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111. CONCLUSION 
The determinant of H is the product of the diagonal elements 

of the upper triangular matrix U [14]. Upon replacing the diago- 
nal elements h, ,  of H by ( h , ,  - A), the characteristic polynomial 
of H is the product of the diagonal elements of the companion 
upper triangular matrix U(X); i.e., 

det[ H - X I ]  = U,,”( A) . .. u22( A) uI1( 1). 
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Constraints Identification in Time-Varying Obstacle 
Avoidance for Mechanical Manipulators 

B. H. LEE 

Abstract -The time-varying obstacle avoidance problem is considered 
mathematically. The manipulator motion is described in terms of con- 
strained motions that are governed by the environment and the manipula- 
tor itself. Various constraints are identified and derived, which are classi- 
fied into two categories: the environment constraints and the manipulator 
constraints. These constraints are converted into the reachable path seg- 
ment at each servo time instant to verify the existence of a collision-free 
trajectory. Discussions with regard to time-varying obstacle avoidance are 
also presented. 
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I. INTRODUCTION 
Most of the existing off-line path planning schemes that con- 

cern obstacle avoidance concentrate on the problem of avoiding 
fixed and stationary obstacles in a workspace. Since the locations 
of obstacles are fixed and stationary, the obstacle avoidance can 
be achieved through collision-free path planning schemes. The 
path planning schemes usually convert the obstacle avoidance 
problems to geometric analysis for obtaining collision-free paths. 

A time-varying obstacle is generally defined as an obstacle of 
which the position and orientation depends on time. There exist 
only few path planning schemes concerning the problem of 
avoiding the time-varying obstacles. E. Freund [ 11 analyzed the 
situation of two robots operating in a common workspace. Since 
one robot has the priority to move, the other may be considered 
as a time-varying obstacle. Motion commands for robots are 
stored in a database so that collision avoidance of two robots can 
be achieved. Fortune et al. [2] developed a useful algorithm for 
independent but synchronized motion of two Stanford arms. 
Erdmann et al. [3] used a configuration space-time technique to 
represent the constraints imposed on the moving object. 
The planner represented the space-time by using two dimen- 
sional slices that were then searched for a collision-free path. 
Tournassoud [4] presented a local method for collision avoidance 
based on the existence of separating hyperplanes between two 
manipulators. Its application was then extended to the coordi- 
nated motion of two manipulators. Recently, an analytic view to 
moving obstacle avoidance has been discussed by Lee [ 5 ] ,  [6]. 

In this paper, we try to identify the various constraints in time 
varying obstacle avoidance for mechanical manipulators. In gen- 
eral, the prior knowledge required for solving the time-varying 
obstacle avoidance problem includes the description of the obsta- 
cle movement, the initial and final location of the manipulator, 
the physical manipulator constraints and the various environ- 
ment constraints. The manipulator constraints (MC) include the 
velocity, acceleration, jerk and torque limitations. The environ- 
ment constraints (EC) include a motion priority, a traveling time 
constraint for the manipulator, and the collision constraint be- 
tween the manipulator and the obstacles. They are described in 
the following sections. 

11. ENVIRONMENT CONSTRAINTS 

A. Time Constraint 
The time constraint is a specified time period in which a 

manipulator must complete the desired motion from one location 
to another. If the time constraint does not exist and there exists a 
potential collision, a collision-free trajectory can always be found, 
as long as the obstacles do not collide with the manipulator at the 
initial location throughout their movement on a segment. In 
order to increase the productivity, the minimum-time collision- 
free trajectory is generally desired for the manipulator movement. 

