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Semantic Compression

� Real-life data are highly structured and there are 
strong correlations between the attributes and 
records.

� The syntactic compression algorithms are not 
designed to take advantage of such structures.

� Recently, some new schemes are proposed 
based on these observations.

� Naturally, such schemes are so-called semantic
compression methods in contrary to the 
syntactic ones.
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Semantic Compression

� First derive a description model by taking into 
account the semantic meaning of the 
attributes 

� Represent the original data by the derived 
model.

� The data, that cannot derive from the model, 
are explicitly stored
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Syntactic Compression
� Statistical Model vs. Dictionary-based Model

� Statistical Model 

� Each distinct character of the input data is encoded with 
the code assignment being based on the probability of 
the character’s appearance in the data.

� E.g. Huffman coding, Arithmetic coding

� Dictionary-based Model

� Maintains a dictionary that contains a list of commonly 
occurring character strings in data and their 
corresponding codes

� E.g. LZW, Vector Quantization

� Lossless vs. Lossy

� Lossless: Huffman coding, Arithmetic coding, LZW coding

� Lossy: Vector quantization
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Syntactic Compression
� Huffman Coding

� First developed by David Huffman.

� Symbols that have higher probabilities will have shorter 
codes than symbols that have lower probabilities.

� The two symbols that have minimum probabilities will 
have the same length.

� LZW(Lempel-Ziv-Welch) coding
� Used both in UNIX compress and DOS pkzip

� Organized around a string translation table which 
contains a set of character strings and their 
corresponding code values

� The string table has prefix property that for every string 
in the table, its prefix is also in the table.
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Lossless 
Compression(static)

� Dictionary Encoding

� Assigns an ID to each new word
input: ABC  ABC BC DDD

Compressed Data:  1 1 2 3

Dictionary: ABC =1, BC = 2, DDD=3

� Binary Encoding

� Binary representation of numeric data

input: “100” “ 20” “ 50”

Encoding: 100 20 50
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Lossless 
Compression(static)

� Differential Encoding (or Delta Encoding)

� Replaces a data item with a code value that 
defines its relationship to a specific data item

ex)
input: 100 120 130 

Compressed Data: 100 20 30

input: Johnson Jonah Jones Jorgenson

Compressed Data: (0) Johnson (2)nah (3)es (2)rgenson
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Lossless Compression 
(semi-adaptive)

� Huffman Encoding

� Assigns shorter codes to more 
frequently appearing symbols and longer 
codes to less frequently appearing 
symbols

� ex)

input: ACE

Encoding:01001101
D
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Lossless 
Compression(adaptive)

� LZ(Lempel-Ziv) Coding
� Adaptive dictionary encoding

� Converts variable-length strings into fixed-
length codes

Input: {A B AB AA ABA}

Compressed Data: {(0,A)(0,B)(1,B)(1,A)(3,A)}

� new table entry is coded as (i,c)
� i :  the codeword for the existing table entry(12 bit)

� c : the appended character(8bit)
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Fascicle

� [Jagadish, Madar, Ng 99]

� Fascicles

� Informally, subsets of a relation having very si
milar values for many attributes

� Technically, a k-D fascicle of a relation is a su
bset of records having k compact attributes

� An attribute A of a subset F of records is compact 
with tolerance t, if:

� the range of A-values (numeric), or 

� the number of distinct A-values (categorical) 

of all the records in F does not exceed t
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What is a Fascicle? (cont.)

� Compress data by storing representative values (e.g., “centroid”)  
only once for each attribute cluster

� Lossy compression: information loss is controlled by the notion of 
“similar values” for attributes  (user defined)

137,500  poor   :2

age           salary        assets        credit
20           30,000       25,000         good
30           35,000       50,000         good
35           40,000       75,000         good
40          100,000     175,000        poor
50          110,000     250,000        good
60           50,000      150,000        poor
70           35,000      125,000        poor
75           15,000      100,000        good

35,000  50,000  good  :3

33--D FasciclesD Fascicles
error≤4       error≤5,000 error≤25,000 error=0

22--D FasciclesD Fascicles
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Fascicle
� Lossless:Lossless:Lossless:Lossless:

� First, use fascicles to physically re-order the relatio
n 

� Compact attributes are not projected away

� Apply syntactic compression 

� Syntactic compression dependent on the physic
al ordering of records

� LossyLossyLossyLossy::::

� First, use fascicles and project away compact attr
ibutes

� Apply syntactic compression
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Fascicle

