Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers
SECOND EDITION

Roy D. Yates David J. Goodman

Definitions, Theorems, Proofs, Examples,
Quizzes, Problems, Solutions
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Section 6.1

Expected Values of Sums
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Theorem 6.1

For any set of random variables Xy, ..., X,, the expected value of W,, =
X1+---+X,is

E[Wy]l=E[Xq]+ E[X2]+---+ E[Xy].
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Proof:

We prove this theorem by induction on n. In Theorem 4.14, we proved
E[W>] = E[X1] + E[X>]. Now we assume E[W,_1] = E[X{] + --- +
E[X,_1]. Notice that W, = W,,_; + X;,. Since W, is a sum of the two ran-
dom variables W,,_; and X, we know that E[W,] = E[W,_{] + E[X,] =
E[X{]+---+ E[X, 1]+ E[Xy].

08 1 Yates Chap. 6 4



Theorem 6.2

The varianceof W, = X1+ ---+ X, IS

n n—1 n
Var[W,] = ) "Var[X;]1+2) Y Cov[X;, X;].
i=1 i=1 j=i+1

08 1 Yates Chap. 6



Proof: Theorem 6.2

Var[W, ] =EHIZ”11(XI~ —ﬂi)ﬂ =E[2(Xi )2 (X, —ﬂj)}

08_1
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Theorem 6.3

When X, ..., X, are uncorrelated,

Var[W, ] = Var[X{] + - - - + Var[X;].

08 1 Yates Chap. 6
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Example 6.2

At a party of n > 2 people, each person throws a hat in a common box.
The box is shaken and each person blindly draws a hat from the box without
replacement. We say a match occurs if a person draws his own hat. What
are the expected value and variance of V,, the number of matches?

08 1 Yates Chap. 6 8
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Let X; denote an indicator random variable such that

1 person i draws his hat,
X; = .
0 otherwise.

The number of matches is V,, = X; + --- + X,,. Note that the X; are generally not inde-
pendent. For example, with n = 2 people, if the first person draws his own hat, then the
second person must also draw her own hat. Note that the ith person is equally likely to
draw any of the n hats, thus Px (1) = 1/n and E[X;] = Px (1) = 1/n. Since the expected
value of the sum always equals the sum of the expected values,

E[V, =E[X1]+ -+ E[Xy] =n(/n)=1.
To find the variance of V,,, we will use Theorem 6.2. The variance of X; is

1
Var[X;] = E [X]] —(E[X;)* = - — .
n n
To find Cov[X;, X ], we observe that
Cov[X;, X;| = E[X:X;] - E[X:1E[X]].
[Continued]
08 1 Yates Chap. 6 9
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Example 6.2 So

Note that X;X; = 1ifandonly if X; = 1 and X; = 1, and that X;X; = 0 otherwise. Thus

E[X;X;] = Px,x, (1,1) = Px,x, (111) Px, (1).

Given X; = 1, that is, the jth person drew his own hat, then X; = 1 if and only if the ith
person draws his own hat from the n — 1 other hats. Hence Px,x,(1/1) = 1/(n — 1) and

1 1

Cov [XZ,XJ] = n(n——l) — ;

E[X:X;|= prmsm—

Finally, we can use Theorem 6.2 to calculate

Var[V,] = n Var[X;] 4+ n(n — 1) Cov [X;, X;] = 1.

That is, both the expected value and variance of V, are 1, no matter how large n is!

08 _1 Yates Chap. 6 10
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Example 6.3

Continuing Example 6.2, suppose each person immediately returns to the
box the hat that he or she drew. What is the expected value and variance

of V,,, the number of matches?

08 _1 Yates Chap. 6 11



Example 6.3 So
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In this case the indicator random variables X; are iid because each person
draws from the same bin containing all » hats. The number of matches
V, = X1+ ---+ X, is the sum of » iid random variables. As before, the

expected value of V,, is
E[V,] =nE[X;] = 1.

In this case, the variance of V,, equals the sum of the variances,

1 1 1
Var[V,] = n Var[X;] =n (— — —2) =1—--.
n n n

08 _1 Yates Chap. 6 12



Transformations of Random Variable and
Random Vector

1. Characteristic Functions
2. Moment Generating Functions

3. Probability Generating Functions

08 1 Yates Chap. 6
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1. Characteristic Functions

The characteristic function of a random variable X is defined by

O, (w) = E{} = j_“’ fo(x) " dx
® , (w) may be viewed as the Fourier transform of the pdf £, (x)

(with a reversal in the sign of the exponent).

