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ON THE CONVERGENCE OF FOURIER-BESSEL SERIES

By L. C. YOUNG.

[Received 13 September, 1938.—Read 15 December, 1938.]

1. Introduction. This paper concerns the Fourier-Bessel series of a
function f(x) defined for 0 < # < l , or, more precisely, the Fourier
expansion of the function xif(x) in terms of the system of normal and
orthogonal functions

where, in the notation of Watson's book on Bessel functions!, *n e expression

w !r
denotes the Bessel function of order v of the first kind, and j m is its m-th
positive zero in ascending order of magnitude. The index v is fixed in
(1.1) and we suppose, with Watson f, that

(1.3) v+i^Q.

It is convenient to stipulate further, unless the contrary is explicitly
stated, that we have

(1.4) x*f(x) = 0 when x = 0 and when x= 1,

in view of the fact that the functions (1.1) vanish at the end points 0
and 1.

The problem of the convergence of our series in the partial interval
e <a; < 1-— e, where e > 0, may be regarded as settled by the memoir of

t Watson, 1, [p. 40 (8)], hereafter cited as W.
j W., 582.
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W. H. Youngf, written some twenty years ago, in which it is reduced to
the problem for trigonometric Fourier series. There remain, however,
the problems of convergence for 0 < x < e and for 1 — e < x < 1, and it is
with these that the present paper is primarily concerned. A discussion of
these two problems is given by Watson in his bookj. He supposes that
the function xif(x) is of bounded variation and that it satisfies

(i) at the point 0 a Lipschitz condition, Lip (i/-f \), which requires
%~"f(%) to tend to 0 with x,

(ii) at the point 1 a mere continuity condition.

It is the object of the present note to extend Watson's results, first by
weakening the condition (i) to a mere continuity condition and thus
restoring the symmetry between (i) and (ii), and secondly by interpreting
the notion of bounded variation in a much more general sense, by means of
the notions of p-th. power and exponential variation, which have already
proved important in the convergence theory for trigonometric Fourier
series§.

We state and prove our main results for the whole interval 0 ^ # ^ 1,
rather than for the parts 0 < x < e and 1 — € < x < 1. This is because those
of our results which bear on the remaining part e ̂ # ^ 1 — e appear to
follow most directly from the fundamental inequalities for higher variations
and Stieltjes integrals|| without employing the corresponding results
which I have established previously for trigonometric Fourier series.

2. Notation and relevant formulae. The sum to n terms of the Fourier
expansion of x*f(x), in the generalized sense, as a series of the normal and
orthogonal functions (1.1), is xi8n(x), where

(2.1)

= \1tf(t)Tn(t,x)dt,
JO

f W. H. Young, 2.
X W., 594 and 616.
§ L. C. Young, 4. We do not use these notions until § 7.
f| L. C. Young, 1, 2, 3.

u2
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and it is shown in Watson's bookf that

(2.2) r.(«,,). £ "-Va'Y.'M
m=l J»+l\Jm)

provided that we choose An so that j n < ^4n < j n + 1 ; moreover:}:

(2.3)
o

We shall take over, from the convergence theory for the partial interval
1 — e, the following results which are obtained by choosing two

particular functions § of bounded variation x*f(x):

(2 .4) As w->oo, we have, for 0 < x < 1,

and we have uniformly, for e ^.x ^ 1—e,

Jo

Actually, in Watson's book, these results are proved directly|j.
Finally, we quote for reference some simple consequences of the

asymptotic expansion of a Bessel function^. Here and in the rest of the
present paper, K denotes a positive constant, whose precise value does not
interest us and is not necessarily the same in different formulae. Also
R(z) and I(z) denote the real and imaginary parts of a complex variable z.

f W., 581-585.
{ See the preceding footnote.
§ The first of these, strictly, depends on an additional parameter: we choose <•/(').

be tv+* for 0 < t < x and to be 0 elsewhere. The second is simply the function t*f(t) = t"
for 0 < t < 1 and 0 for t = 0 and for ( = 1.

