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DSP Algorithms and Applications

Filtering
Linear: FIR and recursive (IIR) ( )
Nonlinear and time-varying: adaptive filter
Usage: noise elimination, frequency compensation, 
sample rate conversion

Transformation
FFT: frequency analysis, indirect convolution
DCT: real arithmetic, image/video processingDCT: real arithmetic, image/video processing
Usage: spectrum analysis, OFDM(Orthogonal 
Frequency Division Multiplexing)

Communication blocksCommunication blocks
NCO: digital oscillator, 
PLL: phase locked loop
ADC/DACADC/DAC
QPSK, QAM, OFDM, CDMA 
ECC: CRC, Hamming, BCH, RS, LDPC, convolutional
coding
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Algorithm considerations for system design
Performance in terms of signal processing

For example, RLS is better than LMS in terms of signal 
robustness (adaptation speed)robustness (adaptation speed)…
FIR is better in terms of phase linearity when 
compared with recursive filtering

For image processing, only FIR filtering is adequate. 

Number of arithmetic ops.(multiplications)
FIR filtering demands a lot of multiplicationsFIR filtering demands a lot of multiplications

But not always, for narrowband filtering, it needs a smaller one. 

Algorithm complexity, parallel & regularity
Seems more important in these days as there are 
abundant of arithmetic elements in a chip.
Parallel structure is good for HW based design  Parallel structure is good for HW based design. 

If you start with a poor algorithm, there is not 
much way to recover the disadvantages!
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You need to consider both performance and 
implementation characteristics.



Digital Filters

Types of Digital Filters: 
l  b d  hi h  t hlow-pass, band-pass, high-pass, notch-
filter, allpass, etc.

FIR and IIR Digital FiltersFIR and IIR Digital Filters
Multiplierless filters
Filters for sampling rate conversionFilters for sampling rate conversion
Structures of Digital Filters

Direct, cascade, parallel forms, , p
State-space realizations
Orthogonal digital filter

Quantization Errors, Stability, 
accuracy
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Types of Digital Filters

Usages:
Low pass: anti-aliasing, 
smoothing, noise 
reduction
High pass: DC removal, 

|H(ejω)| Low pass
g p ,

baseline wander reduction
Band pass: noise 
reduction

ωπ

Design: 
Choose FIR or IIR filter 
coefficients to 

|H(ejω)|
High pass

coefficients to 
approximate desired 
frequency response.
Usually the designed filter 

ωπ

Band pass Usually the designed filter 
coefficients are not 
unique! Leaving large 
design space to be ω

|H(ejω)|
Band pass
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design space to be 
explored.  Passband, 
stopband ripples.

ωπ



Filter design and implementation

Filter design: determining the transfer 
function (H(z)) from the given frequency function (H(z)) from the given frequency 
domain specification.  The location of poles 
and zeroes are determined.  a d e oes a e dete ed
Filter implementation: determining the 
filter structure (direct form, 2nd order ( ,
cascade form, …) , pole-zero pairing if 
needed, word-length and memory 
t t  f  d i  th  h d  t  structure for reducing the hardware cost, 

machine cycles, or power consumption.  
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Digital filter specificationsDigital filter specifications

For example the magnitude response    |G(ejω)|      
of a digital lowpass filter may be given as 
i di d b lindicated below
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* Transition bandwidth is important for filter order determination.



Digital filter specificationsDigital filter specifications
In practice, passband edge frequency         and 
stopband edge frequency      are specified in Hz
F  di it l filt  d i  li d b d d  

sF pF

For digital filter design, normalized bandedge 
frequencies need to be computed from 
specifications in Hz using

TF
F

F
F p
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π
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Digital filter specificationsDigital filter specificationsg pg p

In the passband we require that         
with a deviation          

1)( ≅ωjeG δ±
pωω ≤≤0

1)( ≅eG pδ±

pp
j

p eG ωωδδ ω ≤+≤≤− ,1)(1
In the stopband we require that 

with a deviation                                      
ωj sδ

πωω ≤≤s

0)( ≅ωjeG

δω ≤≤≤jG )( πωωδω ≤≤≤ ss
jeG ,)(
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Digital filter specificationsDigital filter specifications

Filter specification parameters       
- passband edge frequencypω p g q y
- stopband edge frequency
- peak ripple value in the passband

p

sω
pδ peak ripple value in the passband

- peak ripple value in the stopbandsδ
p

Wonyong Sung
Multimedia Systems Lab SNU



Digital filter specificationsDigital filter specifications

Practical specifications are often given in 
terms of loss function (in dB)terms of loss function (in dB)

)(log20)( 10
ωω jeG−=G

Peak passband ripple
dB)1(l20 δ dB

Mi i  t b d tt ti

)1(log20 10 pp δα −−=

Minimum stopband attenuation
dB)(log20 10 ss δα −=
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FIR, IIR digital filters

Let {h[n}: impulse 
response

Infinite impulse response 
(IIR) filter

QP
p

{x(n)}: input, {y(n)}: 
output
Finite impulse response Both poles and zeroes. 