In the case, using the reverse Fourier transform, we obtain

I e I OR R

08 1 Yates Chap. 6
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Characteristic Function of the Gaussian R.V.

Let
1 v 2/2 2
f(X)Z o (FHx) 207
* \N2mo
By definition

Oy(@) = | fr(x)e" dr
= \/%O_ J_: exp[%ﬁLja) x} dx.

Let x— u, =u, then

D, (w) = \/%Gj: exp[ggz +jou+ jo m] du
_ L pme exp| 25 + jo u] du

Lro o - 20

* OO

1 . B .2 2
—(u— 2 2

e
\N2mo -0 L 20
2 2

1 —(u—jo~o)

exp (j i, o—+o’w’)
051 0TI s

0 2
_[ e 2 du.
—00

15



exp (j u, o—Lc’w?) . e € e ay

D, (o)

exp (j fy ©=30°@").

05 1 Yates Chap. 6
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Characteristic Function for Discrete Random Variable

For a discrete random variable x,
£ = Yp Se-x), p = P(x=x)
b (w) gives1

O ()= ;px (x,)e”™™.

In particular, 1f x, are integer-valued, the characteristic function is then

() = Z p.(K)e™. *)

Eq. (*) 1s the Fourier transform of the sequence p, (k). Note that Eq. (*) 1s

jlo+2rn)k _ _jok j2xk _ _jok

a periodic function of @ with period 27 since e e’"e e

Thus, the following inversion formula allows us to recover the probabilities p, (k)
from ® (w):

(k)= [0, (@ ™ do, k=0,+1+2,- (+)
) 2o ¥

A comparison of Egs. (*) and (**) shows that the p_(k) are

the coefficients of the Fourier series of the periodic function @ _(w). 17



Properties of the Characteristic Function

1st Property:
@ (@) = |E{e7)
< E{ ej‘”}
= E{1}

= 1
@, () < D, (0) = 1.

08 1 Yates Chap. 6



Properties of the Characteristic Function (continued)
2nd property: moment generating property of @, ()

O [ e s
At w=0,
OO — [ xfe) dx = jE(Y)
dw ©
Bx) = - 220

In genereal,

A dl D, (0)
E{X"} = m = (- X e
{ } n ( ]) da)n w=0
If ®, (w) 1s analytic around w =0,
) a)k
D, (w) =) @, (0) —

08_1 P k! 19




Moment Theorem

If the characteristic function @ , (w) of a given random variable x has
a Taylor series expansion which is valid in some interval in @

which contains the origin, then that characteristic function (and hence
the corresponding probability density of probability distribution)

1s uniquely determined by the moments of the given random variable.

08 _1 Yates Chap. 6 20



Section 6.3

Moment Generating Functions

08 1 Yates Chap. 6
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tion 6.1

ini

Def

For a random variable X, the moment generating function (MGF) of X is

= E|eX].

ox(s)

22
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Table 6.1

08_1

See the text.

Yates Chap. 6
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Example (Moment Generating Function of the
Unitary Gaussian)

Suppose X = N(0,1), then

1 = 2 1 = 2
M (V) - evxe—x /de - evx—x /2dx
* 27 L’O 27 "“"o
(From an integral table, we see that J-OO ey = ﬁebz 4a),
o 4
Apply a—L b=v)
V2

2/2 2/2
A2 et 't =e" ",

1
N2

08 1 Yates Chap. 6
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Theorem 6.6

A random variable X with MGF ¢x (s) has nth moment

d"px(s)
dSn s—0

E[X"]|=

08 1 Yates Chap. 6
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The first derivative of ¢x(s) is
M:i(/oo e’* fy (x) dx) :/OO xe** fy (x) dx.
ds ds \J_oo —00

Evaluating this derivative at s = 0 proves the theorem forn = 1.

M :/ xfx (x) dx = E[X].
ds  |s—0 —00
Similarly, the nth derivative of ¢x(s) is
ds™ P

The integral evaluated at s = 0 is the formula in the theorem statement.

