DSP Algorithm and Low
Complexity Implementation

Overview
Wonyong Sung

o

. > _,.«*“‘"MKHSchool of Electrical Eng




DSP Algorithms

s Filtering
= Linear: FIR and recursive (l1IR)
= Nonlinear and time-varying: adaptive filter

= Usage: noise elimination, frequency compensation,
sample rate conversion

s Transformation
» FFT: frequency analysis, indirect convolution
s DCT: real arithmetic, image/video processing

s Usage: spectrum analysis, OFDM(Orthogonal
Frequency Division Multiplexing)

s Communication blocks

= NCO: digital oscillator,
PLL: phase locked loop
ADC/DAC
QPSK, QAM, OFDM, CDMA

ECC: CRC, Hamming, BCH, RS, LDPC, convolutional
coding
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Algorithm consideratio

L)

 Performance in terms of sighal processin

m For example, RLS is better than LMS in terms of sign
robustness (adaptation speed)...

m FIR is better in terms of phase linearity when
compared with recursive filtering

= For image processing, only FIR filtering is adequate.
* Number of arithmetic ops.(multiplications)

= FIR filtering demands a lot of multiplications
= But not always, for narrowband filtering, it needs a smaller one.

Algorithm complexity, parallel & regularity

= Seems more important in these days as there are
abundant of arithmetic elements in a chip.

s Parallel structure is good for HW based design.

 If you start with a poor algorithm, there is not
much way to recover the disadvantages!

= You need to consider both performance and

— implementation characteristics.
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Digital

» Types of Digital Filters:

s low-pass, band-pass, high-pass, notch-
filter, allpass, etc.

 FIR and IIR Digital Filters
* Multiplierless filters
* Filters for sampling rate conversion
s Structures of Digital Filters
s Direct, cascade, parallel forms
s State-space realizations
= Orthogonal digital filter

< Quantization Errors, Stability,
accuracy
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Types of

Usages:

= Low pass: anti-aliasing,
smoothing, noise
reduction

A

[H(e) Low pass _
s High pass: DC removal,

baseline wander reduction

n » Band pass: noise
reduction

H(el® | High pass % Design:
[H(e)| = Choose FIR or IIR filter

rnoffiriante N
VUGOUIITIIVIVUITLO LUV

x @ approximate desired
frequency response.

4 Band pass s Usually the designed filter
[H(e)] coefficients are not
unique! Leaving large
design space to be
explored. Passband,

v

v
e

stopb
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Filter design and

** Filter design: determining the transfer

function (H(z)) from the given frequency
domain specification. The location of poles
and zeroes are determined.

 Filter implementation: determining the
filter structure (direct form, 2"9 order
cascade form, ...) , pole-zero pairing if
needed, word-length and memory
structure for reducing the hardware cost,
machine cycles, or power consumption.
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Digita

% For example the magnitude response |G(el®)]
of a digital lowpass filter may be given as
iIndicated below

Transition

band

* Transition bandwidth is important for filter order determination.
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Digi
 In practice, passband edge frequency an

stopband edge frequency Fs are specified in Hz

 For digital filter design, normalized bandedge
frequencies need to be computed from
specifications in Hz using

Q_  2zF
W, = P = P =27F T
F FI:—E P
O, =%=27[ > =2k T
F F
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Digital f

% In the passbhand () < m < @we require that
wi}:cko\ deviatio

Ge') =1

-6 <\G(e1w)\<1+5 o <o,

< In the stopband @, < W < T we require that
with a deviation 5

G(e!”) =0

G(e'") <5, o<o<r
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Digit

Filter specification parameters

- passband edge frequency

- stopband edge frequency

- peak ripple value Iin the passband
- peak ripple value in the stopband
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Digital

** Practical specifications are often given in

terms of loss function (in dB)

\/

v G(o)= —ZOloglo‘G(ejw)‘

» Peak passband ripple

a, =—20log,(1-8,) dB

 Minimum stopband attenuation

a, =—20log,,(0,) dB

Multi
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FIR, IR di

Let {h[n}: impulse
response

{x(M)}: input, {y(n)}:
output

Finite impulse response
(FIR) filter:

y(n)=zh(j)><(n— j)

Has only zeroes (no
poles).

Usually, implemented as a
feed-forward type.

Infinite impulse respo
(1 IR) filter

y(n) = Za(l)Y(n—l)+Zb(k)X(n K)

Both poles and zeroes.
The length of impulse
(unitpulse)response may
be infinite!

Recursive formula will
impact on computation
methods (feedback).

Ctahiilitws ~rArn~crAavrmce-
QLaUlllLy CUIIUCI 1 1O.

= The magnitude of y(n)

may become infinity even
all x(n) are finite!

m coefficient values,
= guantization error
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FIR

Direct form structure, which has
a form of convolution, is usually
used. Cascade or parallel forms
are a little bit complex in terms of
structure. The quantization
effects of direct form FIR filters
are still tolerable, in most cases.

Symmetric coefficients FIR

= Linear phase: critical for image
processing

= Halve the # of multiplications

Filter design

= Windowing

s CAD — Parks McClellan method
The needed order is usually high.