0%

10%

20%

30%

40%

50%

60%

70%

binary(compress) ascii(gzip)

syntactic only

fascicle re-
ordering+syntactic
fascicle lossy+syntactic

lossless: extra 25% compression
lossy: extra 75% compression (max error t = 1/32)

dataset: AT&T

From [Jagadish, Madar, Ng 99]
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Compressing with 
Fascicles

� k-dimensional fascicle  F(k,t): subset of 
records with  k  compact attributes

� Compress by storing single centroid value 
for k compact attributes 

� User-defined compactness tolerance t  
(vector)  specifies the allowable loss in the 
compression  per attribute

� E.g.,  t[Duration] = 3  means that all 
“Duration” values in a fascicle are within 3 of 
the centroid value
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Compressing with 
Fascicles

� Problem Statement

� Given a table T and a compactness-tolerance 
vector t, 

� Find fascicles within the specified tolerances such 
that the total storage is minimized (so-called 
‘storage minimization problem’ )

� Problem Decomposition

(1) Find candidate fascicles in T

(2) Select the best fascicles to compress T

� NP-Complete

� Corresponds to Minimum Cover Problem [Karp 72]
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Storage Minimization 
Problem

� Given a collection C of subsets of a finite 
set S and a positive integer K, 

� Is there a subset C’⊆C with |C’|≤K such 
that every element of S belongs to at least 
one member of C’?

� NP-Complete

� Greedy selection is among the best 
existing heuristics
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How to Find Candidate Fas
cicles?

� Operates on the lattice consisting of all po
ssible subsets of records 

� Finding all fascicles needs too MUCH effo
rt

� Greedy selection only needs some good q
uality candidates, not all of them

� Thus, we adapt randomized strategy
� Pick some good starting fascicles 

� Grow them to maximal sizes to ensure quality
by one scan over data
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Tip set & Maximal set
� Tip set

� It is hard to find the exact k-D fascicles.
� To find a k-D fascicle for a given value k.
� (⊥ ⊆ S1⊆ S2 ⊆ S3 ⊆ … ⊆ ⊤)
⊤ : entire relation, ⊥ : empty set
St : i-D fascicle
St+1 : j-D fascicle, a superset of St

Then, j ≤ i
For 1 ≤ k ≤ n, if j < k ≤ i, we call St a tip set.

� In other words, S is a k-D tip set if S is a k-D fascicle, and 
there is an parent T of S such that T is a j-D fascicle with j 
< k.

� Maximal set
� S is a k-D maximal set if S is a k-D fascicle, and for all 

supersets T of S, T is a j-D fascicle with j < k
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Why tipset? -Example

18029035WingerMay

2451159WingerOdjick

18029035WingerMay

4-D fascicle

1-D fascicle

� We want 2-D fascicle. 

� We add one more tuple to 4-D 
fascicle.
� But, it becomes 1-D fascicle.
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Algorithm Single-k 
� Input : A dimensionality k, number of fascicles P, a buffer of b

pages, and a relation R of r pages 

� Output : P k-D fascicles

1. Divide R into q disjoint pieces, each comprising up to b 
randomly chosen pages from R, i.e., q =┌ r/b ┐.

2. For each piece : /* choosing initial tip sets */

2.1 Read the piece into main memory.

2.2 Read the records in main memory to produce a series of 
tip sets.

2.3 Repeat 2.2, each with a different permutation of the 
records, until P/q tip sets are obtained.

3. /* growing the tip sets */

Grow all P tip sets with one pass over the relation.

Output the grown tip sets.
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Single-k algorithm - Example

3439543DefenseBlake

2243077DefenseBorque

3439543DefenseBlake

18303DefenseCullimore

2243077DefenseBorque

3439543DefenseBlake

compactness tolerance tPosition=1, tPoints=10, tPlayed Mins=60, tPenalty Mins=20

4-D fasicle or 4-D tipset3-D fasicle or 3-D tipset2-D fasicle or 2-D tipset

� Green cells represent that the attributes are compact.

� Red cells represent that the attributes is not compact.
� Black cells represent that the attributes need not check because 
those cells were red cells in previous step.

26458130DefenseGretzky

18303DefenseCullimore

2243077DefenseBorque

3439543DefenseBlake

12056010DefenseKonstantin
ov

26458130DefenseGretzky

18303DefenseCullimore

2243077DefenseBorque

3439543DefenseBlake

2-D fasicle or 2-D tipset
we want 2-D tip set and stop here. 