08 1 Yates Chap. 6
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Example 6.5 Fr
u § i

Q/Ypom’mncx r. V.
X is anAwith MGF ¢x(s) = A/(A — s). What are the first and second

moments of X? Write a general expression for the nth moment.

08 _1 Yates Chap. 6 27
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Example 6.5 So
p [ | \\\\\\\\\‘\\\\@\

The first moment is the expected value:

dox(s) R 1
ds s:O_ (A —s5)? s:O_ A

The second moment of X is the mean square value:

E[X] =

2

E [XZ] _ m ZA . =

ds? | T O — )3

Proceeding in this way, it should become apparent that the nth moment of
X is

n!
s=0 A

nia

d"ex(s)|
=0 (L —s)ntl

ds”

E|X"]| =

08 _1 Yates Chap. 6 28



Theorem 6.7

The MGF of Y = aX + b is ¢y (s) = e*P¢py (as).

08 1 Yates Chap. 6
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Proof

From the definition of the MGF,

E [es(aX—i—b):| _ est [e(as)X] _ €Sb¢X(ClS).

Py (s)

30

Yates Chap. 6
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3. Probability Generating Function for Discrete R.V.

The probability generating function G, (z) of a nonnegative integer-valued

random variable N is defined by

G,(2) = E|z"]

= ipzv(k) z

Using a derivation similar to that used in the moment property,

we can show that the PMF of N 1s given by

1 d"
— L
ke )

This 1s why G,,(z) 1s called the probability generating function.

pyk) =

08 _1 Yates Chap. 6 31



By taking the first two derivatives of G, (z) and evaluating the result at z = 1,

it 1s possible to find the first two moments of N:

%GN(z)“ = Sl k| = Skp ) = EIN]
and

d’ :

7O = > py (k) k(ke=1) 272

. ik(k—l) (k)

= E[N(N-1)] = E[N’]-E[N]
VAR [N] = E[N*]-{ E[N]}’
= Gy() + G,() - [Gy(H T

08 _1 Yates Chap. 6 32



Example ( PGF for Poisson R.V.)

08_1

G,(z) = g Z—! e z"
_ ey @?)
= k!
S o o%E = D)
Gy(z) = ae” 1)
Gy(z) = a’ e

E[N] = Gy(1) = «
VAR[N] = a’+a-a’ =«

Yates Chap. 6

33



Section 6.4

MGF of the Sum of Independent
Random Variables

08 1 Yates Chap. 6
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Theorem 6.8

For a set of independent random variables Xy, ..., X,, the moment gener-
ating functionof W = X| +--- 4+ X, is

dw(s) = dx,($)Px,(s) - dx,(5).
When X, ..., X, are iid, each with MGF ¢x.(s) = ¢x(s),

ow(s) = [px(s)]".

Similarly, the following hold:
D, (@)= E{e/* 50 = Ele) Ele = [0 ()]
Gy (2)=E{Z" = E{z""" "y = E{z" ) E{z27} = G, (2) -Gy (2) =[G (2)]".

08 1 Yates Chap. 6 35
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From the definition of the MGF,
¢W(S) — E |:eS(X1—|——|—Xn):| — E [eleest L. eSXn:| .

Here, we have the expected value of a product of functions of indepen-
dent random variables. Theorem 5.9 states that this expected value is the
product of the individual expected values:

E[g1(X1)gr(Xp)---gn(Xp)] = E[g1(XD]E[g2(X2)]--- E[gn(Xn)].

By Equation (6.38) with g;(X;) = ¢*%i, the expected value of the product is

pw(s) = E|eX1| E[eX2] . B [eX0] = g, (5)px, () - 8%, (5).
When X, ..., X, are iid, ¢x,(s) = ¢x(s) and thus ¢w (s) = (@w(s))".

08 1 Yates Chap. 6 36



Theorem 6.9

If Ky, ..., K, are independent Poisson random variables, W = K{+---+ K,
Is a Poisson random variable.

08 1 Yates Chap. 6 37
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We adopt the notation E[K;] = «; and note in Table 6.1 that K; has MGF
K, (s) = %€= By Theorem 6.8,

dw (s) = 1@ =) (e’ =1)  an(@=1) _ (ar+-tap)(e’=1) _ (ar)(e’—1)

where a7y = oy + --- + a,. Examining Table 6.1, we observe that ¢y (s)
iIs the moment generating function of the Poisson (a7) random variable.
Therefore,

afe ¥ /w! w=0,1,...
— T s Loy ’
Pw (w) = { 0 otherwise.