Good for interpolation,
decimation filtering

Multi
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Linear phas
h(n) = h(-n)

Evaluate the frequency
response (assuming that N is

/ /
0‘0 0‘0

odd) and h(n) is real-valued h(n)
® (N=7)
E ® ®
n2 2
H(z)= 2h(n) z"= 2hm) z" { {
n=ni __E
N o r.t
if h(n) = h(-n) we get
N-1
I
I AJ27QN — 1N\ L Sy ai2an@ +j2mnQy
ll\C } II\U} [ Hll\ 1}
n=1
N-1

H(e'*™®)=h(0)+2 2Zh(n) cos[2xna]

The frequency response is real: phase shift is 0 or 180 degrees
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Linear

J Figure 1

File Edit “iew Insert Tools Desktop  Window Help o

NEeEdES K A2AMe € 08| 8O

Linear-phase
FIR realization type 1

-z o 7 2 7 2 7!
e e
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Needed nu

s For equiripple LP FIR filters:

N 2 log| 1 | Fs
e — _ 10

3 g 10 Dpass Dstop Fstop - Fpass
v'Independent of BW (F )"

v'Weak (logarithmic) dependence on the
Pass band ripple level and the Stop band
attenuation

v'Linear dependence on the transition band!

e Our example: Ne =29 (compared to 31)
* Problem: Very narrow filters -> Decimating
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Exa

s Develop an AM-SSB modulator using Simulink.
There are a few methods for generating SSB signal.
Here you try to use a bandpass filter. The filter
specification that | suggest is a bandpass filter
having the following specification. This filter is
designhed assuming that the message signal has the
frequency range of 0.2KHz — 3.8KHz. Carrier freq
= 12KHz, Sampling freq = 48KHz

s fl: stopband edge: 11.8KHz
s f2: passband edge: 12.2KHz
s f3: passband edge: 15.8KHz

s f4: stopband edge: 16.2KHz

= Passband ripple: -0.5dB—~+0.5dB, stopband
attenuation: 40dB

Wonyorng - Sung
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F

% Signal Processing
Toolkit of MATLAB

s Define the frequency
response template.

% Case of LPF: "Dpass
v Pass band End F

v Pass band Ripple
D

pass
D — -

~ Stop band Start Fg,, ™ , S

v Stop band Fpass 4 Fop
Attenuation Dstop

Y9

pass

0.5F

F__..= Transition band

stop - pass

F
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Linear-Phase FIR Filters
* The linear-phase FIR filter obtained by
minimizing the peak absolute value of

¢ = maxE (w)
is usually called 58 equiripple FIR filter
 After I1s minimized, the weighted error

function E(w) exhibits an equiripple
behawor in the frequency range R




Design of
Linear-Phase FIR Filters

 The general form of frequency response of
a causal linear-phase FIR filter of length

ML H(el0) = g7 Mo B ()

where the amplitude response H(@)is a
real function of @

* Weighted error function is given by
E (0) =W (o)[H (0) - D(0)]

where D(®)is the desired amplitude
response and W((D)is a positive weighting
function

N
@)



Design of Equiripple
Linear-Phase FIR Filters

** For filter design,

D(®) =+

1, in the passband
0, 1n the stopband

. |—|/(D ~ +hea
X ) is required to satisfy the au

desired response with a ripple of - 5 N
the passband and a ripple of 9 in th
stopband




Design
Einear-P

* Thus, weighting function can be chosen
either as

(1, in the passband

0p/0g, Inthestopband

W (w) =+

or

W (o) = ;83 /8,, inthepassband

1, in the stopband

N
N



Example 1:

% LPF example:

v Pass band End Foass = 03
0.1

v Pass band Ripple

0.25

Dpass=0-05 (5%0) ”
v~ Stop band Start Fg,,= o
0.13 ; 5
~ Stop band Attenuation -
Dstop =0.1 (1 /10) 0.05L
s Minimum of 31 coefficients ‘

needed to achieved

required specifications 005 ¥ 1 of , A , :
- . 0 5 10 15 20 25 30
% Even-symmetric impulse Samples

response

Wonyong Sung
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Example

» Pole-Zero plot in the
z-plane
* FIR -> pole at zero
(causal)
% Location of zeros: T | 5@ % %0, 1
. i o o,
~On the unit circle in L s° “ .
the Stop band ‘ °
~ Far from unit circle B S o i
in Pass band -> w5l X ‘S ]
ripples ‘o, o
s I I I I Or.,.oé.o ° \ I [
3 -25 1.5 -0.5 0 05 1 1.5
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Edit, Con

J Convert Structure : : : J Filter Design & Analysis Tool - [

Corver o Fil= Edit Analysis Targets View Win

Stte Space DEEER PR DX

Direct-Farm FIE Tranzsposed
lirect-Form Symmetric FIR

— _Lrrent Fiter Information

=tructure:  Direct-Form =ymmetric

W FIF:
iJrider: 4
| ] 4 | | Cancel Stahble: Yes

SOUrCe: Dezigned (converted)