1 0
( ) ( ) ( ) ( ) ( )

QP

i k
y n a i y n i b k x n k

= =

= − + −∑ ∑

Finite impulse response 
(FIR) filter: The length of impulse 

(unitpulse)response may 
be infinite! 
R i  f l  ill 

1

( ) ( ) ( )
J

y n h j x n j
−

= −∑
Has only zeroes (no 
poles).

Recursive formula will 
impact on computation 
methods (feedback).
Stability concerns: 

0j=

Usually, implemented as a 
feed-forward type.  

Stability concerns: 
The magnitude of y(n) 
may become infinity even 
all x(n) are finite!all x(n) are finite!
coefficient values, 
quantization error
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FIR filters
Direct form structure, which has 
a form of convolution, is usually 
used.   Cascade or parallel forms 
are a little bit complex in terms of 
structure.   The quantization 
effects of direct form FIR filters 

 till t l bl  i  t  are still tolerable, in most cases. 
Symmetric coefficients FIR

Linear phase: critical for image p g
processing
Halve the # of multiplications 

Filter designFilter design
Windowing
CAD – Parks McClellan method

The needed order is usually high.  
Good for interpolation, 
decimation filtering
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Linear phase filter - symmetric FIR
h(n) = h(-n)
Evaluate the frequency 
response (assuming that N is 
odd) and h(n) is real-valued

1-N

h(n)

(N=7)

zh(n)=zh(n)=H(z)
2

2
1-N

-=n

n-
n

n=n

n- ∑∑
2

1 n

)ee(h(n)+h(0)=)H(e

get  weh(-n) = h(n) if

Ωn   π2 j+Ωn   π2 j-
2

1-N

Ω  π2 j ∑

]cos[h(n)2+h(0)=)H(e

)e-e(h(n) + h(0) =)H(e

2
1-N

Ωπ2j

1=n

∑

∑

]cos[h(n)2 + h(0) =)H(e Ωn π2
1=n

j ∑

The frequency response is real: phase shift is 0 or 180 degrees
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Linear-phase type 1
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Needed number of coefficients

For equiripple LP FIR filters:

s
e

F
]

1
log[

2
=N

passstopstoppass
e

F-F
 ]

DD10
log[

3
N

Independent of BW (Fpass)!p ( pass)
Weak (logarithmic) dependence on the  

Pass band ripple level and the Stop band 
iattenuation

Linear dependence on the transition band!
O l N 29 ( d t 31)• Our example: Ne = 29 (compared to 31)

• Problem: Very narrow filters -> Decimating
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Example

Develop an AM-SSB modulator using Simulink. 
There are a few methods for generating SSB signal. There are a few methods for generating SSB signal. 
Here you try to use a bandpass filter. The filter 
specification that I suggest is a bandpass filter 
having the following specification This filter is having the following specification. This filter is 
designed assuming that the message signal has the 
frequency range of 0.2KHz ~ 3.8KHz.   Carrier freq 
= 12KHz  Sampling freq = 48KHz= 12KHz, Sampling freq = 48KHz

f1: stopband edge: 11.8KHz 
f2: passband edge: 12 2KHz f2: passband edge: 12.2KHz 
f3: passband edge: 15.8KHz 
f4: stopband edge: 16 2KHz f4: stopband edge: 16.2KHz 

Passband ripple: -0.5dB~+0.5dB, stopband
attenuation: 40dB 
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FIR filter design

Signal Processing Signal Processing 
Toolkit of MATLAB 
Define the frequency 
response template. response template. 
Case of LPF:

Pass band End Fpass

Pass band Ripple 
Dpass

Stop band Start F tStop band Start Fstop

Stop band 
Attenuation Dstop

Fstop-Fpass = Transition band

Wonyong Sung
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Design of EquirippleDesign of EquirippleDesign of Equiripple Design of Equiripple 
LinearLinear--Phase FIR FiltersPhase FIR Filters

The linear-phase FIR filter obtained by 
minimizing the peak absolute value of

)(max ωε E=
is usually called the equiripple FIR filter
After    is minimized, the weighted error 

)(
ω R∈

function E(ω) exhibits an equiripple 
behavior in the frequency range Rε

19



Design of Equiripple Design of Equiripple 
LinearLinear--Phase FIR FiltersPhase FIR Filters

The general form of frequency response of The general form of frequency response of 
a causal linear-phase FIR filter of length 
2M+1: )()( ω= βω−ω HeeeH jjMj (

where the amplitude response           is a 
real function of

)()( ω= HeeeH
)(ωH

(

ωreal function of
Weighted error function is given by

ω

)]()()[()( ω−ωω=ω DHW
(

E
where           is the desired amplitude 
response and           is a positive weighting 

)]()()[()( ωωω=ω DHW
)(ωD

)(ωW

E

spo s d s pos g g
function

)(ωW

20



Design of Equiripple Design of Equiripple 
LinearLinear--Phase FIR FiltersPhase FIR Filters