08 1 Yates Chap. 6 38



Theorem 6.10

The sum of n independent Gaussian random variables W = X| + --- + X,
is a Gaussian random variable.

08 1 Yates Chap. 6 39
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For convenience, let u; = E[X;] and o? = Var[X;].

Since the X; are
independent, we know that

Pw(s) = @x,(8)Px,(s) - - - dx,(s)

2.2 2o 2.2
es,ul—i—als /ZeS/,L2—|—02s /2 oS0y /2

_ St ) H (o o) /2

From Equation (6.51), we observe that ¢w(s) is the moment generating

function of a Gaussian random variable with expected value u; + - -

and variance o7 + - - - + o7

* T+ Un

08 1 Yates Chap. 6 40



Theorem 6.11

If Xq,..., X, areiid exponential (1) random variables, then W = X{+---+
X, has the Erlang PDF

Anwn—le—)\w

_ n—1)!
Jw (w) { 0

w > 0,

otherwise.

08 _1 Yates Chap. 6 41



Proof: The

In Table 6.1 we observe that each X; has MGF ¢x(s) = A/(A — 5). By
Theorem 6.8, W has MGF

Ppw(s) = (m) .

Returning to Table 6.1, we see that W has the MGF of an Erlang (n, 1)
random variable.

08 _1 Yates Chap. 6 42



Quiz 6.4(A)

Let K¢, K», ..., K;; be iid discrete uniform random variables with PMF
[ 1 k=1,2,...,n,
P (k) = { 0  otherwise.

Find the MGF of J = K| + --- + Ky,.

08 1 Yates Chap. 6
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Each K; has MGF

es_|_625_|_.”_|_ens_es(1_ens)

¢k (s) = E [eSKi] —

n (1l —e)

Since the sequence of K; is independent, Theorem 6.8 says the MGF of J

IS

¢y(s) = (P ()™ =

08_1

ms(l _ ens)m

nm(1 — eS)m

Yates Chap. 6 a4



Section 6.5

Random Sums of Independent
Random Variables

08 1 Yates Chap. 6
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Theorem 6.12

Let {X, X», ...} be a collection of iid random variables, each with MGF
ox(s), and let N be a nonnegative integer-valued random variable that is
independent of {X;, X»,...}. The random sum R = X| + --- + Xy has
moment generating function

PR(s) = N (Ingx(s)).

08 _1 Yates Chap. 6 46
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To find ¢r(s) = E[e*K], we first find the conditional expected value E[e*R|N = n]. Because
this expected value is a function of #n, it is a random variable. Theorem 4.26 states that
¢r(s) is the expected value, with respect to N, of E[e*R|N = n]:

0, 0] o0
¢r(s) =Y E[e*IN=n]Py(n) =) E[XT XN =n]Py®).
n=0 n=0
Because the X; are independent of N,
E [es'(X1+"'+XN)|N — n] — F [eS(XH‘”"l-Xn)] — F [eSW] — ¢W(S)

In Equation (6.58), W = X;+---+ X,. From Theorem 6.8, we know that ¢w(s) = [dx(s)]",
implying

$r(s) =Y [px()]" Py (n).

n=0
We observe that we can write [¢x(s)]* = [e"?© ] = lnéx®ln This implies

pr(s) =) POl py (n). serele M GE
=0

Recognizing that this sum has the same form as the sum in Equation (6.27), we infer that

the sum is ¢y (s) evaluated at s = In¢x(s). Therefore, ¢pr(s) = py(Indx(s)).
08 1 Yates Chap. 6 47



An Alternative Using the Characteristic Function
and the Probability Generating Function

Find the characteristic function of §,, defined by
N

Sy=>.X,

k=1
where

N, X, 's = random variables ( AJ and X, & W”Zfﬁnfé"#‘)
X,'s=udr.v.s.
(Solution)
E{e" [N =n}= E{" ) [0 ()]
or
E{™ [N} =[D, ()],
The characteristic function of S, 1s given by

D (@) =E{E{’™ |N}} = E{[® (0)]"} = E{Z"} |,y (1= Gy (D ().