{Konstantinov} is used to start a second tip set

12056010DefenseKonstantin
ov

26458130DefenseGretzky

18303DefenseCullimore

2243077DefenseBorque

3439543DefenseBlake

2-D fascicle or 2-D tipset

4-D fascicle or 4-D tipset
� Iterate the previous done with this 
4-D fascicle

6385DefenseWotton

16053082CentreTkachuk

2451159WingerOdjick

18029035WingerMay

12056010DefenseKonstantinov

26458130DefenseGretzky

18303DefenseCullimore

2243077DefenseBorque

3439543DefenseBlake

Penalty MinsPlayed MinsPointsPositionName

� We want 2-D fascicles
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Greedy Selection for the 
Single-k algorithm

� To represent the storage savings induced by a fascicle F, it is 
weighted by wt(F) = k * |F|, where k is the dimensionality of F.

� In a straightforward implementation of the greedy selection, we 
select the candidate fascicle with the highest weight.

� adjust the weight of the remaining fascicles. 

� If A is selected fascicle, then the adjusted weight of each 
remaining fascicle F is given by

� Wt(F/A) = k * |F - A|

� Then from among the remaining fascicles, we pick the one with 
the heaviest adjusted weight, and repeat.
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The multi-k Algorithm
� Exploits single-k algorithm to produce fascicles all 

having dimensionalities ≥ k.

� Recall from the Single-k algorithm how a k-D tip 
set corresponds to a path (⊥, S1 , S2 , S3 , St)

� While Single-k algorithm construct a path (⊥, S1 , 
S2 , S3 ,St) and obtains St as a k-D tip set, 

� the Multi-k algorithm uses exactly the same path 
to obtain larger sets on the path with 
dimensionality i, for i ≥ k.
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ClassificationClassificationClassificationClassification
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Classification

� Given:
� Database of tuples, each assigned a class label

� Develop a model/profile for each class
� Example profile (good credit):
� (25 <= age <= 40 and income > 40k) or (married 

= YES)

� Sample applications:
� Credit card approval (good, bad)
� Bank locations (good, fair, poor)

� Treatment effectiveness (good, fair, poor)
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What is Classification?

� Given a database of tuples

� Each tuple consists of 

� A set of Attribute values

� A assigned categorical class label

� Develop a model/classifier for each 
class based on the set of attributes

� Use the model to predict the class 
lable of  future data
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Classification Model

� Decision Tree Model

� Probabilistic Model(Bayesian etc.)

� Neural Network Model

� Support Vector Machine

� K-nearest neighbor 
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Decision Trees

salary education label

10000 high school reject

40000 under graduate accept

15000 under graduate reject

75000 graduate accept

18000 graduate accept

accept reject

salary < 20000

noyes

noyes
accept

education in graduate

Credit Analysis
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Decision Trees

� Pros

� Fast execution time

� Generated rules are easy to interpret by humans

� Scale well for large data sets

� Can handle high dimensional data

� Cons

� Cannot capture correlations among attributes

� Consider only axis-parallel cuts
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Decision Tree Algorithms 

� Classifiers from machine learning community:

� ID3[Qui86]

� C4.5[Qui93]

� CART[BFO84]

� Classifiers for large database:

� SLIQ[MAR96], SPRINT[SAM96]

� SONAR[FMMT96]

� Rainforest[GRG98]

� Pruning phase followed by building phase
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Decision Tree Algorithm
� A decision tree is created in two phases:

� Building Phase

� Recursively split nodes using best splitting 
attribute for node until all the examples in each 
node belong to one class

� Pruning Phase 

� Prune leaf nodes recursively to prevent over-
fitting 

� Smaller imperfect decision tree generally 
achieves better accuracy
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SPRINT
� [Shafer, Agrawal, Manish 96]

� Building Phase

� Initialize root node of tree

� while while while while a node N that can be split exists

� for each for each for each for each attribute A, evaluate splits on A

� use best split to split N

� Use gini index to find best split

� Separate attribute lists maintained in each node of 
tree

� Attribute lists for numeric attributes sorted
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How can we get best split?

