
CONVERGENCE OF FOURIER SERIES

0. Basic Information: This is just a collection of things we will need to develop the convergence
theory, all in one place for handy reference. We’ll do everything on the interval [−π, π], because it is easy
to “rescale” for more general intervals. Every function that we encounter on [−π, π] will be assumed to be
defined on the entire line R and to be periodic with period 2π, since it is easy to extend functions that were
originally defined only on [−π, π]—but be careful about endpoints , since discontinuity of the function and/or
its derivatives is easily introduced by uncritical redefinition at endpoints.

The reader should notice that other than the fact that we define the inner product of functions by an
integral, we work exclusively with algebraic properties of the inner product, namely:

(1) The inner product is defined for every pair of (Riemann-integrable) functions f and g;

(2) 〈f, f〉 ≥ 0 for every f , and 〈f, f〉 = 0 holds if and only if f ≡ 0 (except perhaps at a “small”—usually
finite—set of points);

(3) The inner product is (conjugate-)symmetric: for every f and g, 〈f, g〉 = 〈g, f〉 (the complex conjugation
is vacuous for real f and g);

(4) The inner product is linear in its first argument: 〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉 holds for any
(complex) scalars α1, α2 and functions f1, f2, g. (Of course, it is then conjugate-linear in its second
argument: 〈f, α1g1 + α2g2〉 = α1〈f, g1〉+ α2〈f, g2〉.)

(5) The “length” or norm of vectors, defined by ‖f‖ =
√
〈f, f〉, has the properties ‖αf‖ = |α| ‖f‖ and

‖f + g‖ ≤ ‖f‖+ ‖g‖.
Everything we list in this § is thus equally valid for the finite-dimensional vector spaces Rn and Cn,

because their usual inner or “dot” product shares these algebraic properties.

0.1. The Inner Product of Functions: The inner or dot product is defined by(1)

〈f, g〉 =


∫ π

−π
f(x)g(x) dx when considering trigonometric series;

1
2π

∫ π

−π
f(x)g(x) dx when considering complex-exponential series.

The complex-conjugation bar is vacuous when one deals with real-valued functions. Note that because of our
assumption of periodicity, the integration over [−π, π] can be replaced by an integration over any interval
[a− π, a+ π] without changing the value of the integral.

Just as in Rn or Cn, we say that two functions f and g are orthogonal (or, somewhat loosely, per-
pendicular) if their inner product 〈f, g〉 = 0. This relation is occasionally written as f ⊥ g.

The L2 or root-mean-square (= r. m. s.) norm of a function is defined (omitting the factor
1

2π
when appropriate) by

‖f‖ =
√
〈f, f〉 =

√
1

2π

∫ π

−π
|f(x)|2 dx .

There is a “law of cosines” for this distance relation in view of the fact that

‖f + g‖2 = 〈f + g, f + g〉
= 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉

=

{
‖f‖2 + 2Re [〈f, g〉] + ‖g‖2 (complex scalars);

‖f‖2 + 2 〈f, g〉+ ‖g‖2 (real scalars).

(1)
All these definitions make sense for improper Riemann integrals; but it is so easy to do all this stuff when Lebesgue integration

theory is employed that there is not much reason to work through the details of extending these definitions here.
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So the “Pythagorean theorem” holds for orthogonal vectors: if f ⊥ g (so 〈f, g〉 = 0) then

‖f + g‖2 = ‖f‖2 + ‖g‖2 .

The (Cauchy-Bun�ıakovskǐı-)Schwarz inequality controls the size of an inner product by the sizes of
the factors:

|〈f, g〉| ≤ ‖f‖ · ‖g‖ .

It can be proved as follows. Write 〈f, g〉 in the “complex polar” form 〈f, g〉 = reiθ, where r = |〈f, g〉|, and
let h = eiθg; then 〈f, h〉 = e−iθreiθ = r ≥ 0. For real t consider the everywhere-nonnegative function of t
given by the expression {note that 〈h, h〉 = 〈g, g〉 = ‖g‖2}

‖f − th‖2 = 〈f − th, f − th〉 = 〈f, f〉 − 2t 〈f, h〉+ t2 〈h, h〉 = ‖f‖2 − 2rt+ t2 ‖g‖2 ≥ 0 .

If ‖g‖ = 0 then this expression can remain nonnegative for all t ∈ R if and only if |〈f, g〉| = r = 0,
establishing the Schwarz inequality in that case (with both sides equal to zero). If ‖g‖ > 0 then the graph of
this expression is a parabola opening upward; we can find its vertex by computing the zero of its derivative
and plugging in:

d

dt

[
‖f‖2 − 2rt+ t2 ‖g‖2

]
= −2r + 2t ‖g‖2

t =
r

‖g‖2

0 ≤ ‖f‖2 − 2r · r

‖g‖2 +
(

r

‖g‖2

)2

‖g‖2 = ‖f‖2 − r · r

‖g‖2

|〈f, g〉|2 = r2 ≤ ‖f‖2 · ‖g‖2

which (after square roots of both sides are taken) is the Schwarz inequality.

The Schwarz inequality implies the triangle inequality: take the square root of the beginning and end
of

‖f + g‖2 = 〈f + g, f + g〉
= 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉

=

{
‖f‖2 + 2Re [〈f, g〉] + ‖g‖2 (complex scalars);

‖f‖2 + 2 〈f, g〉+ ‖g‖2 (real scalars)

≤ ‖f‖2 + 2 ‖f‖ ‖g‖+ ‖g‖2 =
(
‖f‖+ ‖g‖

)2

to get

‖f + g‖ ≤ ‖f‖+ ‖g‖ .

A sequence (finite or infinite) {Xn} of functions is orthogonal if 〈Xm, Xn〉 = 0 for m 6= n. It is usual
to consider only orthogonal sequences of functions that are “essentially nonzero,” so that 〈Xn, Xn〉 > 0 for

each n. By replacing each Xn by φn =
1
‖Xn‖

Xn we obtain a orthogonal sequence {φn} of functions with

the additional property that ‖φn‖ = 1 for all n; such a sequence is called an orthonormal sequence.