[ stare Filter ... ]
[

Filter Manager ... ]
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MATL/

N = 80’ k = O(N-l)’ (MATLAB fi Iter Insert  Tools Deskiop  ‘Window ﬂﬂ
b0 =1; command Lk RaAM® ¥ 0B = O
bl=-1 corresponds to
_ 1. the symbol ®
b2 = 1’ y 2y T 1_1 1_1
=[b0 bl b2]; r“%n 4 4
f = 1/8;
+ + (n)

X = Sin@ pi*Fk+pi/6): ~ ’
y = filter(B,1,x); y(n) = bgx(n)+ byx(n—1)+ byx(n—2)
subplot(2,1,1) 1 ] -

Wk A L A in F' th

systemFIR(0,0,4,5,10,'b")
subplot(2,1,2)
plot(k,x,'go’, k,y,'bo’,...
k,x,'g-", K,y,'b-")
legend(‘input’,'output’)

0. 5

. o -
e

1l
1K o

nutput

[ [ K
q ]2 (>
oy L :"‘
o e ﬂ
1 i o
b

) R tr tp ‘ i i
[k
Or ‘ 1y ! [ 1y , ‘
RO %, 4 n“ 1 n
f’ ‘*F ‘_F f’
08¢ 1% 0 A¥ 1% N ‘ ‘
LB B B B R R B W
0 10 20 30 40 &0 B0 70 20
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IR or recu

*» Utilize poles and zeros
s Poles are for shaping pass bands
s Zeros are for stop bands

** The poles should be inside of the unit circle
INn the z-domain for stability

= Finite word-length effects can affect
s Direct forms are more susceptible.

* Usually, the order needed is smaller when
compared to FIR filters

*» Direct forms are not good fixed-point
Implementations

s 29 grder cascade, ...

Wonyorng - Sung
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| J Figure 1 |:||E|[Z|
N = 80; k = O(N-l)’ File Edit visw. Insert Tools Desktop Window Help ~
o= 0.97 yn)=x(n—-D+ay(n—-1)2"%® € 08 =0

I
B=[01]; The impulse response r

. x() z F()
A=[1-a]; does not vanish after i‘? %
x = (k==0): finite number of )

I
Q: filter(B,A@ Samples .

subplot(3,1,1)
draw1stlIR(0,0,4,5,10,'b")

subplot(3,1,2)

input
=
LT

stem(k,x,'r")

ylabel('input') Qe
subplot(3,1,3) 2 0s
stem(k,y,'b") s
ylabel(‘output’)

10 20 30 40




Basic 2"9 Or

X(n) b(0) u(n) y(n) X(n) w(n)  b(0) y(n)
> B> — 0 > O e o—>
Z-l 4 + $ Z'l A | Z_l A
b(1 —a(l -a(l b(1
oty 20 e 20 Q.
4 4 4 w(n-1) 4
z1Y y z1 Yy 71 [
b(2) -a(2) —a(2) b(2)
X(n-2) y(n-2) < W(n-2) >
s Direct form I realization s Direct form I1I realization a.k.a
< 5 Multiply 4 Additions per y(n) BiQuad
% 4 registers storing x(n-1), x(n-2), % 5 multiply, 4 additions per y(n)
y(n-1), y(n-2) s 2 regqisters storing w(n-1), w(n-2)

Different structures determines different execution order, different
numerical properties, but retain the same algebraic relation between input

and output.

Wonyong Sung
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Cascaded an

If the characteristic Cascaded realization
polynomial A(z) has real-

valued coefficients, then 7 e e,

it can be factorized as: ez [ l—apz™ ] 1-2r, o2 +152" _>

Parallel realization

P

vV, + P
R H(z k k
A(z):(H(l—aiz‘l)j (2)= Z1 oz ;1—2rkcos,b’kz‘l+rkzz‘2

i=1

P2
[H (1-2r cos Bz + rkzz‘z)J
k=1

:(IEIA(Z))[ﬁAk(Z)j & .

P=P+P,

Wonyong Sung
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2nd_order

Generally implement high-order 11IR filters as a sum
cascade of 2"d-order filters to reduce the sensitivity of
the overall response to the precision of each coefficient

High-order polynomial is factored to find poles and
zeros, and each 2"9-order filter (biquad) implements
two zeros and two poles (real or complex conjugate)

Poles and zeros are grouped in pairs—usually try to
group in such a way that minimizes peak gain of each
section

If cascaded, 2"d-order sections are usually ordered from
lowest gain to highest gain to minimize overflow
likelihood

Scaling may be needed for overall response or for each
section individually (computation vs. quality)

-1 -2
b, +b,z" +Db,z

H(z)=
@) 1+a,z”" +a,z”"

Wonyorng - Sung
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Pole-ze

* When pairing poles and zeros, it is
better to combine nearby poles
and zeroes for a same 2"d order
structure.

s Purpose: to reduce the dynamic
range of internal signal

= It is not good to magnify
(attenuate) a signal and then
attenuate (magnify) it much in
terms of quantization noise
sensitivity.

