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Section 1.1

Set Theory
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Theorem 1.1

De Morgan’s law relates all three basic operations:

(AU B) = A° N B,
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Proof: Theorem 1.1
There are two parts to the proof:

e To show (A U B)° C A N B¢, suppose x € (A U B)“. That implies
x ¢ AU B. Hence, x € A and x € B, which together imply x € A¢ and
x € B¢. Thatis, x € A° N B€.

e To show AN B¢ C (AU B)¢, suppose x € A°N B. In this case, x € A
and x € B¢. Equivalently, x ¢ A and x ¢ B so that x ¢ A U B. Hence,
x € (AU B)-.
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Quiz 1.1

A pizza at Gerlanda’s is either regular (R) or Tuscan
(T'). In addition, each slice may have mushrooms (M)
or onions (O) as described by the Venn diagram at right.
For the sets specified below, shade the corresponding
region of the Venn diagram.

(1) R (4) RUM
(2) MU O (5) RN M
3) MNO (6) T¢ — M
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Section 1.2

Applying Set Theory to Probability
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Example 1.1

An experiment consists of the following procedure, observation, and model:

e Procedure: Flip a coin and let it land on a table.

e Observation: Observe which side (head or tail) faces you after the coin
lands.

e Model: Heads and tails are equally likely. The result of each flip is
unrelated to the results of previous flips.
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Example 1.2

Flip a coin three times. Observe the sequence of heads and tails.
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Example 1.3

Flip a coin three times. Observe the number of heads.
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Definition 1.1 Outcome
An outcome of an experiment is any possible observation of that experi-
ment.
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Definition 1.2 Sample Space
The sample space of an experiment is the finest-grain, mutually exclusive,
collectively exhaustive set of all possible outcomes.

Mutually exclusive if and only if 4 "4, =¢, i= .

Collectively exhaustive if and only if 4 WA, U---UA =8.
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Example 1.4

e The sample space in Example 1.1is § = {A, t} where # is the outcome
“observe head,” and ¢ is the outcome “observe tail.”

e The sample space in Example 1.2 is

S = {hhh, hht, hth, htt,thh, tht, tth, ttt}

e The sample space in Example 1.3is § = {0, 1, 2, 3}.

08 _1 YatesChap1 12



Definition 1.3 Event

An event is a set of outcomes of an experiment.

08 _1 YatesChap1

13



Example 1.6

Suppose we roll a six-sided die and observe the number of dots on the
side facing upwards. We can label these outcomesi = 1,...,6 where i

denotes the outcome that i dots appear on the up face. The sample space
s S =1{1,2,...,6}. Each subset of S is an event. Examples of events are

e The event E; = {Roll 4 or higher} = {4, 5, 6}.

e The event E, = {The roll is even} = {2, 4, 6}.

e E3 = {The roll is the square of an integer} = {1, 4}.
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Example 1.7

Wait for someone to make a phone call and observe the duration of the
call in minutes. An outcome x is a nonnegative real number. The sample
space is S = {x|x > 0}. The event “the phone call lasts longer than five

minutes” is {x|x > 5}.
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Example 1.8

A short-circuit tester has a red light to indicate that there is a short cir-
cuit and a green light to indicate that there is no short circuit. Consider
an experiment consisting of a sequence of three tests. In each test the
observation is the color of the light that is on at the end of a test. An out-
come of the experiment is a sequence of red (r) and green (g) lights. We
can denote each outcome by a three-letter word such as rgr, the outcome
that the first and third lights were red but the second light was green. We
denote the event that light n» was red or green by R, or G,. The event
Ry, = {grg,grr,rrg,rrr}. We can also denote an outcome as an inter-
section of events R; and G;. For example, the event R;G,Rj3 is the set
containing the single outcome {rgr}.
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Definition 1.4 Event Space
An event space is a collectively exhaustive, mutually exclusive set of events.
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Example 1.9 Problem

Flip four coins, a penny, a nickel, a dime, and a quarter. Examine the coins
in order (penny, then nickel, then dime, then quarter) and observe whether
each coin shows a head (&) or a tail (r). What is the sample space? How
many elements are in the sample space?
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Example 1.10

Continuing Example 1.9, let B; = {outcomes with i heads}. Each B; is an
event containing one or more outcomes. For example, By = {ttth, ttht, thtt, httt}
contains four outcomes. The set B = {By, B, B>, B3, B4} is an event space.

lts members are mutually exclusive and collectively exhaustive. It is not a
sample space because it lacks the finest-grain property. Learning that an
experiment produces an event B tells you that one coin came up heads,

but it doesn’t tell you which coin it was.
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Figure 1.1

In this example of Theorem 1.2, the event space is B = {By, B, B3, B4} and
C, = ANB;fori =1,...,4. It should be apparentthat A = C{UC,UC3UC4.
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Theorem 1.2

For an event space B = {Bq, By, ...} and any event A in the sample space,
let C; = AN B;. Fori # j, the events C; and C; are mutually exclusive and

A=CiUCyU--- .
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Example 1.11
In the coin-tossing experiment of Example 1.9, let A equal the set of out-
comes with less than three heads:

A = {rttt, heet, thet, tthe, ttth, hhtt, htht, htth, tthh, thth, thht}.