|| W., 585, § 18 . 22.
K W., 199 (1).
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We have

(2.5) ** Jv(z)- V
7 ( | ) cos [Z_ exp(|J|(*))

for large \z\ provided that R(z)>0 (or, more generally, provided that
| arg z | < it— e). Moreover

(2.6) j m = = m 7 r + i ( v _ i ) f l r + o ( l ) , J*+I(jm)~llj

and in (2.2) and (2.3) we may take

(2.7) An =

With this value for An, we have, on account of (2.5), the following two
inequalitiesf, valid for 0 < £ < l and R(w) = An, uniformly when n is
sufficiently large,

(2.8) W{tw)J¥{tw)\<KexV{\I{tw)\), |w* Jv{w)\ >

3. /Some estimates of magnitude. An essential part will be played by
the following rough estimates of magnitude, which are valid uniformly for

l and 0 < * < l :

(3.1)

(3.2)

(3.3) I T P+1 TJt, x)lt*-x*)dt
I Jo n\/(xt)

The corresponding inequalities given by Watson X * r e just not good enough
for our purpose: they are based only on (2.8)-and so contain factors
which the present more detailed calculations show to be superfluous.

Proof of (3.1). This inequality is obvious when we use the expression,
given in (2.2), of Tn(& a;) as a sum of n terms. For the modulus of each
term is less than K/^(xt) on account of (2.6), since 2* Jv{z) is bounded for
real positive z.

Proof of (3.2). We now employ the integral representation of Tn(t, x),
also given in (2.2), and we choose An as in (2.7). We may suppose, in
view of (3.1), that \t—x\ > l/n. This implies, by (2.7),

(3.4) (2-x-t)An>K,

t W., 584 (9).
% W., 585 (10) and 585 (11).
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since we have 2—x—£> 1—x >£—x and 2—x—t > 1—t >#—t. I t is,
moreover, easy to establish (3.2) in the case in which one of the numbers
x and t does not exceed \ ; for in that case we have 2 — x — 1 ^ \ > K and so

tr| (*•-*«) Tn(t,*)|

( An+\ao \dw\ fAn+ico

| Jv{xw) Jv+1(tv>) I i f™ +x I Jy(tw) Jv+X(xw) I, a

h j v < K

by a straightforward application of (2.8).

In addition to (3.4), we may therefore assume that

(3.6) x>\ and t>\.

This being so, we write

Tn(t,x) = T'n(t,x)+Tn"(t)x),

where Tn' (t, x) is obtained by substituting, with suitable square root
factors, the cosines occurring in the appropriate forms of (2.5), for the
Bessel functions which involve x or t, in the integral representing Tn(t, x).
Then

+tw 2 , dw

where g'(w, x, t) denotes the expression

2< oos[xw— ^(v— %)n] cos [tw—\{v+%)n\

— 2x coa[tw—$(v+$)iT] cos [xw—

which may be written simply

*) cos[(<—x)w—%Tr\—(t—x) coB[(t-\-x)w—vn].

Hence, from (2.8) and the corresponding trivial inequalities for the
cosines, together with the inequalities \t—x\< 1 and \t—x\ < 2—t—x, we
find that

2n\ (t*-x*) Tn'{t, x)\

{2 re~v
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and, in view of (3.5), we at once deduce that

On the other hand, we have

> x> 0 dw

where g"(w, x, t) denotes the difference

2
2 y/(zt)w{tJp(zw) Jv+1(tw)-xJv(tw) Jv+1{xw)} g'{w, x, t),

IT

so that, by (2.5) and (3.5),

\g"(w, x,t)\<1—

Hence, by (2.8),

and, in view of (3.4) and (3.5), this gives

<3-7> lai»"<*'*)l<|t-f
so that, by adding the inequalities (3. 6) and (3. 7), we obtain (3. 2) and
the proof is complete.

Proof of (3.3). We denote by O the expression on the right of (2. 3)
and we argue with it as with Tn(t, x) in the proof of (3.2), except for a
trivial simplification.