0.2. The Bessel-Parseval Relations: These are what one gets by looking critically at the results of
the computation on Strauss’s pp. 127–128. Given a function f , an orthogonal set {Xn} of functions and a
corresponding sequence of constants {cn}, we form a finite sum

∑
cnXn (the easiest way to indicate this is

to take a finite subset J of the indices and write
∑
n∈J
· · · ) and compute its r. m. s.-distance-squared from f ,

obtaining (per Strauss,(2) p. 127)

(2)
We have added complex-conjugation and absolute-value in a few cases to extend Strauss’s real-case computations to the complex

case.
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∥∥∥∥∥f −∑
n∈J

cnXn

∥∥∥∥∥
2

=

〈
f −

∑
n∈J

cnXn, f −
∑
n∈J

cnXn

〉

=

{∑
n∈J
‖Xn‖2 ·

∣∣∣∣cn − 〈f,Xn〉
‖Xn‖2

∣∣∣∣2
}

+

{
‖f‖2 −

∑
n∈J

|〈f,Xn〉|2
‖Xn‖2

}
. (15)

One now begins to read interesting facts off this identity.

(1) The expressions inside the large pairs of {} braces are nonnegative. Thus the only way to make∥∥∥∥∥f −∑
n∈J

cnXn

∥∥∥∥∥ as small as possible (for a given set J of indices) is to choose each cn to have the

corresponding value
〈f,Xn〉
‖Xn‖2

(any other choice will put a strictly-positive term into the sum inside the

first large braces). If (and only if) these choices are made for all indices n ∈ J , we shall have

0 ≤
∥∥∥∥∥f −∑

n∈J
cnXn

∥∥∥∥∥
2

= ‖f‖2 −
∑
n∈J

|〈f,Xn〉|2
‖Xn‖2

. (16)

This relation has a “geometrical” meaning. The sums of the form
∑
n∈J

cnXn are the elements of the vector

subspace (of the space of all integrable functions) spanned by {Xn : n ∈ J}. Relations (15) and (16) imply
that the element of that vector subspace that is closest to f in the L2-norm is the sum of the projections on
the 1-dimensional subspaces spanned by the individual Xn’s. {Recall the sophomore-calculus formula

projxf =
f •x
‖x‖2 x

for the (perpendicular) projection of a vector f onto the (line generated by a) vector x.} This is a generaliza-
tion of the fact that, for example, the point of the ij-plane in R3 that is closest to the vector a1 i +a2 j+a3 k
is a1 i + a2 j.

It’s easy to see geometrically that the closest point is also the “foot of the perpendicular” dropped from
the given vector to the subspace, and the same is true in function space:

(2) The sum
∑
n∈J

cnXn that is closest to f in norm is characterized by the relation

f −
∑
n∈J

cnXn ⊥ Xm for every m ∈ J .

Indeed, for every m ∈ J

f −
∑
n∈J

cnXn ⊥ Xm ⇐⇒ 〈f,Xm〉 −
∑
n∈J

cn〈Xn, Xm〉 = 0

⇐⇒ 〈f,Xm〉 − cm〈Xm, Xm〉 = 0 ⇐⇒ cm =
〈f,Xm〉
‖Xm‖2

.

These coefficients cn =
〈f,Xn〉
‖Xn‖2

are called the components or the abstract Fourier coefficients of f

(with respect to {Xn}).
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The rather surprising deduction from (16) is, that since

0 ≤
∥∥∥∥∥f −∑

n∈J
cnXn

∥∥∥∥∥
2

= ‖f‖2 −
∑
n∈J

|〈f,Xn〉|2
‖Xn‖2

can be rewritten as the Bessel inequality

∑
n∈J

|〈f,Xn〉|2
‖Xn‖2

≤ ‖f‖2 ,

it turns out to be true that

(3) The scalar series
∑
n

|〈f,Xn〉|2
‖Xn‖2

converges, no matter in what order the sequence {Xn} is given. The

sum of this series is ≤ ‖f‖2. Moreover, in order that the series
∑
n

〈f,Xn〉
‖Xn‖2

Xn should converge to f in

the sense of the r. m. s. norm, it is necessary and sufficient that the scalar series
∑
n

|〈f,Xn〉|2
‖Xn‖2

should

converge to ‖f‖2.

See the discussion on Strauss’s p. 128. The relation
∑
n

|〈f,Xn〉|2
‖Xn‖2

= ‖f‖2, when it holds (i.e., when the

series converges to f in r. m. s. norm), is called the Parseval equation or Parseval relation.

Before taking leave of this subject we should observe that the special case of the Bessel inequality in
which there is only one Xn is the Schwarz inequality: replacing Xn by the single function g gives (with a
one-term sum

∑
n∈J · · · )

|〈f, g〉|2
‖g‖2 ≤ ‖f‖2

|〈f, g〉|2 ≤ ‖f‖2‖g‖2 .

0.3. Everybody’s Favorite Orthogonal Sequences: These are the ones given by {sinnx}∞n=1 (typ-
ically on [0, π]), by {cosnx}∞n=0 (typically on [0, π]), by the union of those two sequences on [−π, π], and(3)

by {einx}n∈Z on [−π, π]. The functions in the first of these sequences are the eigenfunctions of −D2 with
Dirichlet end conditions on [0, π], the second are the eigenfunctions of −D2 with Neumann end conditions
on [0, π], and their union makes up the eigenfunctions of −D2 with periodic end conditions on [−π, π]. The
complex exponentials are the eigenfunctions of −iD on [−π, π] with periodic end conditions. Thus Sturm-
Liouville theory tells us automatically that these sequences are orthogonal (although that can be verified
directly by concrete integration). The Euler relations e±iθ = cos θ ± i sin θ tell us that the 2-dimensional
complex function space spanned by cosnx and sinnx is the same as the complex function space spanned by
einx and e−inx.

