually data-independent transformations are used
= The transformation matrix is determined a priori
= discrete Fourier transform (DFT)
= discrete wavelet transform (DWT)

= The distance between two signals in the time domain is
the same as their Euclidean distance in the frequency
domain
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Discrete Fourier Transform

from & = [x]. ¢t =0,.... n—1to X = Xl f =0 on—1:
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= DFT does a good job of concentrating energy in the first
few coefficients

= |If we keep only first a few coefficients in DFT, we can
compute the lower bounds of the actual distance

= Feature extraction: keep the first few coefficients (F-index)
as representative of the sequence
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DFT (continued)

s Parseval's Theorem

n-1 ) n-1 ,
DX IP=) 1 X ]
t=0 f=0

= The Euclidean distance between two signals in the time

domain is the same as their distance in the frequency
domain

= Keep the first few (say, 3) coefficients underestimates the
distance and there will be no false dismissals!

anl S[t]-Qlt][*<e = Zl FS)[f]-FQ)[f]f<e

August 12, 2008 Data Mining: Concepts and Techniques 17



Multidimensional Indexing in Time-Series

= Multidimensional index construction

= Constructed for efficient accessing using the first few
Fourier coefficients

= Similarity search

= Use the index to retrieve the sequences that are at
most a certain small distance away from the query
sequence

= Perform post-processing by computing the actual
distance between sequences in the time domain and
discard any false matches
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Subseguence Matching

= Break each sequence into a set of
pieces of window with length w

s Extract the features of the
subsequence inside the window

= Map each sequence to a “trail” in
the feature space

= Divide the trail of each sequence

Into “subtrails” and represent each \/
of them with minimum bounding
rectangle

= Use a multi-piece assembly
algorithm to search for longer
sequence matches
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Analysis of Similar Time Series
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Enhanced Similarity Search Methods

= Allow for gaps within a sequence or differences in offsets
or amplitudes

= Normalize sequences with amplitude scaling and offset
translation

= Two subsequences are considered similar if one lies within
an envelope of € width around the other, ignoring outliers

= Two sequences are said to be similar if they have enough
non-overlapping time-ordered pairs of similar
subsequences

= Parameters specified by a user or expert: sliding window
size, width of an envelope for similarity, maximum gap,
and matching fraction
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Steps for Performing a Similarity Search

= Atomic matching

= Find all pairs of gap-free windows of a small length that
are similar

= Window stitching

= Stitch similar windows to form pairs of large similar
subsequences allowing gaps between atomic matches

= Subsequence Ordering

= Linearly order the subsequence matches to determine
whether enough similar pieces exist
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Similar Time Series Analysis
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Query Languages for Time Sequences

= Time-sequence query language
= Should be able to specify sophisticated queries like

Find all of the sequences that are similar to some sequence in class A,
but not similar to any sequence in class B

= Should be able to support various kinds of queries: range queries,
all-pair queries, and nearest neighbor queries

= Shape definition language
= Allows users to define and query the overall shape of time
sequences

= Uses human readable series of sequence transitions or macros
= Ignores the specific details

« E.g., the pattern up, Up, UP can be used to describe
Increasing degrees of rising slopes

=« Macros: spike, valley, etc.
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