= Criteria: Maximal dynamic range:
a ratio of (a) the maximum
magnitude response computed
over the whole frequency range to
(b) the minimum magnitude
response in the passband

Wonyorng - Sung
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Implemen

s Coefficient quantization
= Due to limited coefficients word-length.
s This affects the frequency response.

s Especially, the pass-band or stop-band ripple can be
iIncreasing (make a frequency distortion.)

 Roundoff error (least significant bits lost)
= Due to limited data word-length

= This introduces random-like quantization noise. Make a

noisier filter.
Limited data wordlength

X(n) w(n)  b(0) y(n
— 0 > O > o—>
Quantization of coefficients \i‘a(l) 17 b(1)
1 w(n-1) 1
2 Z-l
-a(2) b(2)
) w(n-2)

Wonyorng - Sung
Multi Systems Lab SNU



Engineer]

 Verity filter performance with quantized
coefficients

s Assess roundoff error by modeling the truncation as
a noise source in the filter structure. Determine the
transfer function from each roundoff noise source
to the output.

s Calculate overflow situations by looking for peaks
INn frequency response from input to each
accumulation point in the filter.

Wonyong Sung
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Cascad

J Figure 1

File Edit “iew Insert Tools Desktop  Window Help o

NEeEdES K A2AMe € 08| 8O

Cascade Rea]jzatinn
Direct-form 1T biguad

In C—{+} (1) {-r—0 ou

1 -1
ra L
S N S P s
) R —(1 @ il {1
1 -1
ra z
- 122 A 2
a2™ - 2™ -
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Comparison of th

Structure mi::;g}]iﬁ::ﬂ%t;l . aaqéllﬁlﬂli: ;Ifd uugfibt; of %f%ulgﬁ?
subtractions | operations
Direct form 16 16 40 21
Cascade 13 16 34 12
Parallel 18 16 30 11
Continued 18 16 35 23
fraction
Ladder 17 32 50 14
Wave digital 11 30 47 12

- - Wonyong Sung
From: Miodrag Bolic Multi Systems Lab SNU



M. D. Lutovac, D. V. ToSic¢, B. L. Evans

FILTEF. DESIGN FOF.

Filter Design for Signal Processing
Using MATLAB and Mathematica .

Prentice Hall
Upper Saddle River, New Jersey
ISBN 0-201-36130-2, (c) 2001

http://kondor.etf.bg.ac.yu/~lutovac/
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Multipli

 Integrator
H(z) = 1/1-z1
= Integrator has a pole at z=1,

so it is a kind of lowpass filter
with no multiplier. Should be

careful for overflow due to
DC accumulation. x[n] %
 Moving average (MA) filter

H(z) = (1-zM/(1-z1)

s MA 'Fll'l'nr hac manvs zeroes
IVIZ/\ 11101 ||u\) 11I1CAI |y LUl VULO

around the unit circle except

for z=1. It is a lowpass filter.

It can be modified to a

bandpass or highpass filter.
s = 1+z 1472+ +z7(ND

» Good for FPGA’s with DSP

~lr

A
S/

btocks Wonyong Sumng
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Two moving avera

 Feed-forward type:
= Higher number of  xIn] =z 12| z
arithmetic operations L _____ J J
» Better stability [0}
*» Feed-back type: oz N
« Lower number of ! fé_ GE :
arithmetic operations j—' yln]
= Should be careful z!
against overfiows

* Both structures have
the same frequency
response with infinite
precision arithmetic

Wonyorng - Sung
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Ke

* Different types and structures of digital filters m
achieve the same or similar goals, but with
different implementation costs, numerical
properties

s Design space that can be explored
Filter types: FIR, IIR, adaptive filters
s Specifications/performance goals

m Filter structures
= Direct, parallel, cascade ...

Numerical properties (floating point/fixed point, etc.)

Wonyong Sung
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Interpolation (S

 Insert N-1 zeroes between the samples,
then conduct lowpass filtering (pi/N).

< Among N tap inputs, only one iIs non-zero
(no need to compute N-1 mult.)

L] A HLLE.I....I EUJﬂIIjjIHH |
A N .

ViU Systems Lab SNU



s Conduct lowpass filtering (pi/N).
< Among N output samples, select only one. So, we

do not need to compute N-1 output samples.

= (This is not possible for recursive filters because of
feedback!)

Original signal Fittered signal Dm'hdsw

I wm il I_

—= --t—'l' n:n:rm —= .-[—T 101:- 'I' EEHJm.-t—

signal

E———— E— e E——

d 449

ilEIMH FH 2 MHz

Wonyong Sung
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FIR filter implemen
interp

 For interpolation: (N-1) among N input
values at the tap are zero! No need to
conduct multiplications

** For decimation: We only need to compute 1
output sample at every N output.

It is interpreted as polyphase filter with
the tap length of about M/N.