If at least one of the numbers x, t does not exceed \, we have, by (2. 8),

and this last integral may be absorbed into the K,
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We may, therefore, suppose, as before, that x and t are both greater
than £, in which case, by (2.5), we may write

* = 5 = - •z{h'(w,xlt)+h"(wtx,t)}
7T

where h'(w, x, t) denotes the expression

2t cos[a^;—|(V+£)IT] COS [tw—|(v+|)7r]

—2x ooa[xw—£(i/-j-f)?r]cos [tw—

which we write in the more convenient form

(x—t) coa[(x-^t)w— (v-\-\)ir]—(t-\-x) cos[(x—t)w],

and n (w, x, t) ^ 1——p *—,

From this, by majorizing crudely and by applying (2.8), it is now easy
to see that |O| cannot exceed a constant multiple of the following
combination of three integrals

dv

and this clearly cannot exceed

\x-t\ f00 dv
F-J- +

here the three terms are at most K/An, which may also be written as

Kjx+t)?*1

since x and t are supposed to exceed £. This completes the proof of (3.3).

4. First properties of the integrated Fourier-Bessel kernels gn{t). We
are not interested in the expressions (2.2) and (2.3) for themselves, but
in the related expression

(4.1) gn(t)=\tV(xt)Tn(tfx)dt
Jo

considered as a function of t depending on the further parameters n and x.
We call gn(t) the "integrated Fourier-Bessel kernel."

The central idea of the present mode of attack on the Fourier-Bessel
convergence problem consists in deriving as much information as we can
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about gn{t) merely from the rough estimates of the magnitude of the
expressions (2.2) and (2.3), obtained in the preceding paragraph.

We begin by establishing the results which constitute a basis for a
Fourier-Bessel localization principle.

(4.2) Given 8 > 0, we have uniformly in n,t,x:

(4.3) \gn'{t)\<K(8) when \t—x\^8, where K{8) is a positive number
depending on 8 but independent of n, t, x. Moreover

(4.4) Osc [gn(t); 0 ^ t < x - h ] < K(B) ?2&»,
t n

(4.5) Osc [gn(t); x+8 < t < 1] <
t n

Of these results, (4.3) and (4.5) are straightforward, but (4.4), which
already differs in form, by the intrusion of a logarithm, from the corre-
sponding result for ordinary trigonometric Fourier kernels, requires a
slight device which will play an even more important part later.

Proof of (4.3). It is sufficient to remark that this follows at once
from (3.2), since the derivative gn'(t) of gn(t) is simply y/{xt)Tn{t, x).

Proof of (4.5). The factors

*•<'+*> and (P-x2)-1

are monotonic and do not exceed K(B) when t lies in the interval

Hence, by the second mean-value theorem, for any two values t', t", where
t' < t'\ in this interval, we have

[t'"

(where t' < t'" < t")

n

by (3.3). The inequality (4.5) follows at once.

Proof of (4.4). Instead of the oscillation of gn(t), we may, by the
second mean value theorem, consider that of the function of t

^n*(0=f V(*t)Tn(t,x)(i-X)dt
Jo

since x—t is monotonic and exceeds K (8) for 0 < t < x—8.



298 L. C. YOUNG [Dec. 16,

Now in any interval of the form \u < t < u, by the second mean value
theorem applied to the factor (<+aj)-1H"+i), the oscillation of gn*(t) cannot
exceed

K(u+2x)-1u-(''+»xi Osc I P t * - 1 ^ , »)(*«-»«) eft

and therefore, by (3. 3), cannot exceed K/n. Hence, choosing successively
u = x—h, u = \{x—8), ..., u = 2~<3>~i)(x—8) and adding the corresponding
oscillations, we see that

(4.6) Osc[0n*(«); 2-»(x-8)^t^x-8]^Kpln.
t

Moreover, by (3.2), since the oscillation cannot exceed the total
variation,

(4.7) Osofon(«); 0^t^2-*>(x-8)]<K2-*>l&.
t

Now it follows, from statements already made, that in (4.6) we may
replace gn*(t) by gn(t) provided that we replace on the right K by K(B).
Hence, by choosing p = log TO and combining (4.6) with (4.7), we obtain
(4.4) as desired.

