
Wavelet Synopses

Kyueseok Shim

Seoul National University

http://ee.snu.ac.kr/~shim



The Synopsis Construction Problem

� Formally, given a signal X and a dictionary {ψi} find a 
representation F=∑i zi ψi with at most B non-zero zi
minimizing some error which a fn of X-F

� In case of histograms the “dictionary” was the set of all 
possible intervals – but we could only choose a non-

overlapping set.



The eternal “what if”

� If the {ψi} are “designed for the data” do we 
get a better synopsis ?

� Absolutely!

� Consider a Sine wave …

� Or any smooth fn.

� Why though ?



Representations not piecewise const.

� Electromagnetic signals are sine/cosine waves.

� If we are considering any process which  involve 
electromagnetic signals – this is a great idea.

� These are particularly great for representing periodic functions.

� Often these algorithms are found in DSP (digital signal 
processing chips)

� A fascinating 300+ years of history in Math !



A slight problem …

� νι νιll cφmε βαcκ τφ Fφυrιεr

� Fourier is suitable to smooth “natural processes”

� If we are talking about signals from man-made processes, 
clearly they cannot be natural (and hardly likely to be smooth) 
…

� More seriously, discreteness and burstiness…



The Wavelet (frames)

� Inherits properties from both worlds

� Fourier transform has all frequencies.

� Considers frequencies that are powers of 2 but the effect of each 
wave is limited (shifted)



Wavelets

� What to do in a discrete world ?

The Haar Wavelets (1910) !



The Haar Wavelets

� Best “energy” synopsis amongst all wavelets

� Great for data with discontinuities.

� A natural extension to discrete spaces

� {1,-1,0,0,0,0…}, {0,0,1,-1,0,0,…},{0,0,0,0,1,-1,…}…

� {1,1,-1,-1,0,0,0,0,…},{0,0,0,0,1,1,-1,-1,…}…



Wavelet

� A useful mathematical tool for hierarchically 
decomposing functions

� Represent a function in terms of

� A coarse overall shape

� Details that range from broad to narrow

� Haar wavelet 

� The Haar basis is the simplest wavelet basis

� Fastest to compute and easiest to implement



Haar wavelet

� Given a one dimensional data with a 
resolution 4, [9 7 3 5]

� Recursive pairwise averaging and differencing at 
different resolutions

� The wavelet transform of the original data is given 
by [6 2 1 -1]

[2][6]1

[1 -1][8 4]2

[9 7 3 5]4

Detail 
coefficients

Averages Resolution



Error Tree
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Reconstruction

� The reconstruction of any data value di using Error 
Tree

� Where if left leaves of cj , or j=0, and 

otherwise

Ex) in previous error tree

d3 = c0 – c1 + c3 = 6 – 2 + (–1) = 3 
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Compression

� Wavelet compression

� A large number of the detail coefficients turn out 
to be very small in magnitude

� Removing these small coefficients introduces small 
errors

� Lossy compression

Ex) from [6 2 1 -1], take two coefficients, 6, 2, that 
is [6 2 0 0] then 

original data = [9 7 3 5]

reconstructed data = [8 8 4 4]



Normalization

� In order to equalize the importance of all 
wavelet coefficients

� Normalizing the coefficients is needed

� If the coefficients have the same importance

� We could choose the coefficients in order of 
absolute magnitude

� Then we could achieve the best approximation of 
original data
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Haar wavelet normalization

� Assume we use L2 error

� If we remove c2, then it affects four values d1, d2, 
d3, d4 and results in 4*c2

2 L2 error

� If we remove c5, then it affects two values d5, d6
and result in 2*c5

2 L2 error

� If we remove c2, c5, then it result in 4*c2
2+ 2*c5

2 

L2 error

� Removing each coefficient affects the L2 error 
independently



Haar wavelet 
normalization(cont’d)

� If the values of c2, c5 are the same in 
absolute magnitude

� Removing c2 increases L
2 error more than 

removing c5

� To compare the importance between c2 and 
c5 directly

� we need to normalize the coefficients

� If 4*c2
2= 2*c5

2 , c2= c5
� c2 and      c5 have the same importance
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Haar wavelet 
normalization(cont’d)