08 _1 Yates Chap. 6 48



Example (An Alternative to Quiz 6.5)

N = the number of jobs submitted to a computer in an hour;
a geometic random variable with parameter p.

X = the job execution times; independent exponentially distributed random variables
with mean 1/ a.

Find the PDF for the sum of the execution times of the jobs submitted in an hour

R=X+-+X,.
(Solution 1 Using MGF)
A pe’
§)=—, §) = :
b= B

From Theorem 6.12, R has MGF

0(s) = @y (Ingy (5)) = poy(s)  pA

I-(1-p)gy(s) pA-s’

The corresponding PDF is
(pl)e ™ r=>0,
Jr(r)= :
0 otherwise.

08 1 Yates Chap. 6

49



(Solution 2 Using CF and PGF)

CDX(CO):L’ Gy(z)= 2=

A—jo 1-(1-p)z
From Theorem 6.12, R has MGF

po(w) pA

D,(5)=G, ((D)((a))) =

The corresponding PDF is
(pA)e ™ r=>0,

0 otherwise.

fR(V)={

Exercise: Repeat the problem for R= X, + X, +---+ X .

08 1 Yates Chap. 6
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Example 6.9

The number of pages N in a fax transmission has a geometric PMF with
expected value 1/g = 4. The number of bits K in a fax page also has a
geometric distribution with expected value 1/p = 10° bits, independent of
the number of bits in any other page and independent of the number of
pages. Find the MGF and the PMF of B, the total number of bits in a fax
transmission.

08 _1 Yates Chap. 6 51
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Example 6.9 Soli
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When the ith page has K; bits, the total number of bits is the random sum B = K1 +--- +
Ky. Thus ¢p(s) = ¢n(In g (s)). From Table 6.1,

B ge’ pe

PN =TT = e YT pe

To calculate ¢p(s), we substitute In ¢k (s) for every occurrence of s in ¢x(s). Equivalently,
we can substitute ¢k (s) for every occurrence of e* in ¢ (s). This substitution yields

__pe |

I \T-—pye B pge’
11— - s
1 —(1— q)(1 e p)e> (1 - pg)e

By comparing ¢x(s) and ¢p(s), we see that B has the MGF of a geometric (pg = 2.5 x
10~>) random variable with expected value 1/(pg) = 400,000 bits. Therefore, B has the

geometric PMF

¢p(s) =

B pqr(l—pq)b_1 b=1,2,...,
Pp (b) = { 0 otherwise,

08 _1 Yates Chap. 6 52



Theorem 6.13

Fandov~ 5w
For therf iid random variables R = X1 +--- + Xy,

E[R] = E[N] E[X], Var[R] = E [N] Var[X] 4 Var[N] (E [X])z.

08 1 Yates Chap. 6
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By the chain rule for derivatives,

/ / ¢/ ( )
Br(s) = Py () X (j).
Since ¢x(0) = 1, ¢}, (0) = E[N], and ¢%(0) = E[X], evaluating the equation at s = 0 yields
) N ()
E|R] = 0) = 0 = E[N]E[X].
[R] = ¢r(0) ¢N()¢X(O) [N] E [X]
For the second derivative of ¢x(s), we have
v S\, ox ()P (s) — [¢x ()]
dr(s) = oy (InPx(s)) (¢X(S)> + ¢y Un@x(s)) Dr )T .

The value of this derivative at s =0 is
E[R?] = E[N?] 1+ EINY(E[X?] — 113).

Subtracting (E[R])?> = (uywmx)? from both sides of this equation completes the proof.

08 1 Yates Chap. 6 54
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Example 6.10

Let X, X5 ... be a sequence of independent Gaussian (100,10) random
variables. If K is a Poisson (1) random variable independent of X, X» .. .,

find the expected value and variance of R = X + - - - + X.

08 1 Yates Chap. 6
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Example 6.10 Solu

The PDF and MGF of R are complicated. However, Theorem 6.13 sim-
plifies the calculation of the expected value and the variance. From Ap-
pendix A, we observe that a Poisson (1) random variable also has variance
1. Thus

E[R] = E[X]E[K] = 100,
and
Var[R] = E [K]Var[X] + Var[K](E [X])? = 100 + (100)% = 10, 100.

We see that most of the variance is contributed by the randomness in K.
This is true because K is very likely to take on the values 0 and 1, and
those two choices dramatically affect the sum.