5. Existence of a bound for the gn(t). We now prove that

(5.1) There exists a positive constant K independent of n, x, t such that

(6-2) \9n(t)\<K.

It is clearly sufficient to prove, instead of (5. 2), the inequality

(5.3) Oao[gn(t); 0^t^

which is equivalent to (5.2) since gn(0) = 0.
Again, instead of (5.3) it is clearly sufficient to prove the three

inequalities
" O*c[gn(t); 0^t

(6.4) Oso [gn(t);

The first of these three inequalities is trivial. In fact, by (3.2),

(5.6) \^\gn'(t)\dt<K.
Jo
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In order to establish the second inequality (5.4), we write, as in the
proof of (4.4) in the preceding paragraph,

?»*(<) = V(xt)Tn{t,x){t-x)dt.
Jo

Evidently, by the second mean-value theorem applied to the factor
tr<¥+¥i{z+ty-l

t (3.3) implies that

Osc[gn*{t)\ §*<«<§*] <JT/n.

Consequently, if 0 < u < $x, the same theorem gives

f Osc [gn(t); x—u < t < x—\u\ < K/(nu),
(5.6)

I O \gn{t); x+%u < t < x+u] < K/(nu).
If we now add the inequalities obtained from (5.6) by choosing successively
for u those values of the form %z2~r which exceed 1/n, where r denotes a
non-negative integer, we see that the sum of the right-hand sides is less
than a fixed constant K, since t

2' — < Z,2~m<K.
u > l / n n u m=>0

The second inequality (5.4) now follows at once, if we observe that, by
(3.1), the oscillation of gn(t) in the remaining part of fa; < J < §x is
trivial, since we actually have

( x+l/n
\gn'(t)\dt<K.

x-l/n

In order, finally, to establish the third inequality (5.4), we first remark
that, in any sub-interval of fa: ^< ̂  1, the oscillation of the funotion

cannot exceed a certain fixed constant K multiplied by the corresponding
oscillation of the function

n(<, x)(t2-x*)dt;

this is an immediate consequence of the second mean value theorem applied
with the factor t2/(t2—x2) to this last integral. Hence, for §05

•f The index m of the second summation is connected with our former index r by the
equation r+m = N, where N is the number of relevant values of u.
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we have, by (3.3),

Osc\gn{t); \u<«<u]

and therefore

(6.8) Osc[gn{t)\ ^u^

since, by the second mean-value theorem, the left-hand side of (5.8) is at
most Ku-tr+W times the corresponding oscillation of gn{t).

If we now add the inequalities obtained from (5.8) by choosing
successively u — 2""r, where r denotes a nonsnegative integer and where
u > a = max (1/w, §#), the sum of the right-hand sides is less than a fixed
constant K, as before. The third inequality (5.4) now follows at once,
if we observe that the inequalities (5.7) and

(5.9) ?X\gn'(t)\dt<K,

which is an immediate consequence of (3.2), show that the oscillation of
gn(t) for |a; ^ £ ^ a is trivial.

6. First applications. We now establish the following result.

(6.1) Let x*f{x) denote a function of bounded variation in 0 < « < 1,
vanishing for x = 0 and for x=l. Then (i), as n->oo, we have, for

—0)
s

boundedly; moreover (ii), */ x*f(x) is, furthermore, continuous, we have,
uniformly in x, for

xlsn(x)->x*f(x).

To prove this, we require a few simple preliminary lemmas.

(6.2) " Localization " principle. Given any fixed 8 > 0, the integrals

\ n{t,x)dt and \ t*f{t)y/{xt)Tn(t,x)dt

tend to zero uniformly in x as n-*co for 0 ^ « < l , provided that t*f{t) is
Lebesgue integrable.
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This follows at once from (4.2) by a classical Lebesgue theoremf.