Polyphase decomposition

Original filter length: 388
MNumber of polyphase filters: 12
Each polyphase filter: 33 taps

-
= - = Required computation mate;
o 33 x 1 MSPS x 12 filters = 396 MIPS
— |
Polyphase
fiter
S il

Wonyorng - Sung
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Here's an example of a 12—tap FIR filter that implements
interpolation by a factor of four. The coefficients are hO—h11, and
three data samples, x0—x2 (with the newest, x2, on the left) have
made their way into the filter's delay line:

hO h1 h2 h3 h4d hd h6 h/7 h8 h9 h10 hiil Result

x2 0 0 0 xt 0 0 0 x0 O O 0 X2-h0+x1-h4+x0-h8
0O x2 0 0 0 xt 0 O O x0 O 0 X2-h1+x1:h5+x0-h9
0O 0 x 0 0 0 xt 0 0 0 x0 O X2-h2+x1-h6+x0-h10
0O 0 0 x2 0 0 0 xt 0 0 O X0 X2-h3+x1:h7+x0-h11

Wonyong Sung
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** Narrow band filtering (large order neede
It iIs advantageous to conduct decimation
followed by post-filtering (operates at low
sampling rate) -> the total number of
mult’s is reduced.

s Application to IF filtering for digital radio

Interpolation

| — Intarpodation factor = 12 Filtar ordar = 388
Z_ i Stop band reject = 60 dB Input data rate = 1 M5P5
It - T:m | | ——— Ouipuwt  Cutoff frequency = LO3S Dutput dats rabe = 12 M5PS
| LPF | Transition bandwidth = 0,007 Required computation rate = 4,565 MIPS
| Se— Pass band ripple = 0.1 dB
Mubtistage filkering
i Iy = i ; B
Input g Tz : i TB . D_ . Dutput
|| LPF i I I i LwpE |
Filter 1 Filter 2 Filter 3
Cutoff freguancy- 0.140 Cutoff frequency: 0.070 Cutoff freguency: 0,035
Transition bandwidth: 0,048 Transition bandwidth: 0.050 Transition bandwidth: 0,125
Stop band reject: 60 dB Stop band reject: 60 dB Stop band reject: 60 dB
Pass band rippls: (.05 dB Pass band ripple: 0.05 dB Pass band rppla: (.05 dB
Required filter order; 121 Required filter order: 17 Required filter order: 13

Required computation rate = 13 x 20 MSPS + (17 x 10 MSPS] + {121 x 5 M5PS) = 1,035 MIPS

Wonyorng - Sung
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Example with SS

* What if the carrier frequency for AM In
HW#1 is 2,048KHz. Assume that the
sampling frequency for the carrier is
4*2 048KHz.

* Design the bandpass filter for removing the
lower sideband.

s Assume that the message signal has the
sampling frequency of 8KHz. Design the
Interpolation filter for interpolating the
message signal.

s Consider a heterodyne modulator, where
the 15t stage modulation frequency iIs
12KHz. The generated SSB is, then,
modulated to 2,048KHz.

Wonyong - Surg
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Disc

< FIR filter can be < There are numerous

0

iImplemented using direct
form or fast convolution
methods like FFT.

IR filters are often
factored into products
(cascade realization) or
sum (parallel realization)
of 1st order or 2"d order
sections due to numerical
concerns.

0

possible realization
structures of the same
digital filters.

Digital filter coefficients
are not always exact. It is
possible to realize a
digital filter with the
same desired properties
but different filter
structures and
coefficients to exploit
favorable impliementation
alternatives. A state
space model is a good
example.

Wonyorng - Sung
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Quantization erro

< An IIR filter is BIBO
stable if all the poles of

/

% Overflow

its transfer function H(2) = Dynamic range of
lie within the unit circle intermediate results
iNn Z-p'ane_ must be bounded.

< A stable IIR digital filter = Otherwise, overflow
may become unstable CheCl_( must be used and
when its coefficients are that is very costly.
subject to severe m Saturation arithmetic
guantization due to finite may reduce the error
length of registers. caused by overflow.

>

L)

» Hence an IIR filter that
Is stable when designed
with a 32 bit machine
may become unstable
when implemented with
an 8-bit micro-controller!

Wonyorng - Sung
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Adaptive f
adaptive sigha

o0

o0

0

L)

Changing the filter coefficients for adapting to the
environment or signal change.

The filter coefficients are changing.
Fixed-approach:

= If the channel were fixed then a possible solution could
be based on the Wiener filter approach

= We need to know in such case the correlation matrix of
the transmitted signal and the cross correlation vector
between the input and desired response.

When the filter is operating in an unknown
environment these required quantities need to be

found from the accumulated data.
= Continuous adaptation is needed.
= LMS and RLS, ...

