Chapter 4. Plasma Heating

Reading assignment: Stacey Ch.5, Gross 6.5

1. Ohmic heating

= Intrinsic primary heating in tokamaks (RFP, stellarators ...) due to Joulian dissipation generated by currents through resistive plasma [Thermalization of kinetic energies of energetic electrons (accelerated by applied E) via Coulomb collision with plasma ions]

A. Heating power density

$$P_{\circ} = \mathbf{j} \cdot \mathbf{E} = \eta \, \mathbf{j}^2 \quad [W/m^2] \tag{1}$$

where

$$\eta = \frac{m_{e^{\vee}e^{i}}}{ne^{2}} \approx 2 \times 10^{-9} Z_{eff} \ln \Lambda T_{e}^{-3/2} \left[\Omega - m\right]$$
 (2)

$$j = \frac{I}{\pi a^2} = \frac{2B_{\odot}(a)}{a\mu_{o}} \quad [A/m^2]$$
 (3)

Safety factor
$$q(a) = aB_{\odot}^{o}/R_{o}B_{\odot}(a)$$
 (4)

(2)-(4) in (1):

$$P_{\odot} = 7 \times 10^{-2} \left(\frac{Z_{eff}}{T_e^{3/2} (keV)} \right) \left(\frac{1}{q(a)} \right)^2 \left(\frac{B_{\phi}^o}{R_o} \right)^2 \qquad [MW/m^3] \quad (5)$$

Notes)

 $P_{\scriptscriptstyle \square}$ \(\sqrt{\) as \(. Z_{\it eff} \setminus \) but limited by radiation losses

. $T_e \downarrow$ intrinsically limited by n and P_{br}

. $q(a) \downarrow$ limited by instabilities

. $(\frac{B_{\scriptscriptstyle \varphi}^o}{R_o})$ \(\frac{1}{R_o}\) size and field

⇒ compact high-field tokamak

B. Maximum temperature

Assume $P_{br} \ll P_{in} \equiv \frac{3}{2} nkT/\tau_E$

 $P_{tr} \equiv \, 3nk\,T/\,2\tau_E$: power loss due to heat conduction and convection

then
$$\frac{dP_{in}}{dt} = P_{\Omega} - P_{tr}$$

 $P_{\odot}\downarrow$, $P_{tr}\uparrow$ as $T\uparrow$: intrinsic heating limitation

In steady state: $P_{\odot} = P_{tr} \rightarrow T = T_{max}$

When $\frac{dP_{in}}{dt} = 0$

$$P_{\odot} = P_{tr} \quad \Rightarrow \quad n j^2 = \frac{3nkT}{2\tau_E} \tag{6}$$

Alcator scaling law:

$$\tau_E = 5 \times 10^{-21} na^2 \tag{7}$$

(5), (7) in (6):

$$T_{e\text{max}}^{5/2}(keV) = 1.46 \frac{Z_{eff}}{a(a)^2} \left(\frac{B_{\phi}^o}{R_o/a}\right)^2$$
 (8)

Notes)

i) For conventional tokamak

$$B_{\phi}^{o} \approx 5T$$
, $\frac{R_{o}}{a} \approx 3-5$, $q(a) = 2-4$
 $\Rightarrow T_{emax} \approx \sim 100 \text{ eV} \sim 1 \text{ keV}$

ii) For heating up to $T_{ig} \approx 6 \sim 8 \text{ keV}$

$$q(a) = 2$$
, $Z_{eff} = 2$, $R_o/a \ge 2$
 $\Rightarrow B_{\phi}^o \approx 20 - 30 T$

⇒ enormorous magnetic stress and currents
 : T_{ig} is not achievable only by resistive heating

iii) Ohmic heating = Primary heating due to lower cost than other auxiliary heatings

2. NBI heating

= Supplemental heating by energy transfer of neutral beam to the plasma through collisions

Gross³⁾ Fig. 6.5
Schematic illustration of a neutral-beam injection system

A. Ion source

1) Requirements

- ① Large-area uniform quiescent flux of high-current [$\geq O(100 A)$, $200-500 \ mA/cm^2$] ions
- ② Large atomic ion fraction (D^+ , D^-) > 75 %
 - \Rightarrow adequate penetration
- ③ Low ion temperature (<< 1 eV) to minimize irreducible divergence of extracted ion beams due to random thermal motion of ions

(thermonucl. + supratherm.)