From Example 1.10, let B; = {outcomes with i heads}. Since {By, ..., B4}
IS an event space, Theorem 1.2 states that

A=(ANBy)y U(ANB1)U(ANBy) U(AN B3)U (AN By)

In this example, B; C A, fori =0, 1, 2. Therefore ANB; = B; fori =0, 1, 2.
Also, fori =3 andi =4, AN B; = ¢ sothat A = By U By U By, a union of
disjoint sets. In words, this example states that the event “less than three
heads” is the union of events “zero heads,” “one head,” and “two heads.”
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Quiz 1.2

Monitor three consecutive phone calls going through a telephone switching
office. Classify each one as a voice call (v) if someone is speaking, or a
data call (d) if the call is carrying a modem or fax signal. Your observation
IS a sequence of three letters (each letter is either v or d). For example,
two voice calls followed by one data call corresponds to vvd. Write the
elements of the following sets:

(1) A, = {first call is a voice call} (5) A3 = {all calls are the same}
(2) B; = {first call is a data call} (6) Bz = {voice and data alternate}
(3) A» = {second call is a voice call} (7) A4 = {one or more voice calls}
(4) B, = {second call is a data call} (8) B4 = {two or more data calls}

For each pair of events A; and By, A and B,, and so on, identify whether
the pair of events is either mutually exclusive or collectively exhaustive or
both.
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Definition 1.5 Axioms of Probability
A probability measure P[-] is a function that maps events in the sample
space to real numbers such that

Axiom 1 For any event A, P[A] > 0.
Axiom 2 P[S] = 1.
Axiom 3 For any countable collection Ay, A,, ... of mutually exclusive events

P[AjUAyU---]= P[A|]+ P[A2] +---.
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Section 1.4

Some Consequences of the
Axioms
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Theorem 1.7

The probability measure P[-] satisfies

(a) Pl¢] =0.
(b) P[A]=1— P[A].

(c) For any A and B (not necessarily disjoint),

P[AU B] = P[A] + P[B]— P[AN B].

(d) If A C B, then P[A] < P[B).
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Theorem 1.8

For any event A, and event space {By, B», ..., Bn},

P[A] = Z P[A N B;].
i=1
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Proof: Theorem 1.8
The proof follows directly from Theorem 1.2 and Theorem 1.4. In this case,

the disjoint sets are C; = {A N B;} .

Theorem 1.2

For an event space B = {Bq, By, ...} and any event A in the sample space,
let C; = AN B;. Fori # j, the events C; and C; are mutually exclusive and

A=CiUCyU--- .

Theorem 1.4
fA=A1UAU---UAp and A; NA; = ¢ fori # j, then

P[A] =) P[A;].
i=1
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Quiz 1.4

Monitor a phone call. Classify the call as a voice call (V) if someone is
speaking, or a data call (D) if the call is carrying a modem or fax signal.
Classify the call as long (L) if the call lasts for more than three minutes;
otherwise classify the call as brief (B). Based on data collected by the
telephone company, we use the following probability model: P[V] = 0.7,
P[L] = 0.6, P[VL] = 0.35. Find the following probabilities:

(1) P[DL] (4) P[V UL)
(2) P[DU L] (5) P[V U D]
(3) P[VB] (6) P[LB]
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Section 1.5

Conditional Probability
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Definition 1.6 Conditional Probability

The conditional probability of the event A given the occurrence of the event
B is

P[AB]

P[A|B] = ok
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Example 1.15 (Why conditional probability?)

 Testing two circuits in the same silicon wafer
- Accepted (a) or rejected (b)
- S = {rr,ra,ar,aa}
- Let B = Event that the first chip tested is rejected = {rrra}
A = Event that the second circuit 1s a failure = {rrar}
* A prior1 probabilities
- P[rr]=0.01, P[ra]=0.01, P[ar]=0.01, P[aa]=0.97
- P[A] = P[rr] + Plar] = 0.02, P|B] = P[rr] + P|ra] = 0.02
- P[AB] = P[both rejected] = P[rr] = 0.01
 The conditional probability

- P| 4B]
P[A | B] = P[B] =0.01/0.02=0.5
- A posteriori probability
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Theorem 1.9
A conditional probability measure P[A|B] has the following properties that
correspond to the axioms of probability.