For filter designFor filter design,

⎨
⎧=ω

passbandthein,1
)(D

is required to satisfy the above 
⎩
⎨=ω

stopbandthein,0
)(D

)(ωH
(

is required to satisfy the above 
desired response with a ripple of          in 
the passband and a ripple of      in the 

)(ωH
pδ±

sδp pp
stopband

s
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Design of Design of EquirippleEquiripple
LinearLinear--Phase FIR FiltersPhase FIR Filters

Thus, weighting function can be chosen 
either aseither as

⎨
⎧ passbandthein,1

⎩
⎨
⎧

δδ
=ω

stopbandthein,/
p,

)(
sp

W

or

⎨
⎧ δδ passbandthein,/ ps

⎩
⎨
⎧ δδ

=ω
stopbandthein,1
passbandthein,/

)( psW
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Example 1: Equiripple LP FIR (1)

LPF example:
Pass band End Fpass = 
0.1
Pass band Ripple 
Dpass=0.05 (5%)
Stop band Start F = Stop band Start Fstop= 
0.13
Stop band Attenuation 
D = 0 1 (1/10)Dstop = 0.1 (1/10)

Minimum of 31 coefficients
needed to achieved 
required specifications
Even-symmetric impulse 
response
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Example 1: Equiripple LP FIR (3)
Pole-Zero plot in the 
z-plane
FIR  l  t  FIR -> pole at zero 
(causal)
Location of zeros:

On the unit circle in 
the Stop band
Far from unit circle 
in Pass band -> 
ripples

Wonyong Sung
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FDAtool FIR design example
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Edit, Convert Structure …

Wonyong Sung
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MATLAB example 1

N = 80; k = 0:(N-1); MATLAB filter
b0 = 1;

b1 = -1;

MATLAB filter
command 

corresponds to 
the symbol Φb2 = 1;

B = [b0 b1 b2];

f = 1/8;

the symbol Φ

f = 1/8;

x = sin(2*pi*f*k+pi/6);

y = filter(B,1,x);

subplot(2,1,1)

systemFIR(0,0,4,5,10,'b')

subplot(2,1,2)

plot(k,x,'go', k,y,'bo',...

k x 'g-' k y 'b-')

Wonyong Sung
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k,x, g- , k,y, b- )

legend('input','output')



IIR or recursive filter

Utilize poles and zeros
P l   f  h i   b dPoles are for shaping pass bands
Zeros are for stop bands

Th  l  h ld b  i id  f h  i  i l  The poles should be inside of the unit circle 
in the z-domain for stability

Finite word length effects can affectFinite word-length effects can affect
Direct forms are more susceptible. 

U ll  th  d  d d i  ll  h  Usually, the order needed is smaller when 
compared to FIR filters
Direct forms are not good fixed point Direct forms are not good fixed-point 
implementations

2nd order cascade  

Wonyong Sung
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2 order cascade, …



MATLAB example 3

N = 80; k = 0:(N-1);

a = 0.97;

B = [0 1];

A = [1 -a];

(k 0)

The impulse response 
does not vanish after 

finite number ofx = (k==0);

y = filter(B,A,x);

subplot(3,1,1)

finite number of 
samples

p ( , , )
draw1stIIR(0,0,4,5,10,'b')

subplot(3,1,2)
stem(k,x,'r')( , , )
ylabel('input')

subplot(3,1,3)
stem(k,y,'b')

Wonyong Sung
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( ,y, )
ylabel('output')



Basic 2nd Order IIR Structures

b(0)x(n) u(n) y(n) x(n) w(n) y(n)b(0)

b(1) −a(1) −a(1) b(1)
z-1

z-1

z-1

z-1

z-1

-1

x(n-1) y(n-1)
w(n-1)

Direct form I realization
5 M l i l  4 Addi i   ( )

Direct form II realization a.k.a 
BiQuad

b(2) −a(2) −a(2) b(2)
z z z-1

x(n-2) y(n-2) w(n-2)

5 Multiply 4 Additions per y(n)
4 registers storing x(n-1), x(n-2), 
y(n-1), y(n-2)

BiQuad
5 multiply, 4 additions per y(n)
2 registers storing w(n-1), w(n-2)

Different structures determines different execution order, different 
numerical properties, but retain the same algebraic relation between input 

d
Wonyong Sung
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Cascaded and Parallel Structures

If the characteristic 
polynomial A(z) has real-

Cascaded realization
p y ( )
valued coefficients, then 
it can be factorized as:

P ll l li ti  

1 2

1 2 2 2

1
1 1 1 2 2

11 1 1 2
P P

P P P Pz z r z r z
γ ηγ

α α β− − − −− − − +

Parallel realization 

1 2 1P P
k k zμ ν ρ −+∑ ∑1

2

1

1

( ) (1 )
P

i
i

P

A z zα −

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

⎛ ⎞

∏ 1 1 2 2
1 1

( )
1 1 2 cos

i k k

i ki k k k

zH z
z r z r z

μ ν ρ
α β− − −

= =

+
= +

− − +∑ ∑

2

1 2

1 2 2

1

(1 2 cos )