(6.3) With the hypotheses of (6.1) (i), the expression%

x*8n{x)-xif(z-0)gn(z)-xif(x+0)[gn(l)-gn(z)]

tends to 0 boundedly as n->ao, for 0 ^ x ^ 1.

The modulus of the expression in question may be written successively

{fif(t)-x*f(x-O)}dgn(t)+

x-S

by the localization principle and by (5.1), where T(S ; x) denotes the total
variation § of t*f{t) in x—8^t<x and x < t < x+8, which is bounded in
x, 8, and, for fixed x, arbitrarily small with 8; and o(l) denotes an
expression which tends uniformly to 0 as n->co, for fixed 8.

(6.4) With the hypotheses of (6 .1) (ii), the expression

xisn(x)-x*f(x)gn{l)

tends to 0 uniformly, as n-+co, for 0 <!# ^ 1.

It is sufficient to observe that in the preceding proof T(8 ; x) is now small
with 8 uniformly in x, and that f(x+0) =f(x—0) =f(x)\\.

To establish (6.1) it is now sufficient, in view of (5.1), to prove that,
for 0 < a ; < l , gn(x)-+$-a& w->oo, and that, for e ^ a ; < l — e , grn(l)-*l
uniformly as n->co. This is a variant of (2.4) which might have been
taken over from the convergence theory for the partial interval e < x < 1 — e,

t Hobson, 1, II, 422, Theorem I.
\ The functions t*f(t) and gn(t) are supposed constant for t < 0 and for t> 1, if

necessary, and we have /( — 0) = / ( l + 0) = 0.
§ We use the inequality (valid for a < £ < 6)

\bF(t) dG(t) < {\F(t) |+ Fx(*•(«), a < t < b)} osc [<?(«); a < t < 6],
J a

where V^Fit), a < t < b) is the total variation of F\t) in a < < < b.
|| At the origin these equations must be supposed multiplied through by x*, since / ( + 0)

by itself need not even exist.
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in which case (2.4), which is formally more complicated, could have been
dispensed with. With the notation of (2.4) this variant is:

(6.5) As n->oo, we have, for 0 < x < 1,

\
o

and we have uniformly, for e < # < 1 — e,

It is easy to deduce the variant from (2.4) itself, by using (6.3) and
(6.4) with two particular functions t*f{t). Thus, taking t*f{t) = P+* for
0 < £ < a j and 0 for t^x, (6.3) asserts that xi8n(x)—xv+ign(x)-^0, and
(2.4) that x*sn(z)->&'+* for 0 < » < l . This gives the first of the
relations (6.5). Again, taking t*f(t) = tv+i for 0 < * < l , (6.4) asserts
that xisn(x)—x''+ign(l)->0 and (2.4) that x*sn{x)-+xv+* both these
relations being certainly uniform in x for e ̂ x^. 1 — e. This gives the
second of the relations (6.5).

To establish (6.1) it is sufficient to observe that, by (6.6) and (5.1),
combined with the conditions /(0) = /(I) = 0, the expressions

x^f(x-0)gn(x) and xif(x+O)[gn(l)-gn(z)]

tend boundedly to

$z*f(x-0) and fr*f

and that, if x*f(x) is continuous at 0 and 1,

uniformly in x for 0 < # < 1.

*7. Further properties of the gn{t). The results so far obtained are still
very crude. Nevertheless, the considerations of the preceding paragraphs,
for whose length and elementary character we must ask the reader to be
indulgent, contain in germ all that is necessary to enable us to apply modern
ideas to study the convergence problem more in detail.

In § 5, in particular, in establishing the existence of a bound for the
gn(t), we established incidentally a property almost akin to bounded varia-
tion : we proved that, for a particular division of 0 < t < 1 into partial
intervals, the oscillations of the gn(i) are majorized by the terms of three
convergent geometrio series of the form 2>K2rm. We might also have
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remarked, as is at once obvious from the*inequality (3.2), that in each of
the partial intervals in question

(7-1) \\gn'(t)\dt<K.