B. Priority Constraint 
The priority constraint is defined as the moving priority be- 

tween the manipulator and the obstacle. If the priority constraint 
is given to the obstacle, the manipulator involved needs to change 
its motion strategy for avoiding the potential collision with the 
time-varying obstacle. Since it is generally difficult and impracti- 
cal to modify the trajectory of the time-varying obstacle, the 
priority constraint should be given to the time-varying obstacle. 
Three possibilities may exist for avoiding a potential collision: 
changing the path and the trajectory of the manipulator, rear- 
ranging the velocity profile of the time-varying obstacle, or 
modifying the path and trajectory for both the manipulator and 
the obstacle. 
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C. Path Constraint 
The path constraint is a constraint that restricts the maximum 

deviation from the predetermined path. In order to simplify 
computation, we generally assume that the manipulator path 
and trajectory are composed of straight line segments. Thus, 
the initial location [ p (  k , ) ,  @( kO)]  and the final location 
[ p ( k / ) , i P ( k / ) ]  of a manipulator are given for each segment, 
where p ( k )  and @ ( k )  specify the Cartesian position and the 
Euler angle of the manipulator hand at time kT, respectively. 
Hereafter, we use the time index k to denote the time t = kT, 
where T is the sampling period for servo control of the robot. 
The manipulator hand is required to move in the Cartesian space 
along the straight line. The straight line equation that passes 
through these two locations is described by 

P ( k )  = w( P@/) - P ( k 0 ) )  + P ( k 0 )  

@( k )  = W)( @ ( k , )  - @ V o ) )  + @P(ko) 

(1) 

(2) 

where O g  X ( k )  <l, and k ,  and kf are the initial and final 
discrete times, respectively, and A ( k o )  = 0 and A(k,) = l .  

D. Collision Constraint 
It is assumed that the wrist of a robot is modeled as a sphere. 

Essentially, the sphere modeling eliminates the orientation prob- 
lem of the wrist in the computation of potential collision detec- 
tion at the cost of a very rough approximation. The radius of the 
sphere is determined from the wrist geometry and the size of the 
object grasped. 

We assume that point p o ( k )  is the position of the obstacle at 
time k ,  where the subscript 0 denotes the obstacle. Point p , ( k )  
is the position of the robot at time k .  A collision may occur if the 
sphere of the robot wrist intersects the sphere of the obstacle 
during its motion. The distance between two set points on the 
robot and the obstacle path must be greater than ro + r, for 
collision avoidance, where ro is the radius of the sphere model of 
the obstacle and r, is the radius of the sphere model of the robot 
wrist [ 5 ] .  The portion that must be avoided by the robot at time k 
is the sphere of radius of ro, centered at the point on the path of 
the obstacle at time k.  That is, the collision avoidance can be 
achieved when the following condition is met: 

(3) 

where 

and 

Xpo(k)= { X E E 3 1 1 1 X ( k ) - P o ( k ) l l Q r o } .  ( 5 )  

The equation of the straight line path of the time-varying 
obstacle is denoted as 

where 0 g A ( k )  < 1. Then, the existence of a potential collision is 
found by solving the equation 

(ro+r,>'=llP,(k)-Po(k)l12. ( 7) 
Replacing p o ( k )  by using (6), we have 

( '0 + .,I2 = IIPA k )  - Po( k , )  1 1 2  - 2 v  k )  

.( Pr( k )  - po( k o ) )  .( PA kf) - po( k o ) )  

Equation (8) has three possible solutions: 1) real roots do not 
exist; 2) two real roots, A i ( k )  and X 2 ( k ) ,  exist (A',(k) > Acz(k).); 
and 3) only one real double root A'(k) exists. When no real root 

exists, there is no collision between the robots at time k .  It is 
notable that the coefficient of A2(k )  is always positive, and thus 
the feasible region lies outside the two roots. Thus, the constraint 
from the collision situation at time t = kT can be written as 

If we use A X (  k )  to denote the increment of A (  k )  from A (  k - l), 
i.e., A A ( k )  = X ( k ) -  A(k  -I), then the collisionconstraint AA(k)  
can be expressed as 

111. MANIPULATOR CONSTRAINTS 
We first derive some useful definitions. The position p ( k )  and 

the Euler angle @ ( k )  of a 6-degrees-of-freedom manipulator can 
be represented by a 6 x 1 vector and described by 

where N (  .) is a 6 X 1 nonlinear vector function depending on the 
manipulator configuration. To initiate the discretized trajectory 
analysis, let us denote the sampling period for servo control of 
the robot as T (usually 3 ms < T < 20 ms) and q( k )  represent the 
angular displacement q( k T ) .  