08 1 Yates Chap. 6 56



Section 6.6

Central Limit Theorem

08 1 Yates Chap. 6
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Figure 6.1

04 04 0.2
= = =
= 02 | | < 02 I" o Ol
e Na N
0 0 0
0 5 0 5 10 0 10 20
X X X
n=>5 n=10 n =20

The PMF of the X, the number of heads in n coin flips for n = 5, 10, 20. As
n increases, the PMF more closely resembles a bell-shaped curve.

08 1 Yates Chap. 6 58



Figure 6.2

1.5

057

057

(c) n = 3, (dyn=14

The PDF of W,, the sum of n uniform (0, 1) random variables, and the

corresponding central limit theorem approximation for n=1,2,3,4. The solid line
denotes the PDF f, (w) while the dotted line denotes the Gaussian approximation.

08 1 Yates Chap. 6 59



Central Limit Theorem

Let's revisit the moment generating function which was defined

4. (t)=Ele j £ (x)e"dx
Suppose x = N (O 1), then

© 2
—x“/2
etx X dx

1
0= 751 Nl
\/; b [(4a®)

(From an integral table, we see j Ce g N1, . Leta=—,b=t.)
. g D

t2

2z e =e2, (*)

2
ee’”dx—

1
- N2

08 1 Yates Chap. 6 60



Theorem

Let X,, X,, --- be a sequence of independent and 1dentically distributed (11d)
random variables each having mean 7 and variances o”.
Then the distribution of
X+ X, + -+ X — nn
on

tends to the standard normal as n — oo.

. X+X,+ - +X - 1 ¢a o
Thatls,P{ S I A nnﬁa}z—j e dx as n — o,

on

08 _1 Yates Chap. 6 61



Proof
Let 7 =0, o° = 1 for convenience. The moment generating function of X, / Jn

1s given by

b, s (O=E { exp {%}} = ¢y (ﬁj

The moment generating function of ZX l. / Jn s given by
i=1

.
g’fiw(”{y& (TH '

The Taylor series of ¢, (¢) around t=0 is given by

be(t) = ELe 1 =9,(0)+4, (0)1+4, (0)2*)2+0()
t’E{X")

= 1+t E{X} + +0(t")

2
1+ so0m). (E{X}=0,EX*j=1)
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Applied was the moment generating property:

6, (0)=4 E€ )

by (0) =E{X?}.
Therefore,
t t* )
¢X(ﬁj_l+z+0(t )

2

O {1+t—+0(t2)}

=E{ X&'}

t=0

t=0

2n

Referring to Eq. (*), we need to show

i=

= E{X)

2 n
{1+;—+O(t2)} S’ as noow.
n
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According to L'Hospital rule

log (1+x):x+0(x2) , x<<lI.

1
——1
lo 1+x )—
(Note that hm{ g ( x) x}: Iim ldx =0.)
x—0 X x—0 1
Now,
2 2\ " 2 2\ |
log 1+t—+0 L =n log 1+t—+0 L
2n n) 2n n
£ £ £ 2 £
= n| —+0|— |+ 0| —+0| — = —+n0
2n n 2n n 2
08 _1 Yates Chap. 6




Applying that

2 O(t*/n
nOo t—]ztz (2/)—>O as n—> oo
n t/n
2 O(t*/2n
nOt—zt2 (2/ )—>O as n— oo
2n t/2n
we have
t? A\ 2
log | 1+—+0| — —>— as n-— o,
2n n 2
That 1s,

1 2 | )
{1+—+O(—j } 5eé? as n—oow,
2n n

For arbitrary 7 and o, define the standardized r.v.
X' =(X,-n) /o.
Then, we can obtain the same results since £{ X, } =0 and var{ X."} =1.
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Section 6.7

Applications of the Central Limit
Theorem
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A compact disc (CD) contains digitized samples of an acoustic waveform.
In a CD player with a “one bit digital to analog converter,” each digital sam-
ple is represented to an accuracy of £0.5 mV. The CD player “oversamples”
the waveform by making eight independent measurements corresponding
to each sample. The CD player obtains a waveform sample by calculat-
ing the average (sample mean) of the eight measurements. What is the
probability that the error in the waveform sample is greater than 0.1 mV?
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The measurements X, X, ..., Xg all have a uniform distribution between v — 0.5 mV and
v + 0.5 mV, where v mV is the exact value of the waveform sample. The compact disk
player produces the output U = Wg/8, where