( ) ( )

k k k
k

P P

r z r z

A z A z

β − −

=

⎛ ⎞
⋅ − +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟

∏

∏ ∏
1 1

1 2

( ) ( )i k
i k

A z A z

P P P
= =

= ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +

∏ ∏ +
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2nd-order Sections

Generally implement high-order IIR filters as a sum or 
cascade of 2nd-order filters to reduce the sensitivity of 
the overall response to the precision of each coefficientthe overall response to the precision of each coefficient
High-order polynomial is factored to find poles and 
zeros, and each 2nd-order filter (biquad) implements 
two zeros and two poles (real or complex conjugate)two zeros and two poles (real or complex conjugate)
Poles and zeros are grouped in pairs—usually try to 
group in such a way that minimizes peak gain of each 
section
If cascaded, 2nd-order sections are usually ordered from 
lowest gain to highest gain to minimize overflow 
likelihood
Scaling may be needed for overall response or for each 
section individually (computation vs. quality)

21
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Pole-zero pairing

When pairing poles and zeros, it is 
better to combine nearby poles y p
and zeroes for a same 2nd order 
structure. 
Purpose: to reduce the dynamic p y
range of internal signal

It is not good to magnify 
(attenuate) a signal and then (attenuate) a signal and then 
attenuate (magnify) it much in 
terms of quantization noise 
sensitivity. y
Criteria: Maximal dynamic range: 
a ratio of (a) the maximum 
magnitude response computed ag tude espo se co puted
over the whole frequency range to 
(b) the minimum magnitude 
response in the passband

Wonyong Sung
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Implementation Issues

Coefficient quantization
Due to limited coefficients word-length. Due to limited coefficients word length. 
This affects the frequency response. 
Especially, the pass-band or stop-band ripple can be 
increasing (make a frequency distortion )increasing (make a frequency distortion.)

Roundoff error (least significant bits lost)
Due to limited data word-length
This introduces random-like quantization noise. Make a 
noisier filter. 

Limited data wordlength
x(n)

a(1)

w(n) y(n)b(0)

b(1)
z-1Quantization of coefficients −a(1)

−a(2)

b(1)

b(2)
z-1

w(n-1)

Q
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Engineering an IIR filter

Verify filter performance with quantized 
coefficientscoefficients
Assess roundoff error by modeling the truncation as 
a noise source in the filter structure.  Determine the 
transfer function from each roundoff noise source transfer function from each roundoff noise source 
to the output.
Calculate overflow situations by looking for peaks 
in frequency response from input to each 
accumulation point in the filter.

Wonyong Sung
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Cascade direct form II
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Comparison of the complexity of different IIR 
filtersfilters

Wonyong Sung
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Further reading

M. D. Lutovac, D. V. Tošić, B. L. Evans

Filter Design for Signal ProcessingFilter Design for Signal Processing 
Using MATLAB and Mathematica

Prentice HallPrentice Hall
Upper Saddle  River, New Jersey 
ISBN 0-201-36130-2, (c) 2001, ( )

http://kondor etf bg ac yu/~lutovac/
Wonyong Sung
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Multiplierless filters

Integrator
H(z) = 1/1-z-1H(z)  1/1 z

Integrator has a pole at z=1, 
so it is a kind of lowpass filter 
with no multiplier   Should be with no multiplier.  Should be 
careful for overflow due to 
DC accumulation. x[n] y[n]

Moving average (MA) filter
H(z) = (1-z-N)/(1-z-1)

MA filter has many zeroes MA filter has many zeroes 
around the unit circle except 
for z=1. It is a lowpass filter.  
It can be modified to a It can be modified to a 
bandpass or highpass filter. 
= 1+z-1+z-2+… +z-(N-1)

Wonyong Sung
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Good for FPGA’s with DSP 
blocks



Two moving averager implementations

Feed-forward type:
Higher number of z-1 z-1 z-1x[n]Higher number of 
arithmetic operations
Better stability

z z z

y[n]

x[n]

ette stab ty
Feed-back type:

Lower number of 
x[n]

[ ]

z-N

arithmetic operations
Should be careful 
against overflows 

y[n]

z-1

against overflows 

Both structures have Both structures have 
the same frequency 
response with infinite 

i i i h i
Wonyong Sung
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Key points

Different types and structures of digital filters may 
achieve the same or similar goals, but with g
different implementation costs, numerical 
properties
Design space that can be exploredg p p

Filter types: FIR, IIR, adaptive filters
Specifications/performance goals
Filter structuresFilter structures

Direct, parallel, cascade …
Numerical properties (floating point/fixed point, etc.)

Wonyong Sung
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Interpolation (Sample rate increase)

Insert N-1 zeroes between the samples, 
then conduct lowpass filtering (pi/N)  then conduct lowpass filtering (pi/N). 
Among N tap inputs, only one is non-zero 
(no need to compute N-1 mult )(no need to compute N 1 mult.)

Wonyong Sung
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Decimation (Sample rate reduction)
Conduct lowpass filtering (pi/N).
Among N output samples, select only one.  So, we 
do not need to compute N-1 output samples. do not need to compute N 1 output samples. 