A .  Smoothness Constraint 
All discretized control set points in the joint space must be 

within certain limits to maintain the smoothness of the trajectory. 
The smoothness constraint on the joint trajectory set points can 
be stipulated by a velocity bound (VB), an acceleration bound 
(AB), and a jerk bound (JB). These three bounds are given [7] as 

I q l ( k ) J < c y ;  r: Oand i=1; . . ,6  (12) 

l q , ( k ) l < ~ y ;  C Y  Oand i=1 ; . . , 6  (13) 

I q ( k ) l < q ' ,  c: Oand i=1; . . ,6  (14) 

where E:, E:, and E: are the ith element of six-dimensional 
bound vectors for the manipulator (suppose the robot manipula- 
tor has six joints). The velocity bound (VB) and acceleration 
bound (AB) constrain the joint actuators from exceeding the 
maximum limits of the velocity and acceleration. The jerk bound 
(JB) reduces wear of joint actuators, and reduces excitation of 
vibrations. Hence, we impose VB, AB, and JB on the entire 
trajectory from one trajectory set point to another. Combining 
(13) and (14), we have 

q , ,min(k )  < q , ( k )  < q,.,,=( k ) ;  i=1,2;.  . , 6  (15) 

where 

q,,,,ln( k )  = max{ - c : , q , (  k -1) - c : . T }  

q,,,,=( k )  = min { E:, q, ( k - 1) + 6:. T } . 
(16) 

(17) 

Similarly, we obtain (18) from (12) and (15) for the joint velocity 
constraint. 

q, ,mi"(k)  < 4 , ( k )  < 4 , , m a ( k ) ;  i = 1 , 2 , . . . , 6  (18) 

q i , m i n ( k )  = m a {  - r ~ ' ~ ' q , , m , n ( k ) + q , ( k - l ) }  (19) 

Q i , m a  ( k )  min { (20) 

q,,mln(k) < q , ( k )  < q , , m a ( k ) ;  i = 1 , 2 , . . . , 6  (21) 

where 

T q r , m a  ( k )  + 4, ( k - 1) } . 
Then, we can obtain the joint position constraint as 
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where 

4, ,mm ( k )  = T. .nun( k + qf ( k - 1) (22) 

qi.rnax ( k 1 = T .  qJ,rnax ( k )  + 4, ( k - 1). ( 23) 

p (  k )  p (  k T ) ;  a)( k )  p a)( k T ) .  ( 24) 

We recall 

Letusassumethatat t imet=(k-1)T, p (k - l ) anda ) (k -1 )  
are given and that they are within the physical bounds from the 
straight line requirements, the smoothness and torque con- 
straints. Then, we would like to find the next set point, 
[ p ( k ) , @ ( k ) ] ,  such that it is again within the smoothness and 
torque constraints and must lie on the specified straight line path 
exactly. If we describe A p ( k )  and A @ ( k )  from linearization 
about q ( k )  in (11) 

[ A w l  z [ vN( q( k))] Aq( k )  

robot are described by its dynamic equations of motion and 
depend on the instantaneous joint position, velocity, acceleration, 
and the load that it is carrying. In general, the dynamic behavior 
of a robot can be computed by the Lagrange-Euler equations of 
motion as 

where ~ ( k )  is a 6 X 1 applied torque vector for joint motors, 
c ( q ( k ) )  is a 6 x 1  gravitational force vector, h ( q ( k ) , q ( k ) )  is a 
6 x 1  Coriolis and centrifugal force vector, and [ D ( q ( k ) ) ]  is a 
6 X 6 acceleration-related matrix. The approximated equality re- 
sults from the discrete-time approximation of q,  q, and q. 

If q ( k ) ,  q ( k ) ,  and q ( k )  are given, the required piecewise joint 
torques can be computed by treating the equations of motion as 
an inverse dynamics problem. In a simplified notation 

where A p ( k )  = p ( k )  - p ( k  - l ) ,  Aa)(k) = @ ( k )  - @ ( k  - 
l) ,  Aq( k )  = q( k )  - q( k - l), and the elements of [vN( q ( k ) ) ]  are 
found to be 

where Dk = D ( q ( k ) ) ,  h k  = h ( q ( k ) ,  q ( k ) )  and ck = c ( q ( k ) ) ,  and 
we assume 

