
Association Rules and Sequential Pattern Mining

> Kyuseok Shim Seoul National University

Motivation

- Many applications require sequential pattern mining
 - Datasets typically include quantity information
 - However, traditional techniques cannot take it into account
 - Quantity information can provide useful insights to the users

Outline

- Association Rule Mining Algorithms
- Sequential Pattern Algorithms
- Summary

Association Rules

Association Rules

- Given:
 - A database of customer transactions
 - Each transaction is a set of items
- Find all rules X => Y that correlate the presence of one set of items X with another set of items Y
 - Example: 98% of people who purchase diapers and baby food also buy beer.
 - Any number of items in the consequent/antecedent of a rule
 - Possible to specify constraints on rules (e.g., find only rules involving expensive imported products)

Association Rules

- Sample Applications
 - Market basket analysis
 - Attached mailing in direct marketing
 - Fraud detection for medical insurance
 - Department store floor/shelf planning

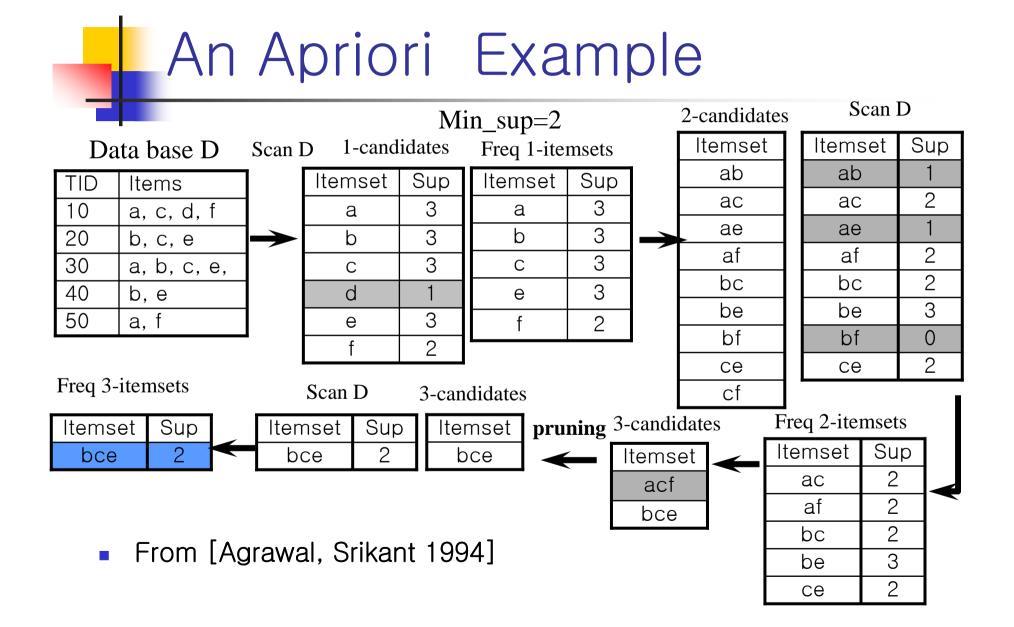
Problem Decomposition

- 1. Find all sets of items that have minimum support
 - Most expensive phase
 - Lots of research
- 2. Use the frequent itemsets to generate the desired rules
 - Generation is straight forward

Support and Confidence

• $X \rightarrow Y$ [support, confidence]

support = $\frac{\text{\# of transactions containing all the items in } X \cup Y}{\text{total \# of transactions in the database}}$


confidence = $\frac{\# \text{ of transacti ons that contain both } X \text{ and } Y}{\# \text{ of transacti ons containing } X}$

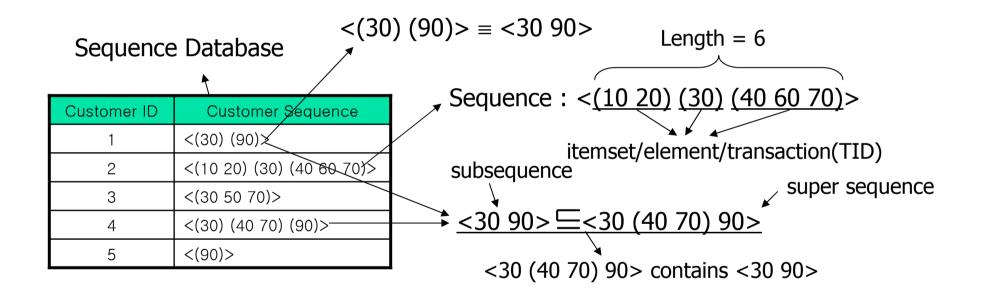
- For min_support = 50%, min_confidence
 = 50%
 - B => C with 50% support and 66% confidence