(This is not possible for recursive filters because of 
feedback!)

Wonyong Sung
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FIR filter implementation for decimation, 
interpolationp

For interpolation: (N-1) among N input 
values at the tap are zero!  No need to values at the tap are zero!  No need to 
conduct multiplications
For decimation: We only need to compute 1 For decimation: We only need to compute 1 
output sample at every N output. 
It is interpreted as polyphase filter with It is interpreted as polyphase filter with 
the tap length of about M/N. 

Wonyong Sung
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Here's an example of a 12-tap FIR filter that implements 
i l i b f f f Th ffi i h0 h11 dinterpolation by a factor of four. The coefficients are h0-h11, and 
three data samples, x0-x2 (with the newest, x2, on the left) have 
made their way into the filter's delay line:

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 Result

x2 0 0 0 x1 0 0 0 x0 0 0 0 x2·h0+x1·h4+x0·h8 

0 x2 0 0 0 x1 0 0 0 x0 0 0 x2·h1+x1·h5+x0·h9 

0 0 x2 0 0 0 x1 0 0 0 x0 0 x2·h2+x1·h6+x0·h10

0 0 0 x2 0 0 0 x1 0 0 0 x0 x2·h3+x1·h7+x0·h110 0 0 x2 0 0 0 x1 0 0 0 x0 x2·h3+x1·h7+x0·h11

Wonyong Sung
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FIR filtering for narrowband signal

Narrow band filtering (large order needed): 
It is advantageous to conduct decimation It is advantageous to conduct decimation 
followed by post-filtering (operates at low 
sampling rate) -> the total number of sa p g ate) > t e tota u be o
mult’s is reduced.
Application to IF filtering for digital radiopp g g

Wonyong Sung
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Example with SSB generation

What if the carrier frequency for AM in 
HW#1 is 2 048KHz   Assume that the HW#1 is 2,048KHz.  Assume that the 
sampling frequency for the carrier is 
4*2,048KHz. ,0 8
Design the bandpass filter for removing the 
lower sideband.
Assume that the message signal has the 
sampling frequency of 8KHz.  Design the 
interpolation filter for interpolating the 
message signal. 
C id   h t d  d l t  h  Consider a heterodyne modulator, where 
the 1st stage modulation frequency is 
12KHz   The generated SSB is  then  12KHz.  The generated SSB is, then, 
modulated to 2,048KHz.

Wonyong Sung
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Discussion

FIR filter can be 
implemented using direct 

There are numerous 
possible realization 
t t  f th   

p g
form or fast convolution 
methods like FFT.
IIR filters are often 

structures of the same 
digital filters. 
Digital filter coefficients 
are not always exact  It is 

factored into products 
(cascade realization) or 
sum (parallel realization) 

are not always exact. It is 
possible to realize a 
digital filter with the 
same desired properties 

of 1st order or 2nd order 
sections due to numerical 
concerns. 

p p
but different filter 
structures and 
coefficients to exploit 
favorable implementation favorable implementation 
alternatives. A state 
space model is a good 
example.p

Wonyong Sung
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Quantization error, stability, overflow
An IIR filter is BIBO 
stable if all the poles of 
its transfer function H(z) 

Overflow
Dynamic range of its transfer function H(z) 

lie within the unit circle 
in z-plane.
A stable IIR digital filter 

y g
intermediate results 
must be bounded.
Otherwise, overflow 
h k t b  d d may become unstable 

when its coefficients are 
subject to severe 
quantization due to finite 

check must be used and 
that is very costly. 
Saturation arithmetic 
may reduce the error quantization due to finite 

length of registers. 
Hence an IIR filter that 
is stable when designed 

may reduce the error 
caused by overflow. 

is stable when designed 
with a 32 bit machine 
may become unstable 
when implemented with 

 8 bit i t ll !an 8-bit micro-controller!

Wonyong Sung
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Adaptive filter and 
adaptive signal processingadaptive signal processing

Changing the filter coefficients for adapting to the 
environment or signal change. environment or signal change. 
The filter coefficients are changing. 
Fixed-approach:

If the channel were fixed then a possible solution could 
be based on the Wiener filter approach
We need to know in such case the correlation matrix of We need to know in such case the correlation matrix of 
the transmitted signal and the cross correlation vector 
between the input and desired response.

h h fil i i i kWhen the filter is operating in an unknown 
environment these required quantities need to be 
found from the accumulated data.