From these two properties above it is possible to deduce at once, by
convexity in p of the logarithm of p-th. power variation (or mean variation
of order p)f that in the same partial intervals the numbers Vp(gn) are
majorized by K times the [(p—l)/p]-th powers of the terms of our three
geometric series and therefore are majorized for every choice of p > 1,
by the terms of three other convergent geometric series. And hence, by
repeated application of the formula

(7 . 2) Vp(f; a, b) < Vp(f; a, Z)+Vp(f; & b)

(which is an easy consequence of Minkowski's inequality), we see that, in
the whole interval 0 ^ ^ < l , Vp(gn) is less than a fixed constant K
provided that we fix p > 1.

We can go further still. For a geometric series not only remains
convergent when its terms are raised to any fixed power (in this case, the
[{p— l)/p]-th power), but also when we pass to suitable powers of their
logarithms.

This line of thought, which makes it necessary to avoid using (7.2)
owing to the fact that Minkowski's inequality is restricted to powers, leads
to the following theorem:

(7.3) Let ¥ (M) denote either the function u9 where q> 1 or the function
w{log [ZM/u]}~a [defined for u < 2M, where M is the common upper bound
of the gn(t) which exists by (5.1)]* where q > 1. Then the total *¥-variations
of the gn(t) in the interval 0 < £ ^ 1 are bounded, uniformly in n and x, for
fixed q.

By the total T-variation |

F*(/; a, b)

of a function f(t) in an interval a < t < 6 we mean the upper bound, for every
choice of a finite system e of non-overlapping intervals A contained in
0 < * < l , of the sum

t L. C. Young, 1, §8 [c/. in particular, 259, (8 . 2a)].
| L. C. Young, 2.
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where A/ denotes the difference of the values of f(t) at the ends of A. The
classical total variation is the case Yiu) = u; the total^-th power variation
is the case ^F(w) = up; and so on. The function Y(u) is generally supposed
increasing from T(0) = 0 to *F( oo) = oo with u, but in our case only the
values u < 2M are relevant and we may suppose Y(w) suitably modified
for u > 2M.

The general lines of the proof of (7.3) have already been indicated.
We may, therefore, limit ourselves to the case

T(t*) = u{log [3if/»]}-«
where q>l.

Let us denote by E the finite set of points of the form t = x±ut wheref
u = 2rrx/Z > lj{2n), together with those of the form t = 2~a > ix/3 for
which, moreover, t> ljn (r and s are non-negative integers).

This being so, let e denote any finite set of non-overlapping intervals
in 0 ^ t < 1. We have to show that

where K is independent of e, n, x. We denote by ex the set of the intervals
of e which contains at least one point of E. Clearly, in view of the
remarks already made, it follows from §5 that

and therefore that

(7.5)

The remaining intervals of e can be ranged in groups e2 suoh that each
group e2 consists of intervals between the same pair of points t\ t" of E.
For each such group e2 we have

) < [log(3i//max

Now we have seen that the oscillations of gn(t) in the partial intervals
determined by the consecutive pairs of points t', t" of E are majorized by

f The symbol u has now no connection with the variable occurring in Vf(u).
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the terms of three geometric series S K2~m. It follows that the groups of
m

terms

are majorized by single terms of three series 2 Kmrq. Hence, adding the
m

contributions of the various groups e2 to that of e1 which is estimated in
(7. 5), we obtain (7.4) as required.

[Note.—If we write gn(t) as a function of t, x in the form gn(t, x) say, it
is natural to ask whether the p-th. power, and other, variations in x for
constant t are subject to inequalities at all similar to those established here
for the corresponding variations in t for constant x. The analogy with
trigonometric Fourier series rather suggests this, but there appear to be
serious formal difficulties in the way.

One type of conclusion which could be drawn from such results (if
true) concerns the existence of a bound for certain power variations of the
functions xisn(x) in the case in which xif(x) is of a corresponding bounded
power variation. This follows from an inequality for the "Stieltjes
Faltung " which has been given in a recent paperf in these Proceedings.]