The “abstract Fourier coefficients” become the “concrete Fourier coefficients” for these sequences (for
simplicity’s sake we shall only consider the case of periodic end conditions on [−π, π]): if Xn = cosnx then

‖Xn‖2 =
∫ π

−π
cos2 nxdx = π

An =
〈f,Xn〉
‖Xn‖2

=
1
π

∫ π

−π
f(x) cosnxdx

(3)
Recall the standard “blackboard-bold” letter names customarily used for some of the standard sets of mathematics: N for the

natural numbers, Z for the signed integers (whole numbers), Q for the rational numbers (quotients of integers), as well as the more

familiar R for the reals and C for the complex numbers.
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(the exceptional case n = 0 is conventionally handled by writing the n = 0 term of the Fourier series in the

form
A0

2
) and similarly for sinnx.(4) The orthogonal sequence {Xn = einx}n∈Z is particularly easy to work

with, because it is orthonormal and no division by π is necessary (nor does the case n = 0 require any special
treatment):

‖Xn‖2 =
1

2π

∫ π

−π
|einx|2dx = 1

cn =
〈f,Xn〉
‖Xn‖2

= 〈f,Xn〉 =
1

2π

∫ π

−π
f(x)e−inx dx

(note that the fact that Xn is the second argument of the inner product makes the corresponding factor
in the integrand equal einx = e−inx). It is customary to “keep the n-th harmonics together” when writing
(formal) Fourier series, either in real (trig function) or complex(-exponential) form, so that they appear as

f(x) =
A0

2
+
∞∑
n=1

{An cosnx+Bn sinnx} or

f(x) = lim
N→∞

N∑
n=−N

cne
inx

respectively.(5) In either case, for n > 0 the term {An cosnx+ Bn sinnx} or c−ne−inx + cne
inx is the only

term that belongs to the linear subspace of function space spanned by cosnx and sinnx, and so

An cosnx+Bn sinnx = (c−n + cn) cosnx+ i(−c−n + cn) sinnx
An = cn + c−n Bn = i(cn − c−n)
An − iBn

2
= cn

An + iBn
2

= c−n .

Thus if f(x) is real (making both An and Bn real), one must have c−n = cn, and the converse implication

also holds. (Obviously
A0

2
= c0, since it is the average value of f(x) over [−π, π] in both cases.)

One advantage possessed by the trig-series formulation is that trig functions respect parity: functions
and their series split neatly into even functions (those satisfying f(−x) ≡ f(x)) and odd functions (those
satisfying f(−x) ≡ −f(x)). The only (nonzero) terms in the Fourier expansion of an even function with
period 2π are the cosine terms; the only terms in the expansion of an odd function with period 2π are the sine
terms. For this reason, expansions of f(x) in the eigenfunctions of −D2 on an interval [0, π] with Dirichlet or
Neumann boundary conditions respectively can be handled by extending f(x) to be odd and periodic with
period 2π or even and periodic with period 2π respectively, then applying what we shall shortly find out(6)

about Fourier expansions of periodic functions with period interval [−π, π].

0.4. Translations: Questions of pointwise convergence of the Fourier series of a function f(x) at
arbitrary points x ∈ [−π, π] can be reduced to questions of convergence at zero by examining the Fourier
coefficients of the “translated” function f−x defined by

f−x(z) = f(z + x) .

(4)
The letters an, bn and cn (or their upper-case or funny-font-style variants) are conventionally used to denote Fourier cosine, sine

and complex-exponential coefficients respectively, and we shall adhere to that convention as much as is practical.

(5)
The sign of equality between f(x) on the one side and the sum of the series (or limit of the partial sums) on the other has to be

interpreted carefully, since there are functions whose Fourier series do not converge to them pointwise. We will make a fuss over this

below. Perhaps I should have put quotation marks around the sign of equality, or used a different symbol like “'” or “
” or whatever.

(6)
Unfortunately, general Sturm-Liouville expansions, like those in the eigenfunctions of Robin problems, require a different approach.
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First the trig-function formulation (so that the reader can see how much simpler the complex-exponential
formulation is). If we put

An(x) =
1
π

∫ π

−π
f−x(z) cosnz dz

(retaining An to mean An(0) and Bn to mean Bn(0), for obvious reasons) then(7) the addition formula for
the cosine gives us

An(x) =
1
π

∫ π

−π
f−x(z) cosnz dz =

1
π

∫ π

−π
f(z + x) cosnz dz

=
1
π

∫ π+x

−π+x

f(y) cosn(y − x) dy =
1
π

∫ π

−π
f(y) cosn(y − x) dy (everything has period 2π)

=
1
π

∫ π

−π
f(y) cosny cosnxdy +

1
π

∫ π

−π
f(y) sinny sinnxdy = An cosnx+Bn sinnx .

Similarly,

Bn(x) =
1
π

∫ π

−π
f(y) sinny cosnxdy − 1

π

∫ π

−π
f(y) cosny sinnxdy = Bn cosnx−An sinnx .

The value of the n-th “complete” term of the trigonometric Fourier series of f−x (including both the cosnz
and sinnz terms) thus appears as

An(x) cosnz +Bn(x) sinnz = [An cosnx+Bn sinnx] cosnz + [Bn cosnx−An sinnx] sinnz
= An[cosnx cosnz − sinnx sinnz] +Bn[sinnx cosnz +Bn cosnx sinnz]
= An cosn(z + x) +Bn sinn(z + x) .

In words: the effect of plugging z + x in for the argument in f(z) is to change each complete n-th term of
the Fourier series of f in exactly the same way as plugging z + x in for the argument in cosnz and sinnz
would have done.

The same argument for complex exponentials is easier: with cn(x) =
1

2π

∫ π

−π
f(z)e−inz dz (and with

cn = cn(0) in analogy to what we did before), we have

cn(x) =
1

2π

∫ π

−π
f(z + x)e−inz dz =

1
2π

∫ π+x

−π+x

f(y)e−in(y−x) dy (y = z + x)

=
1

2π

∫ π

−π
f(y)e−inyeinx dz = cne

inx (periodicity)

cn(x)einz = cne
inxeinz = cne

in(z+x) .

In either formulation, it is clear that investigating the convergence of the Fourier series of f(z) to a value
determined from f(z) at z = x is exactly the same problem as investigating the convergence of the Fourier
series of f−x(z) to a value determined from f−x(z) at z = 0. For this reason, we confine proofs of
convergence of Fourier series to proofs of convergence at z = 0.