( 36) q(0) = 0 ;  q(0) = 0 ;  w(0) = 0 

a N , ( q ( k ) )  ; i, j =1,2,. . . ,6. (26) at k ,  = 0. Let us further assume that the torques generated from 
(35) are constrained by limits that are dependent on the joint 
position (due to the manipulator actuator geometry) and on the 
joint velocity (due to the back electromotive force terms or other 
actuator effects) as 

a q , ( k )  

Combining (l), (2)y and (25) at time ' = ( k  - l)T and ' = kT, we 
have 

[vN(q(k))l,, = 

where A X ( k )  = X ( k ) -  X(k -1). If [~N(q(k))] is nonsingular at 
time t = kT, then 

A d k )  = A h ( k ) Q < k )  (28) 
where 

= [ Q1( k ) ,  . . . , Q,( k ) ]  '. (29) 

Physically, Q( k )  is the vector which relates the angular displace- 
ment of each joint with A X ( k )  of a given straight line. Since the 
servo time interval T is very small, let us assume that, for the 
joint position at t = kT, 

q( k )  q( k - 1) + Aq( k ) .  (30) 
Then using (28), we have 

T,rnm(') Q ~ ( k )  Q T,rnax(k). (38) 

T , , ( k )  Df,k4(k) Q Tt,(k) (39) 

Since the joint torque is represented by (35), we have 

where Df,k represents the ith row of the matrix Dk,  and ~ , , ( k )  
and ~, : , (k )  are written as 

T ; U ( ~ )  = ',.nun( k ,  - ' 1 ,  k - ' r ,  k (40) 

= T , , m a x ( k ) - h r . k - C r , k  (41) 

where h,, and c,, are the I th element of the vectors h ,  and c, , 
respectively. 

Combining (31) and (39), we have 

 AX^,^^^(^) Q A A ( ~ )  a ~ ~ , , , , , ( k ) ;  1=1,.-,6 (42) 

where 

q( k )  q( k -1) + AX( k ) Q (  k ) .  
Combining (21) and (31), we have 

AX; ( k )  G AX(  k )  d AX: ( k )  ( 32) 
where 

for i = 1,. . . ,6, if Q, ( k )  2 0. In addition, when Q, ( k )  = 0, there 
will be no constraint from joint i, and when Q , ( k )  < 0, the 
derivation should be slightly modified to reflect the negative sign 
of Q , ( k > .  

B. Torque Constraint 
Due to the physical limitations of the joint motors, the robot is 

limited on how far it can move from current set point to the next 
on the straight line path. The required joint torques to move the 

where AX,,rnln(k) and AX,.,,(k) are the minimum and maxi- 
mum constraints for A X ( k )  from the ith joint torque constraint. 
Similarly, the same arguments following (33) in the previous 
section must be applied to the denominator of (43) and (44) to 
acknowledge the inequality sign of (42). 

IV. CONCLUSION 
When there is only a time-invariant obstacle, the existence of a 

collision-free path only depends on the geometry of the obstacle 
and the manipulator. However, when a time-varying obstacle 
exists, the existence of collision-free path depends not only on the 
geometry of the obstacle and the manipulator, but also on the 
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manipulator constraint and dynamic information of the time- 
varying obstacle. Hence, determining whether a trajectory satis- 
fies all the constraints or not becomes the difficult part in finding 
a collision-free trajectory. 

Since the maximum AA(  k )  results in the maximum local speed 
at t = kT, it is desirable to formulate the problem as 

find max A A (  k )  ; k = 1,2, . . . 

subject to the smoothness constraint 

AA; ( k )  d A A (  k )  d AA: ( k )  (45) 

and the torque constraint 

where i = 1,2; . . ,6 ,  and the collision constraint 

AA(k)  2 Xl(k)  - A ( k  -1) or A A ( k )  6 X , ( k )  - A ( k  -1). 
(47) 

It is notable that the time constraint is converted to find the 
maximum AA(k)  and the priority constraint is given to the 
time-varying obstacle. Also, the path constraint is embedded in 
the collision constraint. 