8. Extension of the convergence criteria. We now come to our main
theorem which asserts the following:

(8.1) In (6.1) the term "function of bounded variation" may, without
affecting the validity of the theorem, be interpreted to mean either (a) "function
of bounded p-th power variation ", or (6) "function of bounded (^-variation''
where, for the relevantJ u,

(8.2) O(w) = exp (—u-o), 0 < c < £ .

Proof of (8.1). Denoting by (JL = H{$; x) the oscillation of the
function t*f(t) in a—8 ^.t<x or in x<t^x+S (whichever is the larger),
we observe that, by the results proved in § 6, it is sufficient to show that
the integrals

rx rz+S

(8.3) {fif{t)-x*f{x-Q)}dgn{t) • and {^f(t)-x^f(x+O)}dgn(t)
JX-& Jtt

(in which the functions concerned are supposed constant for t < 0 and t > 1
if necessary) are less in absolute value than an expression of the form

| L. C. Young, 3.
\ We suppose that * increases to oo with u. This implies that the function concerned

is bounded. But once we know the function to be bounded, the large values of u are
rrelevant.

SBB. 2. vol.. 47. wo. 2308. X
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K e(fx.), where e(/z) is a bounded function of/x (for the relevant values of/x)
and tends to 0 as fi -> 0. It is sufficient to prove this in the case of the former
of the two integrals (8.3), since the proof for the second integral proceeds
on symmetrical lines.

Now it is easy to see that for any px > p in case (a), or for any cx such
that c<cx<^ in case (b) and for the corresponding function O1(«)
obtained by replacing c by cx in the definition of <S>{u), (8.2), we have

(8.4) (a) VPl(F)<€(n) or (6) V^

where F(t) denotes the function defined for x~h ^.t^x and equal to
tif{t) except perhapsf at t = x} where it has the value x*f(x—0).

Moreover we have

(8.5) (a) Vgi(gn)<K and (6) V^(gn)<K,

when we choose qx so that 1 <qx <p1/(Pi— 1) and

This being so, we apply the fundamental inequalities for Stieltjes
integrals of the author's papers in the Ada Mathematica and in the
Mathematische Annalent. We obtain for the absolute value of the
integral

[* {F(t)-F(x)}dgn(t)t
Jx-S

which is equal to the first integral (8.3), the majorant§

in case (a) since {l/Pi)-\-(l/q1)> 1, in view of (8.4) (a) and (8.5) (a);
and the majorant||

in case (6), where <j>x (u), ijix{u) denote the inverse functions of O^u), ^V^u),
in view of (8.4) (6) and (8.5) (6). This completes the proof in case (a),
while in case (6) it is now only necessary to verify that the series

<8-7>

t We suppose the function t*f(t) continued for t < 0 and for t > 1 if necessary, by
denning it to be zero.

X L. C. Young, 1, 2.
§ L. C. Young, 1, 266 (10 . 9).
|| L. C. Young, 2, 597, Theorem (5 . 1)(»).
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converges, sinoe, if (8.7) converges, (8.6) split up at m —N is at most
KNfaledjLJJ+ex, where e#->0 independently of /x as iV->oo, so that (8.6)
is at most another e(/x). This completes the proof since the convergence of
(8.7) is an immediate consequence of the following relations, valid for
sufficiently small € > 0,

fa(u) = [log (l/u)]-1^, foiu) < Ku[\og (K/u)

and fa{u) ^(tt) < Ku[\og (Kju)]-^^ < KullogiK

As a particular case of the theorem just proved, we may mention that
if the function F(x) = -\/xf(x) satisfies uniformly in x the Lipschitz condition

\F(x+h)-F(x)\ < K[log (Wy<2+e\

where e > 0, then it is uniformly in x the sum of its orthogonal and normalized
Fourier-Bessel series, i.e. the limit of xisn(x).

Actually the analogy with ordinary Fourier series at once suggests
that the exponent — (2+e) in this last result may be replaced by — 1 .

The present writer is unable to state definitely whether this extension
is possible and whether it has been made. What is certain is that the
problem of a corresponding extension of the range of c in (8.1) (6) is
unsolved.
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