0.5. The Dirichlet Kernel: It is possible to give a closed-form formula for the sum of the first terms
of the complete Fourier series, corresponding to indices 0 ≤ n ≤ N . We have aired the details in class and

(7)
The coefficient A0, since it is defined to be twice the average of the function over one period, does not change under translation—

although one can also see that from the n=0 case of the formulas.
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they are exposed on pp. 132–134 of Strauss’s book, so we give only a synopsis. Writing the integrals that
define the cn’s in the series gives

SN (x) =
N∑

n=−N
cne

inx =
N∑

n=−N

[
1

2π

∫ π

−π
f(y)e−iny dy

]
einx =

1
2π

∫ π

−π
f(y)

[
N∑

n=−N
e−inyeinx

]
dy

=
1

2π

∫ π

−π
f(y)

[
N∑

n=−N
e−in(y−x)

]
dy =

1
2π

∫ π

−π
f(y)KN(x− y) dy

whereKN (θ) =
N∑

n=−N
einθ =

sin
(

2N + 1
2

θ

)
sin
(
θ

2

) , the Dirichlet kernel (function).(8) A good portrait of KN(θ)

for fairly-good-sized N can be found on Strauss’s p. 133. It is easy to see {e.g., by term-by-term integration
of the finite-sum expansion of KN(θ)} that

1
2π

∫ π

−π
KN (θ) dθ = 1 , and by even-ness (= symmetry), that therefore

1
2π

∫ π

0

KN (θ) dθ =
1
2
.

Unfortunately, it can be shown that the integral
1

2π

∫ π

−π
|KN (θ)| dθ of the absolute value of KN (θ) diverges

to +∞ as N →∞, and due to this fact there exist continuous functions with period 2π whose Fourier series
fail to converge (let alone converge to the value of the function) at certain points. Thus proofs of convergence
of Fourier series require rather stronger hypotheses like the Dini condition introduced below.

0.6. The Riemann-Lebesgue Lemma: See the separate notes on this subject for a proof of:

Let f be a Riemann-integrable function defined on an interval a ≤ x ≤ b of the real line. Then for any
real β

lim
|α|→∞

∫ b

a

f(x) sin(αx+ β) dx = 0 .

1. Convergence of the Fourier Series at Individual Points: The ingredients in the proof of the
standard result on this subject are three: the formula that gives the Dirichlet kernel, the Riemann-Lebesgue
lemma, and an additional hypothesis about the function f(x) whose Fourier series is under consideration,
namely

1.1 The Dini Condition: Let f(x) be a function of period 2π defined on R and Riemann-integrable
on [−π, π] (and therefore on every finite interval). It satisfies the Dini condition on the right at a point
x ∈ [−π, π] if f(x+) = lim

t→x+
f(t) exists and there is some δ > 0 such that the integral

∫ x+δ

x

∣∣∣∣f(t)− f(x+)
t− x

∣∣∣∣ dt < +∞ .

The Dini condition on the left is defined similarly. Evidently if this integral is finite for some particular
δ > 0 it is finite for all smaller values of δ > 0; moreover, because the integral in question (if it is improper)
is defined by the limit∫ x+δ

x

∣∣∣∣f(t)− f(x+)
t− x

∣∣∣∣ dt = lim
η→0+

∫ x+δ

x+η

∣∣∣∣f(t)− f(x+)
t− x

∣∣∣∣ dt where 0 < η < δ

(8)
I apologize for my intellectual sloth in having called this function DN (θ)—its usual name—in class, rather than using Strauss’s

KN (θ). I should have checked to see whether Strauss felt he couldn’t call it by the same name that everybody else uses. Silly me.
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it is clear that

lim
δ→0+

∫ x+δ

x

∣∣∣∣f(t)− f(x+)
t− x

∣∣∣∣ dt = 0 .

1.2 Theorem [of Ulisse Dini]: Let f(x) be a function of period 2π defined on R and Riemann-integrable
on [−π, π] (and therefore on every finite interval). If it satisfies both the left and the right Dini conditions

at a point x, then its Fourier series at x converges to
f(x−) + f(x+)

2
.

Lemma: The function
ψ

sinψ
is an increasing function on the interval 0 ≤ ψ ≤ π (we assume that the

function has been extended to have the value 1 at ψ = 0) and therefore bounded between 1 and
π

2
on the

interval 0 ≤ ψ ≤ π/2.

Proof of the lemma. The derivative of the function is
sinψ − ψ cosψ

sin2 ψ
. The numerator is nonnegative

for 0 ≤ ψ <
π

2
in view of the fact that

sinψ
cosψ

= tanψ ≥ ψ on that interval (the tangent function has the

increasing derivative sec2 ψ, so its graph lies above its tangent line); thus the function increases from ψ = 0

to ψ =
π

2
. On the other hand, for

π

2
≤ ψ ≤ π, the numerator of

ψ

sinψ
increases while the denominator

decreases, so the quotient surely increases.

Proof of the theorem. In view of 0.4 above it suffices to consider the case x = 0, and by the symmetry
of the Dirichlet kernel it suffices to show that

lim
N→∞

1
2π

∫ π

0

f(θ)KN (θ) dθ =
f(0+)

2

when f(x) satisfies the Dini condition on the right at x = 0 (since the proof of the corresponding assertion

for f(x−) is a mirror image of the one we will give here). Because
1

2π

∫ π

0

KN(θ) dθ =
1
2

, this is equivalent

to showing that

lim
N→∞

1
2π

∫ π

0

[
f(θ)− f(0+)

]
KN (θ) dθ = 0 .

This is a formal limit proof, so let ε > 0 be given; we shall show that for every sufficiently large N the
relation ∣∣∣∣ 1

2π

∫ π

0

[
f(θ)− f(0+)

]
KN(θ) dθ

∣∣∣∣ < ε

holds. Begin by finding (and then holding fixed) δ > 0 for which

1
2π

∫ δ

0

∣∣∣∣f(θ)− f(0+)
θ

∣∣∣∣ dθ < ε

2π
;

then we can estimate

∣∣∣∣∣ 1
2π

∫ δ

0

[
f(θ)− f(0+)

]
KN(θ) dθ

∣∣∣∣∣ by

∣∣∣∣∣ 1
2π

∫ δ

0

[
f(θ)− f(0+)

]
KN(θ) dθ

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

2π

∫ δ

0

[
f(θ)− f(0+)

] sin
(

2N + 1
2

θ

)
sin
(
θ

2

) dθ

∣∣∣∣∣∣∣∣
(multiply and divide by θ/2) =

∣∣∣∣∣∣∣∣
1

2π

∫ δ

0

2
[
f(θ)− f(0+)

θ

] θ

2

sin
(
θ

2

) sin
(

2N + 1
2

θ

)
dθ

∣∣∣∣∣∣∣∣
≤ 1

2π

∫ δ

0

2
∣∣∣∣f(θ)− f(0+)

θ

∣∣∣∣ · π2 · 1 dθ < ε

2
,
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where we have used the immediately preceding lemma to estimate

θ

2

sin
(
θ

2

) and (of course) estimated

∣∣∣∣sin(2N + 1
2

θ

)∣∣∣∣ by 1. It is even simpler to handle the rest of the integral (over [δ, π]), because in this

interval sin
(
θ

2

)
> sin

(
δ

2

)
holds. To see this, rewrite the integrand in the form shown below:

1
2π

∫ π

δ

f(θ)− f(0+)

sin
(
θ

2

)
 sin

(
2N + 1

2
θ

)
dθ .