8
Wy = Z X;.
i=1

To find P[|U — v| > 0.1] exactly, we would have to find an exact probability model for Wy,
either by computing an eightfold convolution of the uniform PDF of X; or by using the
moment generating function. Either way, the process is extremely complex. Alternatively,
we can use the central limit theorem to model Wy as a Gaussian random variable with
E[Wg] = 8ux = 8v mV and variance Var[Wg] = 8 Var[X] = 8/12. Therefore, U is ap-
proximately Gaussian with E[U] = E[Wg]/8 = v and variance Var[Wg]/64 = 1/96. Finally,
the error, U — v in the output waveform sample is approximately Gaussian with expected
value 0 and variance 1/96. It follows that

PIU—v| > 0.1] = 2[1 _® (O.l/\/1/96>] — 0.3272.
l’ok Q &&Msslm )(

PlacyX &) = 4>(-—’”—) & (=
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Example 6.14

A modem transmits one million bits. Each bit is 0 or 1 independently with
equal probability. Estimate the probability of at least 502,000 ones.
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Let X; be the value of bit i (either 0 or 1). The number of ones in one million
bits is W = Z 1X Because X; is a Bernoulli (0.5) random variable,
E[X;] = 0.5 and Var[X;] = 0.25 for all i. Note that E[W] = 10°E[X;] =
500,000 and Var[W] = 10° Var[X;] = 250,000. Therefore, o = 500. By the
central limit theorem approximation,

P[W >502,000] =1— P[W < 502,000]
1 @ (502,000 — 500,000

500
Using Table 3.1, we observe that 1 — ®(4) = Q(4) = 3.17 x 107>.

):1-@@)
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tion 6.3

ini

Def

om vari
binomial (n, p) rana
1

Fora

) .

K1 = 0.5 —np
vnp(l = p)

)<l

vnp(l = p)

ka +0.5 —np

d!

&

Plkp = K =il

Assumed are:

(1) nislarge,

(2) npg>>1,ie,p=~q,

npq.
|K np| is the order of
(3) K-

71
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Example 6.16

Let K be a binomial (n = 20, p = 0.4) random variable. What is P[K = 8]7?

72
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Example 6.16 Soluti

Since E[K] = np = 8 and Var[K] = np(1 — p) = 4.8, the central limit the-
orem approximation to K is a Gaussian random variable X with E[X] = 8
and Var[ X] = 4.8. Because X is a continuous random variable, P[X = 8] =
0, a useless approximationto P[K = 8]. On the other hand, the De Moivre—
Laplace formula produces

PI[8<K <8~ P[1.5<X <8.5]

—c1>( 0-5 ) @(_0'5) — 0.1803
- \V/48 Jag) '
The exact value is (%) (0.4)3(1 — 0.4)12 = 0.1797.
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Quiz 6.7

Telephone calls can be classified as voice (V) if someone is speaking or

data (D) if there is a modem or fax transmission. Based on a lot of obser-

vations taken by the telephone company, we have the following probability

model: P[V] = 3/4, P[D] = 1/4. Data calls and voice calls occur indepen-

dently of one another. The random variable K, is the number of voice calls

In a collection of n phone calls.

(1) Whatis E[K4g], the expected number of voice calls in a set of 48 calls?

(2) What is og,,, the standard deviation of the number of voice calls in a
set of 48 calls?

(3) Use the central limit theorem to estimate P[30 < K4g < 42], the prob-
ability of between 30 and 42 voice calls in a set of 48 calls.

(4) Use the De Moivre—Laplace formula to estimate P[30 < K43 < 42].
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QU'Z 6.7 Solut

Random variable K, has a binomial distribution for » trials and success probability P[V] =
3/4.

(1) The expected number of voice calls out of 48 calls is E[Kg] = 48P[V ] = 36.