Continuous adaptation is needed. 
LMS and RLS, …

Wonyong Sung
Multimedia Systems Lab SNU
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Adaptive signal processing

A possible framework is:A possible framework is:

][nd
Desired signal

Input signal ][nd
][ˆ nd]}[{ nx Adaptive

Input signal

][ne
w:Filter

Minimize the error 
signal

Algorithm

Wonyong Sung
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Applications of adaptive filters

Applications are many
Digital CommunicationsDigital Communications
Channel Equalisation
Adaptive noise 
cancellationcancellation
Adaptive echo 
cancellation
S  id ifi iSystem identification
Smart antenna systems
Blind system equalisationy q
And many, many others

Wonyong Sung
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Echo cancellers in local loops

Tx1 Tx2

Echo canceller Echo canceller
Hybrid Hybrid

Adaptive Algorithm Adaptive Algorithm
Local Loop

-

+

-

+
Rx1 Rx2

Wonyong Sung
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Adaptive noise canceller

FIR filter

REFERENCE SIGNAL

Noise

-

FIR filter

+
Adaptive Algorithm

Signal +Noise

PRIMARY SIGNAL

Wonyong Sung
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Adaptive signal processing

Adaptive Arrays

Linear CombinerLinear Combiner

Interference

Wonyong Sung
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Adaptive signal processing
Basic principles:
1) Form an objective function (performance 1) Form an objective function (performance 
criterion)
2) Find gradient of objective function with respect 
to FIR filter weightsto FIR filter weights
3) There are several different approaches that can 
be used at this point
3) Form a differential/difference equation from the 3) Form a differential/difference equation from the 
gradient.

Wonyong Sung
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Adaptive signal processing

Let the desired signal be
The input signal

][nd
][nxp g

The output
Now form the vectors

][nx
][ny

So that
[ ]Tmnxnxnxn ]1[.]1[][][ +−−=x

[ ]Tmhhh ]1[.]1[]0[ +=h

hx Tnny ][][ =
Objective function    

[ ] }][][{)( 2nyndEJ =w

hx nny ][][ =

[ ] }][][{)( nyndEJ −=w

Rhhphhpw TTT
dJ +−−= 2)( σ

Wonyong Sung
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Adaptive signal processing

We wish to minimise this function at the 
i t t instant n
Using Steepest Descent we write

But 

])[(1][]1[ nJnn hhh ∂=+ μ
][2

][]1[
n

nn
h

hh
∂

−=+ μ

h)(∂J Rhp
h
h 22)( +−=

∂
∂J

Wonyong Sung
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Adaptive signal processing

So that the “weights update equation”

Since the objective function is quadratic this 

])[(][]1[ nnn Rhphh −+=+ μ
j

expression will converge in m steps
The equation is not practical
If we knew       and       a priori we could find the pRIf we knew       and       a priori we could find the 
required solution (Wiener) as

pR

pRh 1−= pRh =opt

Wonyong Sung
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Adaptive signal processing
However these matrices are not known
Approximate expressions are obtained by ignoring Approximate expressions are obtained by ignoring 
the expectations in the earlier complete forms

This is very crude. However, because the update 
equation accumulates such quantities, progressive 
we expect the crude form to improvewe expect the crude form to improve

Tnnn ][][][ˆ xxR = ][][][ˆ ndnn xp =nnn ][][][ xxR ][][][p

Wonyong Sung
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The LMS algorithm

Thus we have

])[][][]([][]1[ nnndnnn T hxxhh −+=+ μ
Where the error is

])[][][]([][]1[ nnndnnn hxxhh −+=+ μ

])[][(])[][][(][ nyndnnndne T −=−= hx
And hence can write

hi i i ll d h h i di

])[][(])[][][(][ y

][][][]1[ nennn xhh μ+=+
This is sometimes called the stochastic gradient
descent

Wonyong Sung
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Convergence

The parameter      is the 
step size, and it should 

μ
step size, and it should 
be selected carefully
If too small it takes too 
long to converge  if too long to converge, if too 
large it can lead to 
instability

20 μ <<
max

0
λ

μ <<

Wonyong Sung
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Convergence

We require that

Or 11 max <− μλ

In practice we take a much smaller value 
than thisthan this

20
λ

μ <<
maxλ

Wonyong Sung
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Transform based LMS

][nd
][ˆ nd]}[{ nx

][
w:Filter

Adaptive

][ne

AlgorithmTransform gTransform

Inverse Transform

Wonyong Sung
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Least squares adaptive

with

∑
n Tii ][][][R

We have the Least  Squares solution

∑=
=i

Tiin
1

][][][ xxR

However, this is computationally very intensive to 
implement. ∑=

n
ndnn ][][][ xp

Alternative forms make use of recursive estimates 
of the matrices involved.                          

∑
=i 1

][][][p

][][][ 1 ][][][ 1 nnn pRh −=

Wonyong Sung
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Recursive Least Squares

Firstly we note that

][][]1[][ ndnnn xpp +−=

We now use the Inversion Lemma (or the Sherman-
Morrison formula)
Let Let Tnnnn ][][]1[][ xxRR +−=

Wonyong Sung
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Recursive Least Squares (RLS)

Let
1][][ −nn RP

Then ][]1[ 1 nn xR −−

][][ = nn RP

h i i k h l i

][]1[][1
][]1[][ 1 nnn

nnn T xRx
xRk −−+

=

The quantity           is known as the Kalman gain 

]1[][][]1[][ −−−= nnnnn T PxkRP

][nk

Wonyong Sung
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Recursive Least Squares