TID	Items
10	a, c, d
20	b, c, e
30	a, b, c, e
40	b, e

The Apriori Algorithm: Key Observation

- Every subset of a frequent itemset is also frequent itemset.
 - If {beer, diaper, nuts} is frequent, {beer, diaper} must be frequent.
- If there is any itemset which is infrequent, its superset will not be generated!
 - A powerful candidate set pruning technique.

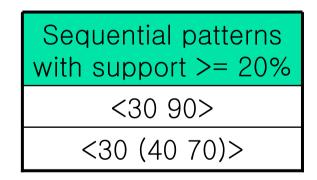
The Apriori Algorithm


- C_k: Candidate itemset of size k
- L_k: frequent itemset of size k
- L₁ = {frequent items};
- for $(k = 1; L_k != \emptyset; k++)$ do
 - C_{k+1} = candidates generated from L_k ;
 - for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t
 - L_{k+1} = candidates in C_{k+1} with min_support
- return $\cup_k L_k$;

Basic Sequential Pattern Algorithm

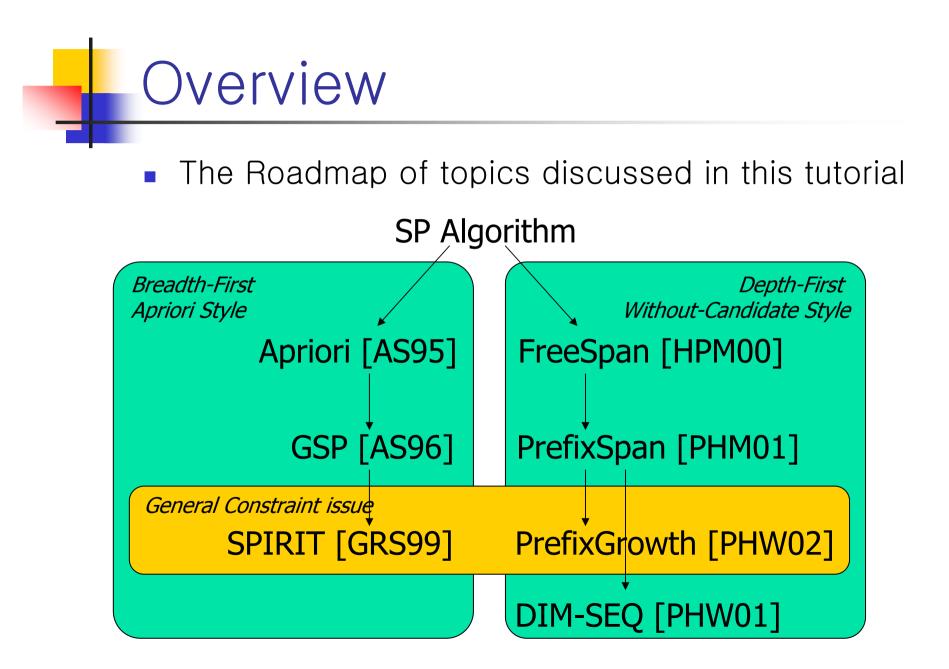
What is sequential pattern?