: тст

(energy transfer

by Coul. colls.)

2) Ion generation

① Positive ion generation by elec. discharge

$$D_2 + e \rightarrow D^+ + D + e + e$$

 $D_2 + e \rightarrow D_2^+ + e + e$
 $D_2 + D_2^+ \rightarrow D_3^+ + D$

2 Negative ion generation

$$D + e \rightarrow D^- + h_0$$
: Radiative attachment in high density gas (Binding energy = 0.75 eV)
$$D_2^* + e \rightarrow D^- + D$$
: Dissociative electron attach. by elec. disch.
$$\uparrow \qquad \sim eV$$
 (Volume Production)

highly excited vibrational state

$$D^+$$
 + cathode surface(+Cs) \rightarrow D^- Surface Production by elec. disch. D^o + cathode surface(+Cs) \rightarrow $D^ \rightarrow$ 100 eV range

$$D^+ + M^o \to D^o + M^+$$
 (elect. attach.) Double electron capture $D^o + M^o \to D^- + M^+$ (elect. attach.) D^+ from low energy ion source alkali or alkali-earth metal vapor (Cs, Rb, Na, Sr, Mg)

3) Type of ion sources

- ① DuoPIGatron (ORNL) = Duoplasmatron + Penning Ionization Gauge
- ② Field-free sources (LBL type): arc disch. w/o B
- ③ Magnetic bucket source (Culham type)

B. Beam forming system

- = Ion extraction + acceleration + min. beam divergence ($\leq 1^{\circ}$)
- ⇒ multiple-aperture beam forming structures with accel-decel electrodes

C. Neutralizer (D_2 gas cell $\sim 10^{-3}$ torr)

[
$$D^-$$
, D_j^+ (j=1,2,3)] + $D_2^ \Rightarrow$ (Dissociation)
$$\Rightarrow D^0 : \text{neutralization by cx}$$

Neutralization efficiency:

 $n_i \equiv \text{(outgoing neutral beam power) / (entering ion beam power)}$

Gross³⁾ Fig. 6.6 Neutralization efficiency for different beam energies; efficiency equals power in neutral atoms out divided by power in ion beam entering neutralizer cell.

(Notes)
$$n_j \downarrow$$
 as $(\frac{eV_+}{D^+}) \uparrow$ and $j \downarrow$
Highest n_j for D^-

Typical power flow for a 1-MW, 40-keV atomic deuterium injection system:

D. Ion beam dump and Vacuum pumps

1) Beam dump

Deflect by analyzing magnet

Minimize reionization losses

Prevent local power dump at undesirable place ($\sim kW/m^2$)

Possible application to direct evergy conversion

2) Pumping

Minimize reioninzaton losses

Prevent cold neutral particles from flowing into reactor plasma

Liquid He cryopumps ($\sim 10^6 l/s$ for $\sim MW$ system)

E. Energy deposition in a plasma by NBI

1) Atomic and molecular processes of NB in a plasma

- \Rightarrow birth of energetic ions
- ① charge exchange

$$D^o + D^+ - (\sigma_x) \rightarrow D^+ + D$$

$$D_2^o + D^+ - (\sigma_x) \rightarrow D_2^+ + D$$

2 electron ionization

$$D^o + e - (\sigma_e) \rightarrow D^+ + e + e$$

3 deuterium ionization

$$D^o + D^+ - (\sigma_i) \rightarrow D^+ + D^+ + e$$

Notes) .
$$E_{D^o} \leq 80 \text{ keV}$$
: CX is domiant

$$.E_{D^o} \ge 80 \text{ keV}$$
: Deut. ioniz. is dominant

$$.\sigma_{DT} \approx 10^{-24} cm^2$$
 at $T_e \approx 40 \text{ keV}$

2) Attenuation of neutral beam

$$dn_B = -\sigma nn_B ds \rightarrow \text{energetic ion birth distribution}$$

 $\Rightarrow n_B(s) = n_B(0) \exp \left\{ -\int \sigma(s) n(s) ds \right\}$

For a uniform plasma

$$n_B = n_B(0) e^{-\sigma ns} = n_B(0) e^{-s/\lambda}$$
 (9)