� Select the attribute that is most useful for 
classifying training set

� gini index and entropy

� Statistical properties

� Measure how well an attribute separates 
the training set

� Entropy ( entropy(T) = - Σpj x log2(pj) )

� Gini Index ( gini(T) = 1 - Σpj
2 )
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Entropy example

5

3
)""( == acceptclassPobablity

970951.0
5

2
log

5

2

5

3
log

5

3
)( 22

=

−−=SEntropy

5

2
)""( == rejectclassPobablity

salary education label
10000 high school reject
40000 under graduate accept
15000 under graduate reject
75000 graduate accept
18000 graduate accept

)()()(
right

right
left

left
split SE

N
NSE

N

N
SE +=

salary < 20000

noyes

salary education label
10000 high school reject

15000 under graduate reject
18000 graduate accept

salary education label

40000 under graduate accept
75000 graduate accept

918296.0
3

2
log

3

2

3

1
log

3

1
)( 22

=

−−=leftSEntropy

0)( =rightSEntropy

550978.00
5

2
918296.0

5

3
)( =×+×=SEntropysplit
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Pruning Phase

� Smaller imperfect decision tree generally 
achieves better accuracy

� Prune leaf nodes recursively to prevent 
over-fitting

[# of tuples : 20000] [# of tuples : 1]

noyes

noyes

[# of tuples : 20001]

noyes
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Attribute List

� SPRINT creates an attribute 
list for each attribute

� Numerical attribute list is 
sorted

� Attribute records contains

� Attribute value

� Class label

� Index 

of the record

salary label rid
10000 reject 0
15000 accept 2
18000 reject 4
40000 accept 1
75000 accept 3

salary education label
10000 high school reject
40000 under graduate accept
15000 under graduate reject
75000 graduate accept
18000 graduate accept

education label rid
high school reject 0
under graduate accept 1
under graduate reject 2
graduate accept 3
graduate accept 4

[Training set]

[Attribute list for salary] [Attribute list for education]
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Attribute list (cont.) 

� All attribute lists are 
made at the root

� As the tree is grown, 
the attribute lists 
belonging to each 
node are partitioned 
and associated with 
the children

salary label rid
10000 reject 0
15000 accept 2
18000 reject 4
40000 accept 1
75000 accept 3

education label rid
high school reject 0
under graduateaccept 1
under graduate reject 2
graduate accept 3
graduate accept 4

noyes

salary < 20000

salary label rid
10000 reject 0
15000 accept 2
18000 reject 4

education label rid
high school reject 0
under graduatereject 2
graduate accept 4

salary label rid
40000 accept 1
75000 accept 3

education label rid
under graduate accept 1
graduate accept 3
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Histogram

� For continuous attributes, two histograms are 
associated with each decision-tree node.  These 
histograms, denoted as Cabove and Cbelow

� Cbelow:: maintains this distribution for attribute 
records that already been processed

� Cabove: maintains this distribution for attribute 
records that have not been processed

salary label rid
10000 reject 0
15000 accept 2
18000 reject 4

40000 accept 1
75000 accept 3

[Attribute List] [position of cursor] [state of Class Histograms]

position 0

position 2

position 5

0 0Cbelow

3 2Cabove

1 1Cbelow

2 1Cabove

accept reject
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Finding Split Points

� Numeric attributes

� Cbelow initials to zeros

� Cabove initials with the class distribution at that 
node

� Scan the attribute list to find the best split

� Categorical attributes
� Scan the attribute list to build the count matrix

� Use the subsetting algorithm to find the best 
split
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Evaluate numeric attributes

[Position 1]
0 1Cbelow

3 1Cabove

accept reject

1 1Cbelow

2 1Cabove
[Position 2]

1 2Cbelow

2 0Cabove
[Position 3]

2 2Cbelow

1 0Cabove
[Position 4]

811278.0

4

1
log

4

1

4

3
log

4

3

5

4
1log

1

1

5

1
)(

=








 −−×+×=SEntropy split

950978.0)( =SEntropysplit

550978.0)( =SEntropysplit

8.0)( =SEntropysplit

Choose Position 3 has lowest Entropy!

[Histogram for salary]
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Evaluate categorical 
attributes

02graduate

11under graduate

10high school

rejectaccept

education label rid

high school reject 0

under graduate accept 1

under graduate reject 2

graduate accept 3

graduate accept 4

[Attribute List]

[Histogram for education]

3 distinct value 23-2 split condition exists!