Now, since the function inside the square brackets [ ] is Riemann-integrable (the denominator is continuous
and stays bounded away from zero in the interval of integration), we can apply the Riemann-Lebesgue
lemma to see that this integral can be made arbitrarily small by taking N sufficiently large. If Nε is such

that N ≥ Nε =⇒

∣∣∣∣∣∣∣∣
1

2π

∫ π

δ

f(θ)− f(0+)

sin
(
θ

2

)
 sin

(
2N + 1

2
θ

)
dθ

∣∣∣∣∣∣∣∣ <
ε

2
, then it is clear that also

N ≥ Nε =⇒

∣∣∣∣∣∣∣∣
1

2π

∫ π

0

f(θ)− f(0+)

sin
(
θ

2

)
 sin

(
2N + 1

2
θ

)
dθ

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

2π

∫ δ

0

f(θ)− f(0+)

sin
(
θ

2

)
 sin

(
2N + 1

2
θ

)
dθ

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
1

2π

∫ π

δ

f(θ)− f(0+)

sin
(
θ

2

)
 sin

(
2N + 1

2
θ

)
dθ

∣∣∣∣∣∣∣∣
≤ 1

2π

∫ δ

0

2
∣∣∣∣f(θ)− f(0+)

θ

∣∣∣∣ · π2 · 1 dθ +

∣∣∣∣∣∣∣∣
1

2π

∫ π

δ

f(θ)− f(0+)

sin
(
θ

2

)
 sin

(
2N + 1

2
θ

)
dθ

∣∣∣∣∣∣∣∣ <
ε

2
+
ε

2
= ε

and that (together with its mirror image for f(0−)) proves Dini’s theorem.

The Dini condition may look strange, but it is very easy to give “reasonable-looking” properties of
Riemann-integrable functions f(x) that imply it. For example, if f(x) has right- and left-hand limits at a
point x and has left- and right-hand derivatives there, in the sense that the two limits

lim
∆x→0+

f(x+ ∆x) − f(x+)
∆x

= f ′+(x) and lim
∆x→0−

f(x+ ∆x) − f(x−)
∆x

= f ′−(x)

both exist, then the integrand
f(t)− f(x+)

t− x is obviously bounded in some interval x < t ≤ δ—it tends to

the limit f ′+(x) as t→ x+—and therefore the integral
∫ x+δ

x

∣∣∣∣f(t)− f(x+)
t− x

∣∣∣∣ dt < +∞; similarly on the left.

In fact, all one would need would be that in some interval x < t ≤ x+ δ the function satisfied an inequality
of the form |f(t)− f(x+)| ≤ (const.) · |t− x|α, where 0 < α ≤ 1, because then one would have(9)∣∣∣∣f(t)− f(x+)

t− x

∣∣∣∣ ≤ (const.)
(t− x)1−α

(9)
Such a function is said to satisfy a Hölder condition with exponent α on the right (or left). Functions that may not be

differentiable but do satisfy Hölder conditions occur frequently in classical potential theory. The (two-sided) Hölder conditions are

“stronger than continuity but weaker than differentiability.”
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and clearly the integral over (x, x+ δ] of the r. h. s. is finite: up to translation and a constant, it is the same

as
∫ δ

0

dt

t1−α
<∞. Thus functions like f(x) =

{√
x for x ≥ 0

0 for x < 0
, even though they are not differentiable at

x = 0, satisfy the Dini condition there (and trivially this function satisfies it everywhere else on (−π, π)).

In particular, we see that if f(x) is Riemann-integrable, has period 2π and is differentiable at every
point of [−π, π], then its Fourier series converges to its value at every point x ∈ [−π, π]. This gives us only
pointwise convergence; however, Strauss shows on pp. 135–136 that if f ∈ C1([−π, π]) (has a continuous
derivative, necessarily also periodic with period 2π), then in fact the Fourier series of f(x) converges to
f(x) uniformly on [−π, π]. We would like to take a different approach and show that if there is a Riemann-

integrable function g(x) (defined on the real line, with period 2π) such that f(x) ≡ (const.) +
∫ x

0

g(t) dt,

then the Fourier series of f(x) converges to f(x) uniformly on [−π, π]. This is a much weaker assumption,
satisfied by many functions that are continuous but fail to have a derivative at a certain discrete set of points,
and on the way to proving this stronger theorem we can prove a fact that at this stage of the development
“ought to be true” but which we have not as yet established.

2. Norm-Convergence of “All” Fourier Series: By “all” Fourier series we have to understand the
Fourier series of all Riemann-integrable functions on [−π, π]. Here we shall need some preliminary lemmas
whose relevance may not be immediately obvious. The proof will proceed by stages: we shall show first
that the Fourier series of step functions converge to them in the r. m. s. norm, and then move to general
Riemann-integrable functions in the same way we did when we proved the Riemann-Lebesgue lemma.

2.1. A Particular Function: Consider the function g(x) defined by(10)

g(x) =
x2

π2
− x

π
+

1
6

on [0, π] and extended to a function of period π “by making it repeat at intervals of length π.” Because
g(0) = g(π), the resulting (extended) function is continuous, with left- and right-hand derivatives at every
point (indeed, these differ only when x is a multiple of π). It follows from the results of the preceding section
that the Fourier series of g(x) converges to g(x) at every x ∈ R. Since g(x) is an even function, the sine
terms in its Fourier (trig) series have zero coefficients, and its cosine coefficients are given(11) by

A0 =
2
π

∫ π

0

[
x2

π2
− x

π
+

1
6

]
dx =

2
3
− 2

2
+

2
6

= 0

An =
2
π

∫ π

0

[
x2

π2
− x

π
+

1
6

]
cosnxdx =

2 · [1 + cos(nπ)]
n2π2

so (since the odd-indexed terms have zero coefficients, we may set n = 2k)

g(x) =
∞∑
k=1

cos 2kx
k2π2

.