(2) The variance of K43 is

///
//

Var[Kag] = 48P [V](1 — P[V]) = 48(3/4)(1/4) = 9

Thus Kag has standard deviation og,, = 3.
(3) Using the ordinary central limit theorem and Table 3.1 yields

42 — 36 30 — 36
P[3O§K48§42]%<I>( . )-cp( . ):cp(z)—cp(—z)

Recalling that ®(—x) =1 — ®(x), we have

P30 < K43 <42] = 20(2) — 1 =0.9545

(4) Since K43 is a discrete random variable, we can use the De Moivre-Laplace approx-
imation to estimate

3 3
= 2P (2.16666) — 1 = 0.9687

42 +0.5 - 36 30—-0.5—-36
P[30§K48§42]%CD( * )—CI)( )
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Section 6.8

The Chernoff Bound
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Theorem 6.15

For an arbitrary random variable X and a constant c,

ohx(s).

P[X >c]<mine

s>0
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In terms of the unit step function, u(x), we observe that

o0 o0
P[X >c]= / fx (x) dx = / u(x —c) fx (x) dx.
c —00
Forall s > 0, u(x — ¢) < 5= This implies

0. @

eSO fx (x) dx = e3¢ f e fx (x) dx = e Sy (s).

— 00

0.¢)

szdsf

—00
This inequality is true for any s > 0. Hence the upper bound must hold
when we choose s to minimize e *“¢x (s).
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If the height X, measured in feet, of a randomly chosen adult is a Gaussian
(5.5, 1) random variable, use the Chernoff bound to find an upper bound

on P[X > 11].
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InTable 6.1 the MGF of Xis o>/ T /

¢X(S)/\: e(lls—l—sz)/2.
Thus the Chernoff bound is
P[X > 11] < min e—lls€(11s+s2)/2 — min e(sz—lls)/2.
- >0 >0
To find the minimizing s, it is sufficient to choose s to minimize h(s) =
s2 — 11s. Setting the derivative dh(s)/ds = 2s — 11 = 0 yields s = 5.5.
Applying s = 5.5 to the bound yields
PIX > 11] < ' 119/2 (= e=G2 _ 2751077,
§=D.
Based on our model for adult heights, the actual probability (not shown in

Table 3.2) is Q(11 — 5.5) = 1.90 x 10~8.
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Quiz 6.8

In a subway station, there are exactly enough customers on the platform
to fill three trains. The arrival time of the nth train is X{ + --- + X, where
X1, Xy, ... are iild exponential random variables with E[X;] = 2 minutes.
Let W equal the time required to serve the waiting customers. For P[W > 20],
the probability W is over twenty minutes,

(1) Use the central limit theorem to find an estimate.

(2) Use the Chernoff bound to find an upper bound.

(3) Use Theorem 3.11 for an exact calculation.
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Quiz 6.8 Sol

The train interarrival times X;, X5, X3 are iid exponential (1) random variables. The arrival
time of the third train is

////////
s
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vy
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W=X;+ X+ Xs.

In Theorem 6.11, we found that the sum of three iid exponential (1) random variables is
an Erlang (n = 3, A) random variable. From Appendix A, we find that W has expected

value and variance
E[W]=3/A=6  Var[W]=3/2?=12
(1) By the Central Limit Theorem,
W—-6 20—-6
L@>\@
(2) To use the Chernoff bound, we note that the MGF of W is

by = () =
LA Py (1 =2s)3
The Chernoff bound states that

P[W>20]=P } ~ Q(7/3/3) =2.66 x 1073

e—20s
0 (1—2s)3

To minimize h(s) = e 2% /(1 — 2s)3, we set the derivative of i(s) to zero: [Continued]
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dh(s)  —20(1 —2s)%e 2% + 6e 2% (1 — 25)*

= =0
ds (1 —2s)6
This implies 20(1 — 2s) = 6 or s = 7/20. Applying s = 7/20 into the Chernoff bound
yields
—20s 3 5
P[W>20]< ——— = (10/3)°e” " = 0.0338
(1 —2s) §=7/20 /

(4) Theorem 3.11 says that for any w > 0, the CDF of the Erlang (), 3) random variable

W satisfies

2
(Aw)ke—kw
Fy(w)=1-)" o
k=0

Equivalently, for A = 1/2 and w = 20,
P[W > 20]=1-— Fw (20)

10  10?
— g~ 10 (1 + 7) —6le 'Y = 0.0028

Although the Chernoff bound is relatively weak in that it overestimates the probability
by roughly a factor of 12, it is a valid bound. By contrast, the Central Limit Theorem

approximation grossly underestimates the true probability.
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