Wonyorng - Sung
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Adaptiv

s A possible framework is:

Desired signal

Input signal /‘ d [ n]
X[n]} [Adaptive d[n] ‘
Filter :w
? e[ n] Minimize the error
/ signal
> Algorithm
Multi - Systeme Lab SNU



s Applications are many

Appli

Digital Communications
Channel Equalisation

Adaptive noise
cancellation

Adaptive echo
cancellation

System identification
Smart antenna systems
Blind system equalisation
And many, many others

-1 -1 -1 -1

- ' - ' - ' . -

Wi |o ' Wy | ' ' ' Wiy 1
A AV AV A v

- -

e

ADAPTATION
yhf OUTPUT RULE

dk -~ ™
_| BADAPTIVE |

RESPONSE
1 ERROR

Ek

Wonyong Sumng
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Echo ca

A

Tx1 > Tx2

Y
v I Hybr]|d Hlybrid Il

Echo canceller O Ecpo _canceller

Adagtive Algofithm

Ada Local Loop

—RX1L O —(O——Rx2[—
+ +

Wonyong Sung
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REFERENCE SIGNAL

FIR filter
Noise — >

I -
Adaptive Algofithm

\ 4

Signal +Noise

PRIMARY SIGNAL

Wonyong Sumng
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Ada

» Adaptive Arrays

< <
< <
I inanar Camhinar <
iical wvuUlliIvlLIS] 1
< <
<
< Interference

Wonyong Sung
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&

o0

L)

0

>

Adap

Basic principles:
1) Form an objective function (performance
criterion)

2) Find gradient of objective function with respect
to FIR filter weights

3) There are several different approaches that can
be used at this point

3) Form a differential/difference equation from the
gradient.

Wonyong Sumng
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* Let the desired signal be
s The input signal
s The output

Adaptive

X
< Now form the vectors y _

< So that

xnl=[qn] xn-1 . xn-m+1]
h=[h[o] h{1] . hm+1]T
X

1
nji n

vl
VALLY e

 Objective function

J(w) = E{[d[n]-y[n]]}
JW)=0; -p'h-h"p+h'Rh
p=E{X[n]d[n]} R=E{XnIx[n]"}

Wonyong Surng
Multi Systems Lab SNU



Adapti

<+ We wish to minimise this function at the
INstant n

 Using Steepest Descent we write

“ But
hin+1]=hpn— - 52D
2" oh[n]
A (M) -2p+2Rh

Wonyong Sung
Multi Systems Lab SNU



’0

D)

L 4

&

D)

L)

>

D)

*

Ada

So that the “weights update equation”

h[n+1]=h[n]+ x(p—Rh[n])

Since the objective function is quadratic this

expression will converge in m steps
The equation is not practical

If we knew R and p a priori we could find the

required solution (Wiener) as

hopt — R_lp

Multi

Wonyong Sung
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Ada

% However these matrices are not known

» Approximate expressions are obtained by ignoring
the expectations in the earlier complete forms

* This is very crude. However, because the update
eguation accumulates such quantities, progressive
we expect the crude form to improve

Rin1=x[nIx[n]" p[n]=x[n]d[n]

L Jd L 41 L 41

Wonyong Sung
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% Thus we have

<+ Where the error |s

The

h[n+1]=h[n]+ #x[n](d[n]—-X[n]" h[n])

e[n] = (d[n]-x[n]" h[n]) = (d[n]~ y[n])

< And hence can erte

h[n+1]=h[n]+ ux[n]e[n]

 This is sometimes called the stochastic gradient

descent

Wonyong Sung
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The parameter U is the
step size, and it should
be selected carefully

s If too small it takes too
long to converge, if too
large it can lead to
iInstability

2
O< u<——
S

max

Multi

Wonyong Sumng
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* We require that

% Or 1—ul

max

<1

* In practice we take a much smaller value
than this )

O<u<—
)

max

Wonyong Sumng
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NNl rada f e a[n] )
- iter :w l N

] e

Transform A'QOW

Inverse Transform

Wonyong Sumng
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Lea

with

R[N] = S X[X[iT

We have the Least':équares solution

However, this is computationally very intensive to
implement. p[n] — Zx[n]d[n]

Alternative forms niiglke use of recursive estimates
of the matrices involved.

h{n]=R[n]"p[n]

Wonyong Sung
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Re

 Firstly we note that

p[n]=p[n—1]+X[n]d[n]

% We now use the Inversion Lemma (or the Sherman-
Morrison formula)

o Let
R[n]=R[n—1]+x[n]x[n]'

Wonyong Sung
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Recursiv

 Let
P[n]=R[n]"
% Then R[N—1]"'X[n]
K[n]= T |
1+ X[n]' R[n—1] " X[n]
s The quantity Is known as the Kalman gain

P[n]=R[n—1]-k[n]x" [n]P[n—1]
K[n]

Wonyong Sung
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Recursiv

< Now usek[n] = P[n]X[n]n the computation of the fi
weights

h[n]=P[n]p[n]= P[n](p[n —1]+Xx[n]d[n])

< From the earlier expression for P[n]updates we have

P[n]p[n—1]=P[n—1]p[n—1]-K[n]x" [n]P[n—1]p[n 1]

% And hence

* hn]=h[n=1]+Kk[n]d[n]-Xx[n]" h[n—1])

Wonyong Sung
Multi Systems Lab SNU



Transforms
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Linear trans

 Linearity: Let T[x] b
the linear transform of

s Signals represented in
the frequency domain

have different signal sequence Xx.
properties that can be Then for arbitrary
exploited to facilitate constant a, b
efficient digital signal