This equality holds for every x ∈ R, and in fact (by comparison with the series
∑

k 1/k2) the series converges
to g(x) uniformly on R, though we shall not need that fact. In particular, for x = 0 we get the familiar
relation

π2

6
=
∞∑
k=1

1
k2

.

(10)
The reader may recognize this as the periodic version of the second Bernoulli polynomial P2 with the argument x/π plugged in.

(11)
This computation is due to Maple.
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2.2. The Fourier Series of a Pulse: Let 0 < a < π and consider the “symmetric unit pulse” function
defined for x ∈ [−π, π] by

f(x) =


1 for |x| < a

1/2 for |x| = a

0 for a < |x| < π

and extended to be periodic with period 2π. Since it is an even function its Fourier (trig) series is a cosine
series, with coefficients

An =
2
π

∫ a

0

cosnxdx =


2a
π

for n = 0;

2 sinna
nπ

for n > 0.

This function satisfies left- and right-hand Dini conditions at every x, and so we have

g(x) =
a

π
+
∞∑
n=1

2 sinna
nπ

cosnx (pointwise convergence)

for every x ∈ R; however, we would like to show that g(x) is the r. m. s. limit of its Fourier series. The
Parseval relation tells us that for that to be true it is necessary and sufficient that the relation∫ π

−π
g(x)2 dx =

(
A0

2

)2

· 2π +
∞∑
k=1

A2
k · π, or

2a =
a2

π2
· 2π +

∞∑
k=1

4 sin2 ka

k2π2
· π

should hold. Using the identity sin2 θ =
1− cos 2θ

2
, we see that this relation is logically equivalent to

2a =
a2

π
· 2 +

∞∑
k=1

2(1− cos 2ka)
k2π

a2

π2
− a

π
+

1
π2

∞∑
k=1

1
k2

=
∞∑
k=1

cos 2ka
k2π2

a2

π2
− a

π
+

1
6

=
∞∑
k=1

cos 2ka
k2π2

,

and since that relation (with x replaced by a) is exactly what we established in §2.1 above, we have shown
that every symmetric pulse function is the r. m. s. limit of (the partial sums of) its Fourier
series.

2.3. From Pulses to Step Functions: This part of the argument we shall give in words, because
writing it out symbolically would only obscure its simplicity. In view of the translation relations established
in §0.4 above and the geometrically obvious fact that every pulse (i.e., function that takes a constant value
c on some interval [a, b] ⊆ [−π, π], is zero elsewhere in that interval, and is extended to have period 2π)
is a scalar multiple of a translate of a symmetric unit pulse of the kind just considered in §2.2 above, we
see that every pulse is the r. m. s. limit of its Fourier series. Because changing the values of a function
at a finite set of points of its domain does not change its integral, we may change the values of a pulse
at the endpoints of the interval on which it is nonzero without changing its Fourier coefficients or the fact
that it is the r. m. s. limit of its Fourier series. Now every step function(12) is a finite sum of pulses. It

(12)
See the separate notes on the Riemann-Lebesgue lemma for a more complete discussion of step functions.
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follows—since the Fourier coefficients of a finite sum of functions can be computed term-by-term(13) and then
added—that the Fourier series of any step function on [−π, π] converges to that step function in
the r. m. s. norm.

2.4. From Step Functions to Riemann-Integrable Functions: We need one more little lemma
and we can prove the main theorem of this section.

Lemma: Let f(x) be a Riemann-integrable function on an interval [a, b]. Then for every η > 0 there

exist a step function s(x) for which ‖f − s‖ =

√∫ b

a

|f(x)− s(x)|2 dx < η.

Proof. It suffices to consider real-valued f(x). Every (properly) Riemann-integrable function is bounded,
so let M ≥ 0 be such that |f(x)| ≤ M holds for all x ∈ [a, b]. It follows from the definition of the Riemann
integral(14) that for every ε > 0 there exists a step function s(x) such that s(x) ≤ f(x) holds for x ∈ [a, b]

and such that
∫ b

a

[f(x)− s(x)] dx < ε. We can take s(x) such that −M ≤ s(x) ≤M also: s(x) ≤ f(x) ≤M
would hold in all cases, and if on some interval [xj−1, xj ] we had taken s(x) = cj < −M , we could replace
cj by −M (because −M ≤ f(x) for all x ∈ [a, b]) while keeping s(x) ≤ f(x) and making f(x) − s(x) (and
thus its integral) smaller, if anything. But then |f(x)− s(x)| ≤ 2M on [a, b], and consequently

∫ b

a

|f(x)− s(x)|2 dx ≤ 2M ·
∫ b

a

[f(x)− s(x)] dx . ($)

We know that given η > 0 we may find s(x) ≤ f(x) for which
∫ b

a

[f(x)− s(x)] dx <
η2

2M
; the inequality ($)

then tells us that the assertion of the lemma will hold for that s(x).

Theorem: Let f(x) be a function of period 2π that is Riemann-integrable on [−π, π] and therefore on
every finite interval. Then the (formal) Fourier series of f(x) converges to f(x) in the r. m. s. norm.

Proof. Let ε > 0 be given; we shall show that there exists Nε such that

N ≥ Nε =⇒
∥∥∥∥∥f(x)−

N∑
n=−N

〈f, einx〉einx
∥∥∥∥∥ < ε .

First, find a step function s(x) for which ‖f − s‖ < ε

2
; this is possible by the immediately-preceding lemma.

Let cn =
1

2π

∫ π

−π
s(t)e−int dt = 〈s, einx〉. Because the Fourier series of step functions are known to converge

in the r. m. s. norm to their corresponding functions, there exists Nε such that

N ≥ Nε =⇒
∥∥∥∥∥s(x)−

N∑
n=−N

cne
inx

∥∥∥∥∥ < ε

2
.

By the triangle inequality for the r. m. s. norm, it follows that

N ≥ Nε =⇒
∥∥∥∥∥f(x)−

N∑
n=−N

cne
inx

∥∥∥∥∥ ≤ ‖f − s‖+

∥∥∥∥∥s(x)−
N∑

n=−N
cne

inx

∥∥∥∥∥ < ε

2
+
ε

2
= ε .