Axiom 1: P[A|B] > 0.
Axiom 2: P[B|B] = 1.

Axiom 3: f A=A UAU.-.- with A; NA; = ¢ fori # j, then

P[A|B] = P[A{|B]+ P[Ay|B] +- -
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Theorem 1.10 Law of Total Probability

For an event space{By, B, ..., By} with P[B;] > 0 for all i,

P[A] =)  P[A|B;]P[B;].
i=1
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Proof: Theorem 1.10
This follows from Theorem 1.8 and the identity P[AB;] = P[A|B;]P|[B;],
which is a direct consequence of the definition of conditional probability.

Theorem 1.8

For any event A, and event space {By, Ba, ..., Bn},

P[A]=) P[ANB;].
i=1
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Example 1.19 Problem

A company has three machines B;, By, and B3 for making 1 kQ2 resistors.
It has been observed that 80% of resistors produced by B; are within 50 &
of the nominal value. Machine B, produces 90% of resistors within 50 2
of the nominal value. The percentage for machine B3 is 60%. Each hour,
machine B; produces 3000 resistors, B, produces 4000 resistors, and Bj
produces 3000 resistors. All of the resistors are mixed together at ran-
dom in one bin and packed for shipment. What is the probability that the
company ships a resistor that is within 50 2 of the nominal value?
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Example 1.19 Solution
Let A = {resistor is within 50 2 of the nominal value}. Using the resistor
accuracy information to formulate a probability model, we write

P[A|B;]1=0.8, P[A|By] =009, P[A|B;]=0.6

The production figures state that 3000 + 4000 + 3000 = 10,000 resistors per
hour are produced. The fraction from machine B is P[B] = 3000/10,000 =
0.3. Similarly, P[B>] = 0.4 and P[B3] = 0.3. Now it is a simple matter to ap-
ply the law of total probability to find the accuracy probability for all resistors
shipped by the company:

P[A] = P[A|B1P[B] + P[A|B]P[B,] + P[A|B3]P[Bs]
= (0.8)(0.3) + (0.9)(0.4) + (0.6)(0.3) = 0.78.

For the whole factory, 78% of resistors are within 50 @ of the nominal
value.
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Theorem 1.11 Bayes’ theorem

P[A|B]P[B]

P[B|A] = PTA]

08 _1 YatesChap1
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Proof: Theorem 1.11

P[B|A] — P[AB] _ P[A|B]P[B].

P[A] P[A]
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Example 1.20 Problem
In Example 1.19 about a shipment of resistors from the factory, we learned
that:

e The probability that a resistor is from machine B3 is P[B3z] = 0.3.

e The probability that a resistor is acceptable, i.e., within 50 © of the
nominal value, is P[A] = 0.78.

e Given that a resistor is from machine Bs, the conditional probability
that it is acceptable is P[A|B3z] = 0.6.

What is the probability that an acceptable resistor comes from machine

B3?
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Example 1.20 Solution
Now we are given the event A that a resistor is within 50 © of the nominal
value, and we need to find P[B3|A]. Using Bayes’ theorem, we have
P[A|B3]P[ B3]

P[A]
Since all of the quantities we need are given in the problem description,
our answer is

P[B3|A] =

P[B3|A] = (0.6)(0.3)/(0.78) = 0.23.

Similarly we obtain P[Bj|A] = 0.31 and P[B|A] = 0.46. Of all resistors
within 50 © of the nominal value, only 23% come from machine B3 (even
though this machine produces 30% of all resistors). Machine By produces
31% of the resistors that meet the 50 Q2 criterion and machine B, produces
46% of them.
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Definition 1.7 Two Independent Events

Events A and B are independent if and only if

P[AB] = P[A]P[B].
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Example 1.21 Problem

Suppose that for the three lights of Example 1.8, each outcome (a se-
quence of three lights, each either red or green) is equally likely. Are the
events R, that the second light was red and G, that the second light was
green independent? Are the events R; and R, independent?
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Example 1.21 Solution

Each element of the sample space

S =\{rrr,rrg,rgr,rgg, 8rr, grg, 88r, 888}
has probability 1/8. Each of the events

Ry = {rrr,rrg, grr,grg} and Gy ={rgr,rgg, ggr, 888}

contains four outcomes so P[Ry] = P[G»] = 4/8. However, Ry N Gy, = ¢
and P[R,G»] = 0. That is, R, and G, must be disjoint because the second
light cannot be both red and green. Since P[R,G»,] # P[R,|P[G»], R, and
G, are not independent. Learning whether or not the event G, (second
light green) occurs drastically affects our knowledge of whether or not the
event R, occurs. Each of the events Ry = {rgg,rgr,rrg,rrr} and Ry =
{rrg,rrr, grg, grr} has four outcomes so P[Ry] = P[Ry] = 4/8. In this
case, the intersection Ry N Ry, = {rrg, rrr} has probability P[R;R>] = 2/8.
Since P[R{R>] = P[R]P[R»], evenis R; and R, are independent. Learn-
ing whether or not the event R, (second light red) occurs does not affect
our knowledge of whether or not the event R (first light red) occurs.