As indicated in Section 11-A, a collision-free trajectory always 
exists if there is no time constraint, which can be interpreted in 
terms of the aforementioned formulation as follows. Since there 
is no time constraint, the departure time of the robot can be 
sufficiently delayed enough to ignore the collision constraint in 
(47), and the minimum time trajectory will suffice as long as the 
constraints in (45) and (46) are not violated. 

If there exists a time constraint, the existence of the common 
region for AX(k) in (45), (46), and (47) is not completely guaran- 
teed. In fact, even though we neglect the torque constraint by the 
assumption that the robot is not operated at the maximum 
velocity and acceleration of the joint motors, there is no direct 
relationship between the smoothness constraint in (45) and the 
collision constraint in (47). Thus, the existence of a collision-free 
trajectory is questionable. 

As a matter of fact, if we have the whole motion information 
for the time-varying obstacle with respect to the manipulator 
path, and measure the necessary deviation for the manipulator 
path from the original path enough to avoid the obstacle, then 
there will be no collision between the obstacle and the manipula- 
tor. It is interesting to note that if the time constraint becomes 
weaker, then the path deviation will become smaller. Ultimately, 
the deviation will become zero when there is no time constraint. 
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Group Decision Support with MOLP Applications 

HSIAO FAN WANG AND SHENG YUAN SHEN 

Absfracf -The paper develops a grougdecision support-system (GDSS) 
to aid a group of members to find a consensus solution in a systematic 
way. There are two groups of participants: One group consists of profes- 
sional staff and the other of decisionmakers (DM’s). Through the partici- 
pants’ reciprocation and complementation, a three-step decision process 
utilizing a general multiple objective linear problem is designed. The three 
steps are the generation of alternatives, the grougdecision operation and 
the evaluation of the final result. The GDSS is evaluated on four criteria: 
complete information, full participation, equity principle and economic 
decision time. Based on these criteria, the proposed system has shown its 
potential to improve the quality of decisionmaking and to shorten the time 
required for the process. Further research and refineness are also sug- 
gested. 

I. INTRODUCTION 
Group-decisionmaking involves a group of members, h ,  with 

different preference structures, p , ,  I = 1,. . . , h ,  who try to find a 
consistent collective decision, pG,  from a set of alternatives { x,, 
j = 1,. . . , n }. That is, pG = f( p l , .  . . , p , ,  . . . , p,,). Here the func- 
tion f represents the group decision rules that should be effective 
and efficient so that a “good” alternative can be selected within a 
reasonable period of time and the conflict existing among the 
members can be reduced to the minimum. Several researchers, 
e.g., [l], [5], [6], [ll],  [18], [19], [26], [31], have been involved in the 
relevant research. 

While Arrow [ l ]  and Keeny and Kirkwood [19] discussed the 
existence of group utility function and derived a social welfare 
function (SWF), Yu [31] then applied the concept of ideal point 
to propose a method of using distance norms to measure the 
degree of group regret. Both approaches articulate the prefer- 
ences of the decisionmakers (DM’s) prior to solving any multiob- 
jective problems [14]. According to these approaches, once the 
DMs’ worth or preference structures are built into the formula- 
tion of a mathematical model for a multiobjective problem, any 
changes of preferences cannot affect the result. However, this 
study indicates that the worth or preferences of D M s  apparently 
are dynamic, particularly in group decisionmaking. Once more 
information from different DM’s is communicated, the original 
opinions are often changed and so are the preferences. Besides, 
group utility function is derived from the individual utility func- 
tions, which are difficult to define, and the independence condi- 
tion is difficult to satisfy [lo]. 

Seo and Sakawa [26], and Blin and Whiston [2], by applying 
the fuzzy set theory, obtained a single attribute group utility 
function from the single-attribute individual utility functions. 
They also applied a multiattribute utility theory to obtain an 
implicit group utility. During the process, the group preference 
on the attributes is first ordered by the defined membership 
function, then the preference order is fed back to the D M s  to 
determine the weights of the attributes that are further aggre- 
gated to form the group weights. Because this approach provides 
a feedback procedure, the DM’s have an opportunity to change 
their preferences. In addition, there is no explicit individual 
utility function required in the process. However, in this ap- 
proach, there is a problem with finding the proper definition of a 
membership function. If an improper function is adopted, it 
might distort the relative values of the attributes. Besides, the 
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