(13)
This is to say, the passages from functions to Fourier coefficients and from Fourier coefficients to partial sums of Fourier series

are linear operations.

(14)
See p. 2 of the notes on the Riemann-Lebesgue lemma for a discussion of this assertion.
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The Bessel-Parseval relations imply (this was observation (1) of §0.2 above) that the sum of the form
N∑

n=−N
cne

inx that is closest to f(x) in the r. m. s. norm is
N∑

n=−N
〈f, einx〉einx. It follows that

N ≥ Nε =⇒
∥∥∥∥∥f(x)−

N∑
n=−N

〈f, einx〉einx
∥∥∥∥∥ ≤ ‖f − s‖+

∥∥∥∥∥s(x)−
N∑

n=−N
cne

inx

∥∥∥∥∥ < ε

2
+
ε

2
= ε ,

concluding the proof of the theorem.

3. Integration, Differentiation and Fourier Series: My feeling (and that of many people) is that
looking at integration rather than differentiation is the way to gain insight into the relation between these
operations of calculus and the convergence of Fourier series.

3.1. Fourier Coefficients of a Function vs. its Indefinite Integral: This is one of the places in
which trig series make more sense than complex-exponential series and in which the interval [0, 2π] is to
be preferred to [−π, π]. Suppose f(x) is a function defined for x ∈ R that is periodic with period 2π and
Riemann-integrable on [0, 2π] (and therefore on every finite interval). Let an and bn denote its Fourier cosine
and sine coefficients,

an =
1
π

∫ 2π

0

f(t) cosnt dt and bn =
1
π

∫ 2π

0

f(t) sinnt dt

and suppose, for the moment, that a0 = 0 {one can always replace f(x) by f(x)− a0

2
, work with that new

function, and then “put a0 back” later, so this is not a very restrictive assumption}. Let F (x) denote its
“indefinite integral,” or really its definite integral from 0 to x:

F (x) =
∫ x

0

f(t) dt .

Then the assumption a0 = 0 implies that F (2π) = 0 = F (0), so F (x) is also periodic with period 2π
(verification easy). We can compute the Fourier coefficients of F (x) in terms of those of f(x) by “reversing
the order of integration,” which is a valid operation(15) for Riemann-integrable functions. Letting An and
Bn denote the Fourier cosine and sine coefficients of F (x), we have

An =
1
π

∫ 2π

0

F (x) cosnxdx =
1
π

∫ 2π

0

∫ x

0

f(t) dt cosnxdx

=
1
π

∫ 2π

0

∫ 2π

t

f(t) cosnxdx dt =
1
π

∫ 2π

0

f(t)
sin 2nπ − sinnt

n
dt

=
−1
n
· 1
π

∫ 2π

0

f(t) sinnt dt =
−1
n
bn for n > 0.

(Of course A0 =
1
π

∫ 2π

0

F (x) dx is not necessarily zero.) The computation for the sine coefficients is only

slightly less unsubtle that that for the cosines:

Bn =
1
π

∫ 2π

0

F (x) sinnxdx =
1
π

∫ 2π

0

∫ x

0

f(t) dt sinnxdx

=
1
π

∫ 2π

0

∫ 2π

t

f(t) sinnxdx dt =
1
π

∫ 2π

0

f(t)
cosnt− cos 2nπ

n
dt

=
1
n
·
{

1
π

∫ 2π

0

f(t)[cosnt− 1] dt
}

=
1
n

[an − a0] =
1
n
an .

(15)
We omit the proof, but it’s easy: as in (almost) all Riemann-integral situations, one approximates by step functions.
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The effect of these computations is most easily understood by comparing the complete n-th harmonic term
of the Fourier expansion of f(x) with that of F (x), expressing the An’s and Bn’s in terms of the an’s and
bn’s:

an cosnx+ bn sinnx vs. − an
n

sinnx+
bn
n

cosnx .

The complete n-th harmonic term (n > 0) of the Fourier expansion of F (x) is obtained from
that of f(x) by formally integrating the trig functions, omitting the “cosn0” terms that one
might expect from the definite integral of sinnt from 0 to x.

The next step is to observe that the Fourier series of F (x) converges absolutely and uniformly
on the interval [0, 2π] (and therefore, by the periodicity of everything in sight, absolutely and uniformly
on the entire real line. The reason is that we can estimate the terms of this Fourier series is a very simple

way: we know that
∞∑
n=1

(a2
n + b2n) ≤ 1

π
‖f‖2. The Schwarz inequality—even for vectors in RN or CN—then

tells us that for every N

N∑
n=1

1
n
|an| ≤

√√√√ N∑
n=1

a2
n ·

√√√√ N∑
n=1

1
n2
≤ 1√

π
‖f‖ · π√

6
=
√
π

6
‖f‖

and similarly for
N∑
n=1

1
n
|bn|. So the sums

∞∑
n=1

an
n

sinnx and
∞∑
n=1

bn
n

cosnx converge absolutely, and they con-

verge absolutely uniformly because the absolute values of their terms can be estimated by the corresponding

terms of the constant series
∞∑
n=1

|an|
n

and
∞∑
n=1

|bn|
n

respectively.

In view of the niceness of convergence of the Fourier series of F (x) it would be dismaying if it converged
to something other than F (x), but of course that doesn’t happen: applying the Schwarz inequality for
integrals to the difference of two values of F (x) (assume that y < x, since the situation is symmetric, and
that the difference between them is < 2π, since we shall only be interested in the case in which they are
close to each other), we get

|F (x) − F (y)| =
∣∣∣∣∫ x

y

f(t) dt
∣∣∣∣ ≤

√∫ x

y

|f(t)|2 dt ·
√∫ x

y

1 dt ≤ ‖f‖ · |x− y|1/2 .

This says that F (x) satisfies a Hölder condition (with exponent α = 1/2) at each point,(16) so by Dini’s
theorem its Fourier series converges to its value at every point x ∈ [0, 2π] (and therefore at every point of
the real line R). We have proved:

Theorem: Let f(x) be a function of period 2π, Riemann-integrable on [0, 2π] with
∫ 2π

0

f(x) dx = 0.

