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Chapter 8. Mining Stream, Time-
Series, and Sequence Data

Mining data streams

Mining time-series data
Mining sequence patterns in transactional 

databases

Mining sequence patterns in biological 

data
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Time-Series and Sequential Pattern 
Mining

Regression and trend analysis—A 

statistical approach

Similarity search in time-series analysis

Sequential Pattern Mining

Markov Chain

Hidden Markov Model
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Mining Time-Series Data

Time-series database

Consists of sequences of values or events changing 
with time

Data is recorded at regular intervals

Characteristic time-series components

Trend, cycle, seasonal, irregular

Applications

Financial: stock price, inflation

Industry: power consumption

Scientific: experiment results

Meteorological: precipitation
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A time series can be illustrated as a time-series graph 
which describes a point moving with the passage of time
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Categories of Time-Series Movements

Categories of Time-Series Movements 
Long-term or trend movements (trend curve): general direction in 
which a time series is moving over a long interval of time
Cyclic movements or cycle variations: long term oscillations about 
a trend line or curve

e.g., business cycles, may or may not be periodic
Seasonal movements or seasonal variations

i.e, almost identical patterns that a time series appears to 
follow during corresponding months of successive years.

Irregular or random movements
Time series analysis: decomposition of a time series into these four 
basic movements

Additive Modal: TS = T + C + S + I
Multiplicative Modal: TS = T × C × S × I
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Estimation of Trend Curve

The freehand method

Fit the curve by looking at the graph

Costly and barely reliable for large-scaled data mining

The least-square method

Find the curve minimizing the sum of the squares of 

the deviation of points on the curve from the 

corresponding data points

The moving-average method
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Moving Average

Moving average of order n

Smoothes the data

Eliminates cyclic, seasonal and irregular movements

Loses the data at the beginning or end of a series

Sensitive to outliers (can be reduced by weighted 

moving average)
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Trend Discovery in Time-Series (1):
Estimation of Seasonal Variations

Seasonal index

Set of numbers showing the relative values of a variable during 
the months of the year

E.g., if the sales during October, November, and December are 
80%, 120%, and 140% of the average monthly sales for the 
whole year, respectively, then 80, 120, and 140 are seasonal 
index numbers for these months

Deseasonalized data

Data adjusted for seasonal variations for better trend and cyclic 
analysis

Divide the original monthly data by the seasonal index numbers 
for the corresponding months
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Seasonal Index
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Raw data from 
http://www.bbk.ac.uk/man
op/man/docs/QII_2_2003
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Trend Discovery in Time-Series (2)

Estimation of cyclic variations

If (approximate) periodicity of cycles occurs, cyclic 
index can be constructed in much the same manner as 
seasonal indexes

Estimation of irregular variations

By adjusting the data for trend, seasonal and cyclic 
variations

With the systematic analysis of the trend, cyclic, seasonal, 
and irregular components, it is possible to make long- or 
short-term predictions with reasonable quality
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Time-Series & Sequential Pattern Mining

Regression and trend analysis—A 

statistical approach

Similarity search in time-series analysis

Sequential Pattern Mining

Markov Chain

Hidden Markov Model
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Similarity Search in Time-Series Analysis

Normal database query finds exact match 
Similarity search finds data sequences that differ only 
slightly from the given query sequence
Two categories of similarity queries

Whole matching: find a sequence that is similar to the 
query sequence
Subsequence matching: find all pairs of similar 
sequences

Typical Applications
Financial market
Market basket data analysis
Scientific databases
Medical diagnosis
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Data Transformation

Many techniques for signal analysis require the data to 
be in the frequency domain

Usually data-independent transformations are used

The transformation matrix is determined a priori

discrete Fourier transform (DFT)

discrete wavelet transform (DWT)

The distance between two signals in the time domain is 
the same as their Euclidean distance in the frequency 
domain
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Discrete Fourier Transform

DFT does a good job of concentrating energy in the first 
few coefficients

If we keep only first a few coefficients in DFT, we can 
compute the lower bounds of the actual distance

Feature extraction: keep the first few coefficients (F-index) 
as representative of the sequence
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DFT (continued)

Parseval’s Theorem

The Euclidean distance between two signals in the time 
domain is the same as their distance in the frequency 
domain

Keep the first few (say, 3) coefficients underestimates the 
distance and there will be no false dismissals!

∑∑
−

=

−

=

=
1

0

2
1

0

2 ||||
n

f
f

n

t
t Xx

 |])[(])[(||][][|
3

0

2

0

2 ∑∑
==

≤−⇒≤−
f

n

t
fQFfSFtQtS εε



August 12, 2008 Data Mining: Concepts and Techniques 18

Multidimensional Indexing in Time-Series

Multidimensional index construction

Constructed for efficient accessing using the first few 
Fourier coefficients

Similarity search

Use the index to retrieve the sequences that are at 
most a certain small distance away from the query 
sequence

Perform post-processing by computing the actual 
distance between sequences in the time domain and 
discard any false matches
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Subsequence Matching

Break each sequence into a set of 
pieces of window with length w
Extract the features of the 
subsequence inside the window
Map each sequence to a “trail” in 
the feature space
Divide the trail of each sequence 
into “subtrails” and represent each 
of them with minimum bounding 
rectangle
Use a multi-piece assembly 
algorithm to search for longer 
sequence matches
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Analysis of Similar Time Series
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Enhanced Similarity Search Methods

Allow for gaps within a sequence or differences in offsets 
or amplitudes
Normalize sequences with amplitude scaling and offset 
translation
Two subsequences are considered similar if one lies within 
an envelope of ε width around the other, ignoring outliers
Two sequences are said to be similar if they have enough 
non-overlapping time-ordered pairs of similar 
subsequences 
Parameters specified by a user or expert: sliding window 
size, width of an envelope for similarity, maximum gap, 
and matching fraction
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Steps for Performing a Similarity Search

Atomic matching

Find all pairs of gap-free windows of a small length that 
are similar

Window stitching

Stitch similar windows to form pairs of large similar 
subsequences allowing gaps between atomic matches

Subsequence Ordering

Linearly order the subsequence matches to determine 
whether enough similar pieces exist
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Similar Time Series Analysis

VanEck International Fund Fidelity Selective Precious Metal and Mineral Fund

Two similar mutual funds in the different fund group
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Query Languages for Time Sequences

Time-sequence query language

Should be able to specify sophisticated queries like

Find all of the sequences that are similar to some sequence in class A, 
but not similar to any sequence in class B

Should be able to support various kinds of queries: range queries, 
all-pair queries, and nearest neighbor queries

Shape definition language

Allows users to define and query the overall shape of time 
sequences 

Uses human readable series of sequence transitions or macros

Ignores the specific details

E.g., the pattern up, Up, UP can be used to describe 
increasing degrees of rising slopes

Macros: spike, valley, etc.
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