550978.00
5

2
918296.0

5

3
)( =×+×=SEntropy split

{graduate}

950978.0)( =SEntropy split

{under graduate}

550978.0)( =SEntropy split

{under graduate, graduate}

550978.00
5

2
918296.0

5

3
)( =×+×=SEntropy split

{high school, under graduate}

{high school}

811278.0)( =SEntropy split

{high school, graduate}

Choose {graduate} has lowest Entropy!
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� [S. Babu, M. N. Garofalakis, and R. Rastogi 01]

� Model-Based Semantic Compression (MBSC)

� Extract  Data Mining models from the data table

� Use the extracted models to construct an effective 
compression plan 

� Lossless or lossy compression

� SPARTAN system: specific instantiation of MBSC framework

� Key observation: row-wise attribute clusters (a-la fascicles) 
are not sufficient 

(e.g., Y = aX +b)

� Idea: use carefully-selected collection of  Classification and 
Regression Trees (CaRTs) to capture such “vertical”
correlations and  predict values for entire columns

SPARTAN
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SPARTAN Example  CaRT
Models

age          salary        assets        credit
20            30,000       25,000         poor
25            76,000       75,000         good
30            90,000      200,000        good
40           100,000     175,000        poor
50           110,000     250,000        good
60            50,000      150,000        good
70            35,000      125,000        poor
75            15,000      100,000        poor

error ≤≤≤≤ 25,000

assets = 125,000assets = 50,000

n y

n y

salary > 80,000

age > 50
assets = 225,000

(outlier: salary = 100,000)

error  =  0

credit = good
(outlier: salary = 100,000)

credit = poor

n y

salary > 40,000

� Can eliminate two data columns  

(predicted attributes) using a decision tree 
and a regression tree  to

error≤0      error=0  
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SPARTAN Compression 
Problem Formulation

� Given: 
� Data table T over set of attributes X and  per-attribute error 

tolerances

� Find:  
� Set of attributes P to be predicted using CaRT models (and 

corresponding CaRTs+outliers) such that

� Each CaRT uses only predictor attributes in  X-P

� Each attribute in P is predicted within its specified tolerance

� The overall storage cost is minimized

� materialization costmaterialization costmaterialization costmaterialization cost: storage for predictor attributes in 
X-P

� prediction costprediction costprediction costprediction cost: storage for CaRT models + outliers
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SPARTAN Compression 
Problem

� Non-trivial problem!

� Space of possible CaRT predictors is 
exponential in the number of attributes

� CaRT construction is an expensive process 
(multiple passes over the data)
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SPARTAN Architecture

From [S. Babu, M. N. Garofalakis, and R. Rastogi 01]
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SPARTAN’s
DependencyFinder

� Input: Random sample of input table T 

� Output:  A Bayesian Network (BN) identifying strong 
dependencies and “predictive correlations” among 
T’s attributes

� BN Semantics: An attribute is independent of all its 
non-descendants given its parents

� Use BN to restrict (huge!) search space of possible 
CaRT models: Build CaRTs using “neighboring”
attributes (e.g., parents) as predictors

� SPARTAN uses an (enhanced)  constraint-based BN 
builder
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SPARTAN’s CaRTSelector

� “ Heart” of the SPARTAN semantic-compression 

engine

� Uses the constructed Bayesian Network on T  to 
drive the construction and selection of the 
“best” subset of CaRT predictors

� Output: Subset of attributes P to be predicted 
(within tolerance) and corresponding CaRTs
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SPARTAN’s CaRTSelector
(cont.)

� Complication: An attribute in P cannot be used as 
a predictor for other attributes

� Otherwise, errors will compound!!

� Hard optimization problem -- Strict generalization 
of Weighted Maximum Independent Set (WMIS)
(NP-hard!!)

� Two solutions

� Greedy heuristic

� Novel heuristic based on WMIS approximation 
algorithms
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The CaRTBuilder Component

� Input: Random sample of the input table;  target 
predicted attribute Xp;  predictor attributes {X1,…,Xk}; 

and error tolerance for Xp

� Output: Minimum-storage-cost CaRT for Xp using 
{X1,…,Xk} as predictors,  within the specified error 
tolerance

� Contributions

� Novel algorithms for exploiting error tolerances in 
CaRT building

� Integrated tree building and pruning for  regression 
trees (dynamic programming algorithm)
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The RowAggregator
Component

� Input: Sub-table of  materialized  data attributes 

returned by the CaRTSelector

� Output: Fascicle-based (lossy) compression 

scheme for sub-table

� Summary 

� Attribute errors in sub-table should not propagate 

through the CaRTs to the predicted attributes

� Algorithms based on fascicle algorithms 

[Jagadish, Madar, Ng 99]