- Customers typically rent "Star Wars", then "Empire Strikes Back", and the "Return of the Jedi".
- Useful time-related or ordered sequential pattern results apply to many scientific and business domains
 - Customer purchase behavior
 - Web access patterns
 - Scientific experiments
 - Disease treatments
 - DNA sequences


Problem Statement

- Support : the number(ratio) of tuples in database containing the sequence
- Min_support : user-specified support threshold
- Sequential pattern : the sequence is contained by at least min_support

Problem Definition


- Given a sequence database and a min_support, to find the complete set of frequent sequential patterns in the database.
- In the previous example,

An Example

- Apriori heuristic
 - Any super-pattern of a non-frequent pattern cannot be frequent
- Breadth first algorithm (Given min_support = 50%)

SID	Sequence	Length	Candidates	Sequential
1	<c c=""></c>			patterns
2	<(a b) c d>	1	Ø	<c>, <d></d></c>
3	<d c=""></d>	2	$\langle a a \rangle \langle b b \rangle \langle c c \rangle \langle d \rangle$	<c d=""></c>
4	<c d=""></c>		 <b a=""> <(a b)>	<c c=""></c>
	_		 <c a=""> <(a c)></c>	<d c=""></d>
5	<c (b="" a="" c="" d)=""></c>		 <d a=""> <(a d)></d>	
6	<c c="" d=""></c>		 	
			<b d=""> <d b=""> <(b d)></d>	
		3	<c c="" d=""></c>	Ø

GSP (1)

- General structure is similar to that of Apriori sequence phase.
- Key Operations
 - Candidate generation
 - Counting candidates
 - Processing taxonomies

GSP (2)

- Candidate generation
 - Join condition
 - If the subsequence obtained by dropping the first item of s₁ is the same as the subsequence obtained by dropping the last item of s₂
 - e.g.
 - < (10 20) 30 40 >, < 20 30 40 50 >
 - < 10 20 (30 40) >, < 20 (30 40 50) >
 - < 10 >, < 20 >
 - Join operation
 - The sequence s1 extended with the last item in s2.
 - The added item becomes a separate element if it was a separate element in s2, and part of the last element of s1 otherwise.
 - e.g.
 - < (10 20) 30 40 >, < 20 30 40 50 > → < (10 20) 30 40 50 >
 - < 10 20 (30 40) >, < 20 (30 40 50) > → < 10 20 (30 40 50) >
 - < 10 >, < 20 > → < 10 20 > , < (10 20) > \therefore <(N)20>, <(N 20)>

PrefixSpan (1)

- J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M. Hsu [PHM01]
- Depth first & Divide and conquer algorithm

PrefixSpan (2)

- J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M. Hsu [PHM01]
- Depth first & Divide and conquer algorithm
- PrefixSpan vs. FreeSpan
 - Only prefix-based projection : less projections and quickly shrinking the projected DB
- PrefixSpan vs. GSP
 - PrefixSpan makes no candidate.
 - The longer the sequence patterns, the larger the candidates GSP has.
 - However, PrefixSpan makes projections as many as frequent patterns, therefore the performance of PrefixSpan is dependent on projection cost.

PrefixSpan (3)

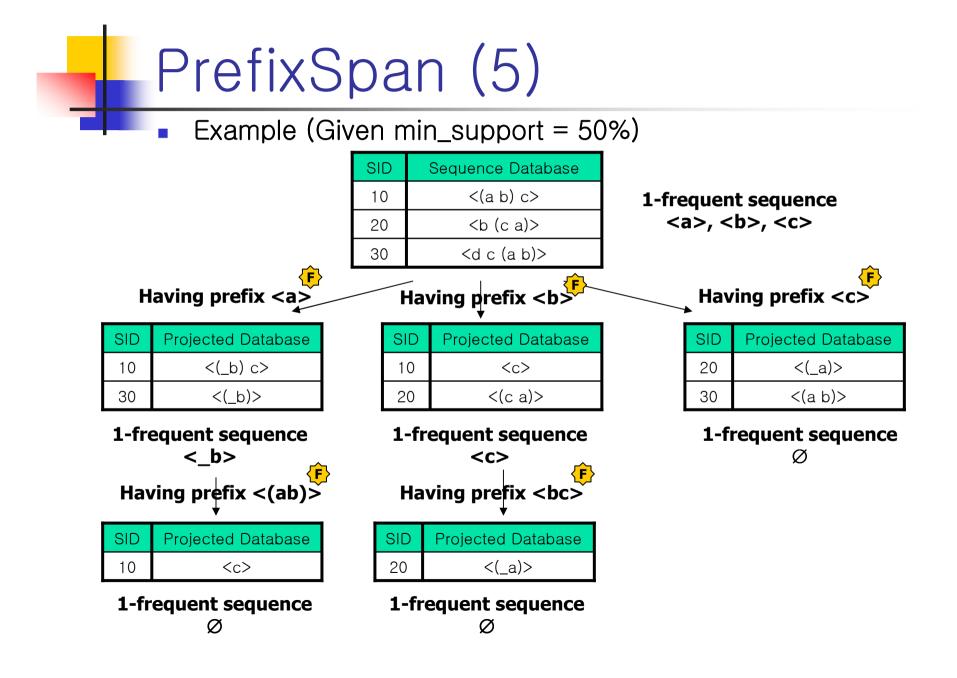
• Given a sequence $\alpha = \langle e_1 e_2 \cdots e_n \rangle$,