Now use                              in the computation of the filter 
weights

][][][ nnn xPk =

From the earlier expression for          updates we have

])[][]1[]([][][][ ndnnnnnn xpPpPh +−==
][nP

And hence

][nP
]1[]1[][][]1[]1[]1[][ −−−−−=− nnnnnnnn T pPxkpPpP

And hence

])1[][][]([]1[][ −−+−= nnndnnn T hxkhh

Wonyong Sung
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Transforms
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Linear transformations

Signals represented in 
the frequency domain

Linearity: Let T[x] be 
the linear transform of q y

have different 
properties that can be 
exploited to facilitate 
ffi i di i l i l

signal sequence x. 
Then for arbitrary 
constant a, b

efficient digital signal 
processing  
A linear transform is a Types of linear 

1 2 1 2[ ] [ ] [ ]T ax bx aT x bT x+ = +

mapping that converts 
time domain (or spatial 
domain) digital signal 
i f d i

Types of linear 
transforms

DFT: discrete Fourier 
transforminto frequency domain 

coefficients.
A linear transform 

transform
DCT: discrete cosine 
transform
DWT  di  l  operates on the entire 

sequence of digital 
signals.

DWT: discrete wavelet 
transform
KLT: Optimal linear 

Wonyong Sung
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Matrix Formulations

1D linear transform
Represent a finite 1D 

2D linear transform
Often consider 2D separableRepresent a finite 1D 

sequence by a column vector:

The 1D linear transform can 

p
linear transform. That is a 
1D linear transform is first 
applied to each row of the 
2D signal  and then a second [ ]TNxxxX ][]2[]1[ L=The 1D linear transform can 

be represented as a matrix-
vector product:

2D signal, and then a second 
1D transform is applied to 
each column of the 
transformed signal. It 

[ ]][][][

where T is a N × N matrix 
whose elements may be 

l l d

t a s o ed s g a t
consists of two consecutive 
matrix-matrix product: 

XY ⋅= T

complex-valued. U and V are the 
transformation matrices

VXUY ⋅⋅=

Wonyong Sung
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Discrete Fourier Transform

The 1D DFT is defined as: 
1

( ) ( )
N

mkY k X W
−

∑
for 0 ≤ m ≤ N−1, where the 
data {X(m); 0 ≤ m ≤ N−1} 

Each complex-valued 
arithmetic:

0
( ) ( ) mk

N
m

Y k X m W
=

= ∑

may be real-valued or 
complex-valued, and 
Requires N2 complex-valued 
MAC ti   4N2 l

Requires 4 real-valued 
multiplications and two 

( )( ) ( ) ( )a jb c jd ac bd j bc ad+ + = − + +

MAC operations, or 4N2 real-
valued MAC operations.
Fast Fourier Transform (FFT) 
can reduce the DFT 

multiplications and two 
additions.
Half if one operand is a real 
numbercan reduce the DFT 

computation to O(N log N)
number.

Special arithmetic algorithms 
s ch as CORDIC can be sed such as CORDIC can be used 
to implement complex-valued 
multiplication effectively. 

( )NjWN /2exp π−=
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2. Decimation-in-Time Factorization2. Decimation in Time Factorization

1

)2(1,,1,0,][][
N

kn
N NNkWnxkX

−

∑ =−=⋅= υL

.
0

)2(1,,1,0,][][
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n
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=

∑∑
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12/
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2
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graph flow Final
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Fast Fourier Transform

Decimation in time 
formulation

If L(N) = # of ops for Npt FFT, 
and N = 2m, then 

Function Y = fft(N,x)
If N==1, Y = x;
Else

L(N) = N + 2*L(N/2)
= N + 2*[N/2 + 2*L(N/22)]
= 2N + 22*L(N/22)
= = mN + 2m L(N/2m)xeven=[x(0)x(2)… x(N-2)];

xodd=[x(1) x(3) … x(N-1)];
Yeven=fft(N/2,xeven);
Yodd=fft(N/2 xodd);

= … = mN + 2m L(N/2m)
= (m+1)N ~ O(N log2N)

Basic computation unit: 
twilde factor (each operation)Yodd=fft(N/2,xodd);

For k=0:N-1,
Y(k)=Yeven(k mod N/2) 
+ Wk*Yodd(k mode N/2);

twilde factor (each operation)
4 multiply, 4 addition

end
end

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤cos sin
sin cos

2 /

r r r

i i i

p q s
p q s

k N

θ θ
θ θ

θ π

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=
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Nlogstages#:processingcascaded-
Remarks
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•

υ
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Nlogstages#:processingcascaded      2

=
==υ

       
1

8W

5W
1

8W

1
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(complex) nscomputatio # -      

⎧ →

8W 8

(complex)nscomputatioof#total
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⎩
⎨
⎧

→
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2
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(complex)nscomputatioof # total      

⎪
⎨
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3. Decimation-in-frequency Factorization

(Sande- Tuckey)                      FFT

q y
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Final flow graphFinal  flow  graph
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-Remarks
log: 2 N=ν

:  

log: 2

N

N ν
- # Stages

# b tt fli

)(log:

2
:

complexNN

- # butterflies

- # computations )(log
2

:  2 complexN# computations

- inplace computations
- output data ordering    : bit-reversed

-Question
The flow graph for D-I-F is obtained by reversing.