where $\lambda \equiv \frac{1}{GR}$ penetration(attenuation) length

3) Minium NB energy for effective plasma heating

General criterion for adequate penetration

$$\lambda \geq a/4 \tag{10}$$

where
$$\lambda \equiv \frac{1}{\sigma n_o z_{eff}^{\gamma}}$$
 (n_o : central density) (11)

o from fitting of cross section curves in (11):

$$\lambda(m) = \frac{5.5 \times 10^{17} E_B(keV)}{A(amu) n_o(m^{-3}) Z_{eff}^{\chi}}$$
(12)

(12) in (10):

$$E_B \ge 4.5 \times 10^{-19} A \, n_o a \, Z_{eff}^{v} \quad (keV) \tag{13}$$

$$Note)$$

$$n\tau_E = 5 \times 10^{-21} n^2 a^2$$
 : alcator scaling in (13)

$$n\tau_E = 10^{20}$$
 : Lawson criterion

$$(E_B)_{\min} \approx 63.6 A Z_{eff}^{\text{x}}$$
 (keV)
 $\approx 100 \text{ keV}$

4) Orbits of energetic particles

. Coinjection (υ // j_{ϕ})

$$ev \times B_{\Theta} = -\hat{r}$$
 direction force

⇒ outward shift of orbit center

. Counterinjection ($v / / j_{\phi}$)

$$ev \times B_{\Theta} = +\hat{r}$$
 direction force

⇒ inward shift

 \Rightarrow bad drift orbits \Rightarrow energetic ion loss to wall/limiters Best injection angle for maximum penetration and minimum orbital excursion = $10 \sim 20^{\circ}$ off perpendicular in coinjection direction

F. Feathres of NBI

- ① Applicable to both open and closed systems
- 2 Heating, current drive, and refueling
- ③ In two-component torus (TCT)
 - . Suprathermal fusion
 - . Thermonuclear fusion \Rightarrow Lower T_{ig} and Lawson criterion

G. NBI experiments

(cf) Stacey; Table 5.2.1, Table 5.2.2

Ignition in power tokamak

$$\Rightarrow$$
 50 MJ, \geq 75 MW, 5 ~ 10 sec, 200 keV

Recent NBI experiments in JT-60U:

350 keV, 13.5 A, 5.4 MW H

400 18.4 6.4 D

500 10 Design values

Planned in ITER:

 $0.5 \; MeV \; \text{(heating)}, \quad 1-2 \; MeV \; \text{(CD)}$

Negative-ion based D° : 1 MeV, 40 A \rightarrow 50 MW with 3 units

3. RF (Radio Frequency) heating

A. RF (or MW) heating setup

1) Wave generation

Ocsillator, Tube, Klystron, Gyrotron (elec. efficiency 40 ~90 %)

2) Transmission system

Coaxial line (100 kHz - 100 MHz)

Wave guide (100 *MHz* - 200 *GHz*) $(\sim 90 \%)$

3) Coupling system (Launcher)

Antenna (100 kHz - 100 MHz)

Horn (100 MHz - 200 GHz)

4) Launching of wave into plasma

Pumping the wave into plasma through a coupling system

5) Propagation of externally-launched wave into plasma

Accessibility of resonant region

Penetration of wave into inhomogeneous plasma $\omega_{cutoff} < \omega < \omega_{res}$

- 6) Coupling of external wave to some natural plasma modes by resonance or mode conversion
- 7) Collisional of collisionless absorption of wave energy in plasma ions and electrons ⇒ heating

Collisional damping: Coulomb collisions

(e.g., Joulian heating)

Collsionless damping: Landau(n=0) and cyclotron dampings(n=1,2, ...)