� The coefficients in the same level have the 
same importance

� Between two coefficients which has one level 
difference

� The higher level coefficients have       times 
importance of the lower level

� To normalize coefficients

� Divide each wavelet coefficient by       , where  
denotes the level

� Ex) [6 2 1 -1]                    [6 2 ]
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Minimize L2 error in Haar wavelet 
compression

� Compressing the original N data using 
B(<<N) wavelet coefficients

� Normalize the coefficients

� Choose the B wavelet coefficients with the largest 
absolute value

� This is an optimal method of minimizing L2 error 
using B wavelet coefficients



Wavelets (2-D Harr Wavelets)

� Standard decomposition

� Apply 1-D wavelet transformation to each row

� Apply 1-D wavelet transformation to each column

� Non-standard decomposition

� apply one step of 1-D wavelet transformation to 
each row and column repeatedly



Example (2-D Harr Wavelet)
1.0  2.0  1.0  2.0
3.0  4.0  3.0  4.0
1.0  2.0  1.0  2.0
3.0  4.0  3.0  4.0

2.5  0.5  2.5 0.5
1.0  0.0 1.0  0.5
2.5  0.5 2.5  0.5
1.0  0.0 1.0  0.5

1.0  2.0          
3.0  4.0

1.5 0.5          
3.5 0.5

2.5 0.5          
1.0 0.0



Example (2-D Harr Wavelet)

2.5 0.5 2.5 0.5
1.0 0.0 1.0 0.5
2.5 0.5 2.5 0.5
1.0 0.0 1.0 0.5

2.5 2.5 0.5 0.5
2.5 2.5 0.5 0.5
1.0 1.0 0.0 0.0
1.0 1.0 0.0 0.0



The Haar Synopsis Problem

� Formally, given a signal X and the Haar basis {ψi} find 
a representation F=∑i ci ψi with at most B non-zero ci
minimizing some error which a fn of X-F

� Lets begin with the VOPT error (||X-F||2
2)



The Magic of Parseval (no spears)

� The l2 distance is unchanged by a rotation.
� A set of basis vectors {ψi} define a rotation iff

� h ψi,ψj i = δij , i.e., 

� Redefine the basis (scale) s.t. ||ψi||2 = 1

� Let the transform be W

� Then ||X-F||2 = || W(X-F)||2=||W(X) –W(F)||2

� Now W(F)={z1,z2,…zn} and so

� ||W(X) – W(F)||2 = Σi (W(X)i – zi)
2



What did we achieve ?

� Storing the largest coefficients is the best 
solution.

� Note that the fact zi=W(X)i is a consequence 
of the optimization and IS NOT a specification 
of the problem.

� More on that later. 



Similar Time Sequences
� Given:

� A set of time-series sequences

� Find

� All sequences similar to the query sequence

� All pairs of similar sequences

whole matching vs. subsequence matching

� Sample Applications

� Financial market

� Market basket data analysis

� Scientific databases

� Medical Diagnosis



Whole Sequence Matching

Basic Idea

� Extract k features from every sequence

� Every sequence is then represented as a point in k-
dimensional space

� Use a multi-dimensional index to store and search 
these points

� Spatial indices do not work well for high 
dimensional data

(i.e. Dimensionality curse: 

[Hellerstein, Koutsoupias, Papadimitrou 98])



Dimensionality Curse

Distance-Preserving Orthonormal

Transformations

� Data-dependent

� Need all the data to determine transformation

� Example: K-L transform, SVD transform

� Data-independent

� The transformation matrix is determined apriori

� Example: DFT, DCT, Haar wavelet transform

� DFT does a good job of concentrating energy in 
the first few coefficients



Why work with 
a few coefficients?

� If we keep only first a few coefficients in DFT, we can 
compute the lower bounds of the actual distance.

By Parseval’s Theorem

The distance between two signals in the time domain 
is the same as their euclidean distance in the 

frequency domain.

� However, we need post-processing to compute actual 
distance and discard false matches.



Similar Time Sequences

� [Agrawal, Faloutsos, Swami  93]

� Take Euclidean distance as the similarity measure

� Obtain Discrete Fourier Transform (DFT) coefficients 
of each sequence in the database

� Build a multi-dimensional index using first a few 
Fourier coefficients

� Use the index to retrieve sequences that are at most    
distance away from query sequence

� Post-processing:

� compute the actual distance between sequences 
in the time domain

ε
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