The direction of the flow graph for D-I-T. Why?

Wonyong Sung
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4. Applications of FFT

(1) Spectrum Analysis
1N −

-

is the spectrum of x[n] n=0 1 N-1

1,...,1,0,    ][k][ 
0

Nk WnxX  
n

nk
N∑

=

−==

is the spectrum of   x[n] , n 0,1,…,N 1

- Inverse transform can be done through the same mechanism

 

i) Take the complex conjugate of  X[k]
ii) Pass it through the FFT processii) Pass it through the FFT process,

But with one shift right(/2) operation at each stage
iii) Finally take the complex conjugate of the resultiii) Finally, take the complex conjugate of the result

]][1[][1x[n]
11

WkXWkX 
N

nk
N

N
nk

N ∑∑
−

∗∗
−

− == ν
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- Operation reduction : NNN 2
2 log

2
    →

(2) Convolution     ( Filtering )

p
2

h[n]h[n]
x[n]                       y[n]

N 2N
x[n]

N                          2N
N

0             N-1             n   ][][][ ∗= nhnxny
h[n]     ],[][        

][][][
1

−= ∑
−

knhkx

nhnxny
N

0             N-1             n   22,...,1,0     
0

−=
=

Nn
k

y[n
#computation(multi)?

1+2+…+N+N-1+…+1+0
2
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-Utilize FFT of  2N-point
~x[n]

h[ ]

0             N-1         2N     n   

~ [n]]][~][~[

][][~][
12

2

Rknhkx

nRnyny
N

N∗=

∑
−

h[n]

12,...,1,0    

     [n],]][][[
0

2

Nn

Rknhkx
k

N

−=

⋅−= ∑
=

0             N-1          2N     n   

R2N[n] ][][][

, ,,

kHkXkY ⋅=1

0                            2N-1   n   
         

           ],[][][ kHkXkY ⋅=
2N-pt  DFTs

y[n]~
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2N pt X[k]2N-pt
FFT

2N-pt

x[n]
X[k]

Y[k]
y[n]

2N-pt
FFT

IFFT
h[n]

H[k]

y[n]

H[k]

NN 2log2
2

NN 2log
2

2  22NN2log
2

  2 2 2

# operation (multi)# operation (multi)

NNNNNN 5log322log
2

23  22 +=+⋅

- operation  reduction : NNN 5log3N  2
2 +=
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(3) Correlation /Power Spectrum
][][][

1

nhnxnz
N −

∗ −∗=

(3) Correlation /Power Spectrum

   ][][        

1

1

0
knhkx

N

N

k
−

=

∗ +−= ∑

12210

   [n] ]][~][~[        
1

0
2

Nn

Rknhkx
N

k
N

=

∗ ⋅+−= ∑

][][][

12,...,2,1,0    

kHkXkZ

Nn

∗

−=

2N i DFT
        

           ],[][][ kHkXkZ ∗⋅= 2N-point DFTs

# Operation : NNN 5log3N2 +→# Operation   : NNN 5log3    N 2 +→

- Power spectrum        P[k] =  X[k] X*[k] 
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$ Comparison of # computation$ Comparison of  # computation 
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35k16k16k
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250k FFT-based
Convolution
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Discrete Cosine/Sine Transform

DCT: Fast DCT 
see note: fastdct.doc

DST

Both DCT and DST can be 
expressed as Matrix-

1 (2 1)( 1)( ) ( ) i
N m uG π− + +∑expressed as Matrix-

vector products.
1 (2 1)( ) ( ) ( ) cos

2

N m uF u u x m
N
πα

− +
= ∑

0

( )( )( ) ( )sin
1m

G u x m
N=

=
+∑

2D DCT

0 2
1 1 1

( ) ;
1/ 2 0

m N
u N

u
u

α

=

≤ ≤ −⎧⎪= ⎨
=⎪⎩1/ 2 0u⎪⎩

1 1

0 0

2 (2 1) (2 1)( , ) ( ) ( ) ( ) ( ) cos cos
2 2

N N

m n

m u n nF u v u v x m x n
N N N

π πα α
− −

= =

+ +⎧ ⎫ ⎧ ⎫= ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

∑∑
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5 Fast Computation of DCT

)(1 kN

5. Fast Computation of DCT

1,...,1,0,    
2
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- Example: Lee’s Algorithm (1984, IEEE Trans , ASSP, Dec)
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Discrete Wavelet Transform

H0(z), H1(z): low pass and high pass FIR digital filters.  
Maintain same number of input samples and output samples
↓2: down-sampling by a factor 2.

↓ ↓ ↓H0(z) ↓2

H1(z) ↓2

H0(z) ↓2

H1(z) ↓2

H0(z) ↓2

H1(z) ↓2
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y3(n)

y4(n)
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