Definition 1.8 3 Independent Events

A1, Ar, and A3 are independent if and only if

(a) Ay and A, are independent,
(b) A, and A3 are independent,
(c) A1 and As are independent,

(d) P[A1NAyN Azl = P[A[]P[A2]P[A3].
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Example 1.23 Problem
In an experiment with equiprobable outcomes, the event space is § =
{1,2,3,4}. P[s] = 1/4 for all s € S. Are the events A; = {1, 3,4},

Ar = {2, 3,4}, and A3 = ¢ independent?
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Example 1.23 Sol

These three sets satisfy the final condition of Definition 1.8 because A N
Ay N A3 = ¢, and

P[A1 N Ay N A3] = P[A1]P[A]P[A3] = 0.

However, A; and A, are not independent because, with all outcomes equiprob-
able,

P[A| N Ay] = P[{3,4}] = 1/2 # P[A{]P[A;] = 3/4 x 3/4.

Hence the three events are dependent.
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Quiz 1.6

Monitor two consecutive phone calls going through a telephone switching
office. Classify each one as a voice call (v) if someone is speaking, or a
data call (d) if the call is carrying a modem or fax signal. Your observation
IS a sequence of two letters (either v or d). For example, two voice calls
corresponds to vv. The two calls are independent and the probability that
any one of them is a voice call is 0.8. Denote the identity of call i by C;. If
call i is a voice call, then C; = v; otherwise, C; = d. Count the number of
voice calls in the two calls you have observed. Ny is the number of voice
calls. Consider the three events Ny = 0, Ny = 1, Ny = 2. Determine
whether the following pairs of events are independent:

(1) {Ny =2} and {Ny = 1} (3) {C2 =v}and {C) = d]}

(2) {Ny > 1} and {C| = v} (4) {C, = v} and {Ny is even}
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Example 1.45

>> X=rand (1, 4) Since rand(1,4)<0.5 com-
X =

0.0879 0.9626 0.6627 0.2023 pargs four  random .numbers
>> X<0.5 against 0.5, the result is a ran-
ans :1 ) ) . dom sequence of zeros and

ones that simulates a sequence
of four flips of a fair coin. We
associate the outcome 1 with
{head} and 0 with {tail}.
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Example 1.46

Using MATLAB, perform 75 experiments. In each experiment, flip a coin
100 times and record the number of heads in a vector Y such that the ith

element Y; is the number of heads in subexperiment ;.
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Salg
Example 1.46 Solu

>

7
V2272

/////////
Yt

p 2

72
i)
2
)

X=rand (75,100)<0.5; The MATLAB code for this task appears
r=sum (X, 2) on the left. The 75 x 100 matrix X has
i, jth element X;; = 0 (tails) or X;; = 1

(heads) to indicate the result of flip j of
subexperiment ;.

Since Y sums X across the second dimension, Y; is the number of heads
in the ith subexperiment. Each Y; is between 0 and 100 and generally in
the neighborhood of 50.
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Example 1.47

Simulate the testing of 100 microprocessors as described in Example 1.43.
Your output should be a 4 x 1 vector X such that X; is the number of grade

i MICroprocessors.
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Example 1.47 Solu

$chiptest.m The first line generates a row vector G
G=ceil (4*rand(1,100)); .

T—1:4: of random grades for 100 microprocessors.
X=hist (G, T) ; The possible test scores are in the vector

T. Lastly, [ hist]X=hist(G,T) returns a his-
togram vector X such that X (3) counts the
number of elements G (1) thatequal T (7).

Note that “help hist” will show the variety of ways that the hist func-
tion can be called. Morever, [ hist]X=hist(G,T) does more than just count
the number of elements of G that equal each element of T. In particu-
lar, hist (G, T) creates bins centered around each T (3) and counts the
number of elements of G that fall into each bin.
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Quiz 1.11

The flip of a thick coin yields heads with probability 0.4, tails with probability
0.5, or lands on its edge with probability 0.1. Simulate 100 thick coin flips.
Your output should be a 3 x 1 vector X such that X, X,, and X3 are the
number of occurrences of heads, tails, and edge.
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