9 9 T[ax, +bx,]=aT[x]+bT[x,]

processing

s A linear transform is a
mapping that converts

L)

 Types of linear

. : : transforms
time domain (or spatial . :
domain) digital signal s DFT: discrete Fourier
into frequency domain transfo_rm _
coefficients. s DCT: discrete cosine
< A linear transform transform
operates on the entire = DWT: discrete wavelet
sequence of digital transform
signhals. s KLT: Optimal linear
transform

Wonyorng - Sung
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Matrix Fo

1D linear transform
Represent a finite 1D

segquence by a column vector:

Thellf)[)ﬂHea)l({fzgrz;ih'sf)c(u\lnllT can
be represented as a matrix-
vector product:

where Tisa N ) :T'azérix

whose elements may be
complex-valued.

2D linear transform
Often consider 2D separable

linear transform. That is a
1D linear transform is first
applied to each row of the
2D signal, and then a second
1D transform is applied to
each column of the
transformed signal. It
consists of two consecutive
matrix-matrix product:

U and V are the
transformation matrices

Y=U-X-V

Wonyorng - Sung
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Discrete Fou

The 1D DFT is defined as:
N -1
Y (k)= Z X (M)W
m=0

for O < m < N-1, where the
data {X(M); O <m < N-1}
may be real-valued or
complex-valued, and

Requires N2 complex-valued
MAC operations, or 4N? real-
valued MAC operations.

Fast Fourier Transform (FFT)

~arm rordii~rn thea NDNCT
call 1Tcuuulc i vur i

computation to O(N log N)

W, :exp(— )27/ N)

Each complex-valued
arithmetic:

(a+ jb)(c+ jd)=(ac—bd)+ j(bc+ad)
Requires 4 real-valued
multiplications and two
additions.

Half if one operand is a real
number.

Special arithmetic algorithms
such as CORDIC can be used
to implement complex-valued
multiplication effectively.

Wonyorng - Sung
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- What's the meaning of W,
W, f

the kn,,, point amon
N points on the unit circle
counted from the origin

clockwise In circular manner.

(NOTE) W' =1, W,""?=W,'=-1,

WNN/P :WPI (

I
D

At R(‘F| [%N! ’
VvVOni
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>
—
>
—_
Il
X
—
-
—_
=
=}
>~
Il

0,,-,N—-1 (N =29

N—pt. DFT

2t 2

n, even n, odd
N/2-1 N/2-1
= > OX2r W+ Y x2r + 1w, T
r=0 r=0
N/2-1 N/2-1

D X2rW, WY x2r + 1w, L

N /2— pt.DFT.G(K) N /2— pt.DFT.H (k)

Multi

At R(‘F| Zg%” ’
VvVOni
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(€g) N =8

X[0 jo——
X[1j@———
|
: DFT :
X[ 7]0——— e X[7]

N GIO] WIS
X[0le—— N n—@ X[0]

X — - pt. Gl Wi'oa v
e —
6le— | DFT [ GgIN S W70 s
X1 e | N ] o X[4
X3le—— 75 P! ;%??/\s 0 X [5]
i —t
|/ |@————— o X[7 WOTTRS?
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Final flow graph

W 0
000X[0] "o X[0]000
100 X[ 2] . \/W” 1] 001
N -
010 X[4] U>&:/\:\w X[2] o010
110 X[6] 0= W X[3]011
001 x[1] :>{:>\<>ﬁ/>< X[4]100
101 x[3] X[5] 101
011 X[5] >{:/\MN\; /\ X:6]110
111 X[7 X:7]111

| |

(bit — reversed) (natural)

At R(‘F| [%N! ’
VvVOni
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Fast Fo

Decimation in time % If L(N) = # of ops for Npt
formulation and N = 2™, then

Function Y = fFt(N,x) L(N) = N + 2*L(N/2)

If N==1, Y = X: =N+ 2*[N/2 + 2*L(N/22)]

Else = 2N + 22*L(N/22)
xeven=[x(0)x(2).. x(N-2)]: =..=mN+ 2m L(N/2™)
xodd=[x(1) x(3) .. x(N-1)]; = (M+1)N — O(N log,N)
Yeven=Fft(N/2,xeven); % Basic computation unit:
Yodd=FFt(N/2,xodd); twilde factor (each operation)
For k=0:N-1, = 4 multiply, 4 addition

Y(k)=Yeven(k mod N/2)
+ Wk*Yodd(k mode N/2);

end
end

P, | |cosf —sind | q, s S,
p; | sin@ cos@ q, S,

0=2xk/N

Wonyong Sung
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e Remarks
- cascaded processing : #stages = v =
- butterflies: #/stage = N/2

o ® > ®
>{
>0 @ T > T ®

W, W, B

- # computations (complex)
multiplications : 2/butterfly — 1/butterfly
{additons : 2/butterfly — 2/butterfly
total # of computations (complex)

multiplications:1-N/2-v = %logz N

ladditons:2-N/2-v=Nlog, N
- In - phase compuations

Multi Systems Lab SNU



3. Decimation-in-freg

X[K]=

(Sande- Tuckey) T~ FFT

N -1
D x[nW " k=01,.,N-1, N=2"
n=0
N
o ! N -1
D XMW+ > x[nW "
n= N

" T2
%_1 kﬂ%_l N
D OX[NW +W 2 > x[n+ ?]\NN”“
n=0 n=0
N
e N
2 X1+ (=D x[n + W
n=0

Multi

At R(‘F| Zg%” ’
VvVOni
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-Remarks
- # Stages

