

Moving the image plane (zooming) More Single	View Geometry 8	
 Increase in focal length: ✓ move image plane along the principal axis ✓ magnification 		
$\mathbf{x} = \mathbf{K}[\mathbf{I} \mid 0]\mathbf{X}$ $\mathbf{x}' = \mathbf{K}'[\mathbf{I} \mid 0]\mathbf{X} = \mathbf{K}'\mathbf{K}^{-1}\left(\mathbf{K}[\mathbf{I} \mid 0]\mathbf{X}\right) = \mathbf{K}'\mathbf{K}^{-1}\mathbf{x}$ $\mathbf{K}'\mathbf{K}^{-1} = \begin{bmatrix} k\mathbf{I} & (1-k)\tilde{\mathbf{x}}_0\\ 0^{\top} & 1 \end{bmatrix}, k = \frac{f'}{f}$		
$ \begin{split} \mathbf{K}' &= \begin{bmatrix} k\mathbf{I} & (1-k)\tilde{\mathbf{x}}_0 \\ 0^\top & 1 \end{bmatrix} \mathbf{K} = \begin{bmatrix} k\mathbf{I} & (1-k)\tilde{\mathbf{x}}_0 \\ 0^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{A} & \tilde{\mathbf{x}}_0 \\ 0^\top & 1 \end{bmatrix} \\ &= \begin{bmatrix} k\mathbf{A} & \tilde{\mathbf{x}}_0 \\ 0^\top & 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} k\mathbf{I} \\ 1 \end{bmatrix} . \end{split} $		
Multi View Geometry (Spring '08) K. M. L	ee, EECS, SNU	

Projective (reduced) notation	More Single View Geometry 14	
• If canonical coordinates are chosen		
$X_1 = (1,0,0,0)^T, X_2 = (0,1,0,0)^T, X_3 = (0,0,1,0)^T, X_4 = (0,0,0,1)^T$		
$\mathbf{x}_1 = (1,0,0)^{\mathrm{T}}, \mathbf{x}_2 = (0,1,0)^{\mathrm{T}}, \mathbf{x}_3 = (0,0,1)^{\mathrm{T}}, \mathbf{x}_4 = (1,1,1)^{\mathrm{T}}$		
• Then the camera matrix becomes		
$\mathbf{P} = \begin{bmatrix} a & 0 & 0 & -d \\ 0 & b & 0 & -d \\ 0 & 0 & c & -d \end{bmatrix}$		
and the camera center is		
$C = (a^{-1}, b^{-1}, c^{-1}, d^{-1})^T$		
• This implies that all images with the same camera center are projectively equivalent		
Multi View Geometry (Spring '08)	K. M. Lee, EECS, SNU	

Vanishing Points	More Single View Geometry 22	
 Camera rotation from vanishing points Assume two cameras with same K and rotation by R Vanishing points are depend on camera rotation but not position v_i = Kd_i ⇒ d̂_i = K⁻¹v_i K⁻¹v_i v'_i = Kd'_i ⇒ d̂'_i = K⁻¹v'_i K⁻¹v'_i d̂'_i = Rd̂_i 		
 Thus, two corresponding directions are sufficient for determining R 		
Multi View Geometry (Spring '08)	K. M. Lee, EECS, SNU	

Orthogonality relations	More Single View Geometry 26	
 Orthogonality relations: The vanishing points of two perpendicular 	endicular lines	
$\mathbf{v}_1^T \boldsymbol{\omega} \mathbf{v}_2 = 0$		
The vanishing point of the normal direction to a plane and the plane vanishing line		
$\mathbf{v} = \boldsymbol{\omega}^* \mathbf{l} \Longrightarrow \mathbf{l} = \boldsymbol{\omega} \mathbf{v} \Longrightarrow \mathbf{l} \times (\mathbf{c}$	$(\mathbf{v}\mathbf{v}) = 0$	
\checkmark The vanishing lines of two perpendicular planes		
$\mathbf{l}_1^T \boldsymbol{\omega}^* \mathbf{l}_2 = 0$		
Multi View Geometry (Spring '08)	K. M. Lee, EECS, SNU	