- a sequence β = < e'₁e'₂····e'_m > (m≤n) is a <u>prefix</u> of α if and only if e'_i = e_i for (i≤m-1), e'_m⊆ e_m, and all the items in (e_m-e'_m) are alphabetically after those in e'_m.
- when β⊆α, subsequence α' of α is a projection of α w.r.t. prefix β if and only if α' has prefix β and there exists no proper super-sequence α" of α' such that α" is a subsequence of α and also has prefix β.
- sequence $\gamma = \langle e_m e_{m+1} \cdots e_n \rangle$ is the <u>postfix</u> of α w.r.t. prefix β , where $e''_m = (e_m e'_m)$, denoted as $\gamma = \alpha/\beta$ or $\alpha = \beta \cdot \gamma$

```
\alpha = \langle a(abc)(bc)d(acf) \rangle, \ \beta = \langle ab \rangle

\alpha' = the projection of \alpha w.r.t. \ \beta = \langle a(bc)(bc)d(acf) \rangle

\gamma = \alpha'/\beta = \langle (\_c)(bc)d(acf) \rangle


\beta is a prefix of \alpha', and \gamma is the postfix of \alpha' w.r.t. \beta.
```

PrefixSpan (4)

Outline of the method

1: PrefixSpan(α , *l*, *S*|_{α})

- 2: Scan S $|_{\alpha}$ once, find the set of frequent items b such that
- 3: (a) b can be assembled to the last element of α to form a sequential pattern; or
- 4: (b) can be appended to α to form a sequential pattern.
- 5: For each frequent item b, append it to α to form a sequential pattern α ', and output α ';
- 6: For each α' , construct α' -projected database $S|_{\alpha'}$, and call PrefixSpan(α' , l+1, $S|_{\alpha'}$)

PrefixSpan (6)

- Scaling up techniques
 - Bi-level projection
 - To reduce the number of projection, bi-level algorithm construct projection not by 1-sequences, but by 2-sequences.
 - To get 2-sequences, bi-level use a GSP-like method.
 - This method reduces the number of projection, but it makes a number of candidates.
 - Pseudo-projection
 - If the projected database fits in main memory, instead of constructing a physical projection, pseudo-projection uses pointers as a pseudoprojection.

Summary

- Association rule mining and Sequential pattern mining have interesting applications
- Breadth-first and Depth first style algorithms are developed
- Maximal patterns were introduced for compact representations

References (1)

- [AS95] R. Agrawal and R. Srikant. "Mining sequntial patterns," ICDE, 1995.
- [AS96] R. Agrawal and R. Srikant. "Mining Sequential patterns: Generalizations and performance improvements," EDBT, 1996.
- [GRS99] M. Garofalakis, R. Rastogi, and K. Shim. "Spirit: Sequential pattern mining with regular expression constraints," VLDB, 1999.
- [HPM00]J. Han, J. Pei, B. Mortazavi-Asl, H. Chen, U. Dayal and M. Hsu. "FreeSpan: frequent pattern-projected sequential pattern mining," KDD, 2000.

References (2)

- [PHM01] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M. Hsu. "PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth," ICDE, 2001.
- [PHP01] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, U. Dayal. "Multi-Dimensional Sequential Pattern Mining," CIKM, 2001.
- [PHW02] J. Pei, J. Han, and W. Wang. "Mining sequential patterns with constraints in large databases," CIKM, 2002