- # butterflies

- # computations

log , N (complex )

N.‘.Z N.‘.Z

- inplace computations

- output data ordering : bit-reversed

-Question
The flow graph for D-I-F 1s obtained by reversing.

The direction of the flow graph for D-I-T. Why?

-Omit Sections 9.5-9.7

VvVOni
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4. Applications of FFT

(1) Spectrum Analysis
N -1
- X[kl =) x(nWyg k=01, N-1

n=0
1s the spectrum of x[n], n=0,1,...,N-1

- Inverse transform can be done through the same mechanism

1) Take the complex conjugate of X[k]
i1) Pass it through the FFT process,
But with one shift right(/2) operation at each stage

ii1) Finally, take the complex conjugate of the result

1 N -1 . 1 N -1 . ) .
X[] == XKW ™ =[—-> X [kW
N =0 2" o

At R(‘F| [%N! ’
VvVOni
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- Operation redu

(2) Convolution ( Filtering)

h[n]
X[n] y[n]
N 2N
N
y[n] = x[n]*h[n] ) N-1 n
N -1
= Y xiklhfn-k1,
n=0,1,.,2N —-2 | N-1 n
y[n

0 2N-2 n

Wonyong Sumng
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-Utilize FFT of 2N-p

) N-1 2N n

[

0 N-1 2N n

0 2N-1 n

/\/

' IN-2 2N 1

y[n] — V[H]* R2N [n]

=[ > X[k]h[n-k]]-R,[n],

k=0

n=0,,.,2N -1

Y[k]= X[k]-HIK],
2N-pt DFTs

At R(‘F| Zg%” ’
VvVOni
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2N
%logﬂN 2N 710g22N

# operation (multi)

3-%10g22N +2N =3Nlog, N +5N

- operation reduction : N2 =3Nlog, N +5N

N=1024=2": 1,000,000 — 35,000

VvVOni
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Z[k]= X[k]-H *[k], 2N-point DFTs

# Operation :  N? — 3Nlog, N +5N
- Power spectrum P[k] = X[k] X'[k]

VvVOni
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J\;} Direct

106 .
- Computation
1M
105 . FFT-based
—0 Convolution
104 35k Correlation
? FFT
103- 5k
10%
10 -
I | | | | N
512 1024

wWon
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 Why use frequency domain?

— better statistic distribution

— many low frequency parts

— few high frequent parts

— quantising better achievable

— Humans see high frequencies only for high
contrast values

Wonyong - Surg
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Why not Fourier Transform?
— 8x8 Blocks

— FT: ringing at block edges
— Mirroring produces smooth function
— Sinus coefficients disappear

rA A
pepp

Wonyong Sung
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. amphitude

Wonyong Surng

Multi

Systems Lab SNU



] - 7 7
« FDCT: F(u,v)=1C(u)C(v ZZf(x,y)*cus%EcnsE%’l}

Wonyong Sung
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Discrete Co

< DCT: Fast DCT
see note: fastdct.doc

< Both DCT and DST can be

D as e+ D)
G@Zcmﬁg?ﬂuct& N +1

2m+1zu
2N

1/2 ’

u=20

F(u)= a(u)E X(M)cos

2N 2N

m=0 n=0

F(u,v)= %a(u)a(V)N_lNi X(m)x(n)cos{(zm N }COS{(zn + D””}

Wonyong Sung
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{ 1 ,otherwise

i z(2n+ 1Dk

,n=0,1,., N -1

X[n] = 3" e[k]X [k]cos

VvVOni
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- Example: Lee’s Algorithm (1

X[0] o > O
y ><
X[4] e > o—p—0=—
- &
X12] e > O—p—O<—
- ><
X16] e > o—p— 0
o &
A1 o— O—>—Ooc——
X[5] \ o= -
Rell o\\ >\\ o—» q
X[3] ¢ o
TS
X171 o Y >\éo/ -
&
1 |
a, = — = put 1 =1,
T
2C0S— 2COS—
4 8

At R(‘F| [%N! ’
VvVOni
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Discrete

% Hy(2), H,(2): low pass and high pass FIR digital filters.
Maintain same number of input samples and output samples

% 12: down-sampling by a factor 2.

x(n) — Hy(z) —{ 2 Hy(z) 42 Hy(z) Y2 F— y,(n)

> y5(n)
> y4(n)

L H,(z) — ¥2 —‘ L H,(z) — ¥2 W L H,(z) {32 — y,(n)

Wonyong Sung
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x[n]

Multi
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