Then term-by-term formal integration of its Fourier series yields the Fourier series of its indefinite integral:

if F (x) =
∫ x

0

f(t) dt, then

f(x) = lim
N→∞

N∑
n=1

[an cosnx+ bn sinnx] in L2-norm yields

F (x) =
A0

2
+
∞∑
n=1

[
an
n

sinnx− bn
n

cosnx
]

with the series converging absolutely uniformly to F (x).

(16)
Actually F (x) satisfies a Hölder condition with exponent α=1 (also called a Lipschitz condition) at each point: if M is a bound

for the function f(x), so that |f(x)|≤M holds everywhere, then |F (x)−F (y)|≤M·|x−y|. The Hölder condition just proved, however, is

the best one can do when one only knows that the improper integral of |f(x)|2 is finite, a situation to be discussed briefly below.
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If the mean value
a0

2
=

1
2π

∫ 2π

0

f(x) dx of f(x) is not zero, then by subtracting it off, applying the

theorem just stated to f(x)− a0

2
, and then putting back the integrated term, one finds that

F (x) =
A0

2
+
a0

2
x+

∞∑
n=1

[
an
n

sinnx− bn
n

cosnx
]

with the series converging absolutely uniformly.

(It is trivial to fill in the details.) Note that F (x) will be periodic if and only if a0 = 0.

3.2. A Useful Example: Consider the function defined on [0, 1] by

P1(x) =

{
x− 1

2
for 0 < x < 1

0 for x = 0 and x = 1

and extended to be periodic with period 1. It is easy to see (draw a picture! although this fact can also be
verified by pure computation) that this is an odd function, so its Fourier trig series has only sine terms. Its
coefficients are given by

bn = 2
∫ 1

0

(
x− 1

2

)
sin 2πnxdx =

−1
nπ

,

and since it is evidently Riemann-integrable and satisfies the Dini condition from the right and left at each
x ∈ R, we have

P1(x) = lim
N→∞

N∑
n=1

−1
nπ

sin 2πnx

pointwise and in L2-norm, but not uniformly (a uniformly convergent series of continuous functions would
have to converge to a continuous function, and P1(x) is discontinuous at every integer value of x). The

indefinite integral of P1(x) is
x2

2
− x

2
and the mean of this function is

1
6
− 1

4
=
−1
12

, so we have

x2

2
− x

2
=
−1
12

+
∞∑
n=1

1
2n2π2

cos 2πnx

uniformly on [0, 1], with the r. h. side converging absolutely uniformly on R to the periodic extension with
period 1 of the l. h. side. (Of course we met this function—scaled to have period π—in §§2.1 and 2.2 above.)
It is a nice exercise for the reader to see how this integration can be repeated indefinitely often. (It is possible
to find a generating function for the results.)

Aside from the usefulness of knowing the sum of this series, this example shows that even a discontinuous
derivative, or one that fails to exist at a discrete set of points, can have the “right” Fourier series. The key
question is: is the derivative Riemann-integrable, and is its indefinite Riemann integral equal to the function
one started with? In this case, we see that P2(x) fails to have a derivative when x is an integer, and the
function defined at non-integer points by P ′2(x) is discontinuous. But because P2(x) is the indefinite integral
of its (Riemann-integrable, and discontinuous only at a discrete set of points) derivative, one can see (after
the fact) that formal term-by-term differentiation of its Fourier series is justified. This is the kind of relation
between the Fourier series of a function and that of its derivative that one wants to have: one does not want
to restrict oneself to continuously differentiable functions.

4. Touching Base with Strauss: Having entertained myself by giving a self-contained treatment of
some elementary convergence questions for Fourier series, I must now check that I have covered everything
that Strauss did.(17) Let’s pick our way through Chapter 5. In §5.4, Strauss doesn’t claim to have proved

(17)
Fighting the textbook is bad enough, but not doing at least as much as it does is much worse.
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Theorem 1 and neither do I, except in the Dirichlet- or Neumann-boundary-condition cases. He doesn’t
claim to have proved Theorem 2 and neither do I, although I have proved his side remark about Theorem
2, namely: If f(x) and f ′(x) are continuous and periodic (with some period 2`), then the (full) Fourier
series of f(x) converges absolutely uniformly. I can say I have proved this because if f ′(x) is continuous

then f(x) = (const.) +
∫ x

0

f ′(t) dt (the fundamental theorem of calculus). By proving Dini’s theorem, I have

justified Strauss’s assertions Theorem 4 and Theorem 4∞. I have also verified (everybody gives about
the same proofs of these things) the assertions made under the heading The L2 Theory, and the same goes
for the assertions of §5.5 as far as but not including the material headed The Gibbs Phenomenon.

4.1. The Hypothesis
∫ π

−π
|f(x)|2dx <∞: This treatment has concentrated on “properly” Riemann-

integrable functions. However, many of the resuts extend to functions whose squares are “improperly”
Riemann-integrable, for example, the function f(x) defined by |x|−1/4 on [−π, π] and extended to be periodic
with period 2π on R. Such functions have well-defined Fourier coefficients, and their Fourier series converge
to the function in the r. m. s. norm: one approximates the given function in the r. m. s. norm by a properly
Riemann-integrable function (the ability to do this is built into the definition of improper Riemann integrals)
and then one can just use the same argument with step functions that we gave above. At points where such
functions satisfy the Dini condition, their Fourier series converge to the average of the one-sided limits (in
this case of this example, everywhere but at x = 2kπ where k ∈ Z). But one would be hard put to compute
the Fourier (cosine) coefficients of this f(x); its Fourier series is going to converge so slowly that it would
be nearly useless for approximation purposes; and if one is going to work with these “square-summable
functions,” there is really nothing to be gained by sticking with Riemann’s definition of the integral. One
might as well use the Lebesgue theory of integration, which gives all of the results obtainable with the
Riemann integral, gives the same values to the integrals of the elementary functions, and simplifies a lot of
the proofs (of course, there is a conservation-of-work principle involved: it’s a lot of work to set up Lebesgue
integration theory!).

My purpose in writing up these notes has been to give a reasonably rigorous and self-contained treatment
of convergence of the Fourier series of “garden-variety” functions, those that are Riemann integrable and
have left- and right-hand limits and derivatives at each point (for pointwise convergence) or the indefinite
integrals of Riemann-integrable functions (for uniform convergence). I claim that it takes very little more
work than what Strauss’s book does, gets somewhat more inclusive results, and requires little to be taken
on faith. I don’t make any claims of originality.
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