$$(\omega - k_{\parallel} v_{\parallel} \pm n\omega_{c} = 0)$$

Transit-time damping

$$(F_{\parallel} = - \mu \nabla_{\parallel} B, \quad t_{\omega} \approx t_{t})$$

B. Natural mode frequencies $(H^+, 10^{20} m^{-3}, 5 T)$

$$f_{pe} = \omega_{pe}/2\pi = \sqrt{\frac{ne^2}{\varepsilon_o m}}/2\pi \approx 9\sqrt{n} \approx 90 \text{ GHz}$$

$$f_{pi} = \omega_{pi}/2\pi \approx 0.2\sqrt{\frac{n}{A}} \approx 2 \text{ GHz}$$

$$f_{ce} = \Omega_e/2\pi = \frac{eB}{m}/2\pi \approx 28B \approx 140 \text{ GHz}$$

$$f_{ci} = \Omega_i/2\pi \approx 15\frac{B}{A} \approx 75 \text{ MHz}$$

$$f_{LH} = \omega_{LH}/2\pi = \frac{\omega_{pi}\Omega_e}{\sqrt{\omega_{pe}^2 + \Omega_e^2}}/2\pi \approx \omega_{pi}/2\pi \approx 1.6 \text{ GHz}$$

$$f_{UH} = \omega_{UH}/2\pi = \sqrt{\omega_{pe}^2 + \Omega_e^2}/2\pi \approx 170 \text{ GHz}$$

$$f_{Alf} = \omega_{Alf}/2\pi = k_1 v_A/2\pi = \frac{1}{\lambda_1} \frac{B}{\sqrt{\mu_o \rho}} \approx 1 \text{ MHz}$$

C. Possible wave heating regimes

Туре	Freq.	Source	Transmission	Launcher	Absorption
ТТМР	0.1-0.5 <i>MHz</i>	Oscillator (10MW, 90%)	coaxial line	coil anten.	T-T damping, Landau damping(L.D.)
Shear Alfven	~1 <i>MHz</i>	Tubes (10 <i>MW</i> , 90%)	coaxial line	coil anten.	mode conv., eT-T, e-L.D.
Fast Alfven	1-10 <i>MHz</i>	Tubes (10MW, 90%)	coaxial line	coil anten.	cavity resonance, eT-T, e-L.D.
ICRF	25-100 <i>MHz</i>	Tubes (~5 <i>MW</i> , 70%)	coaxial or ridged W.G.	coil anten. or cavity backed aperture anten.	ion-cycl. damp e-L.D., mode conv. (ion Berns.)
LHRH	1-5 <i>GHz</i>	Klystron (2MW, 60%)	W.G.	Phased W.G. array (Grill)	mode conv., i-, e-L.D., ion cycl. damp.
ECRH	50-200 <i>GHz</i>	Gyrotron (1MW, 40%)	W.G.	W.G. array Horn	ele. cycl. damp. mode conv. (e Berns), e-L.D.

D. RF power sources

Notes)

- i) High power with high effic. at low frequencies
- ii) Simple coupling at high frequencies

E. RF heating experiments: (cf) Stacey Table 5.3.2

KSTAR Auxiliary Heating & Current Drive Systems

	Baseline	Upgrade	Remarks
Neutral Beam	8 MW 1 Co	24 MW 2 Co, 1 Ctr	120 keV - 300 sec
ICRF/FWCD	6 MW 1 Launcher	12 MW 2 Launchers	30-80 MHz ~300 sec
LHCD	1.5 MW	4.5 MW	3.7 GHz ~ 300 sec
ECH	0.5 MW		80 GHz ECH Start-up (0.5 sec

Passive stabilizer

Summary of Auxiliary Heating Mechanism

- External Power Production

Transformation of electric power into a form usable for plasma heating

- Conveyance

Transfer and coupling of heating power to the edge of the plasma

- Propagation

Movement of heating power into the plasma

- Absorption

Absorption of the power into a particular species of plasma

Thermalization

Transfer of absorbed energy from particular plasma species to bulk plasma electrons and ions

- Side Effects

Current drive, plasma rotation, fueling, etc.

Comparison of Heating Methods

-		
Method	Power Production Technology	Coupl., Prop., Absorp. in Plasma
Ohmic	Simple (Large transformer)	Magnetic induction Joule heats electrons (hot center)
NBI	Difficult to generate beams	Atomic phys. & Coul. colls.
(70's	Moderate efficiency (>50%)	Easy to analyze
$P_{NBI} \ge 3P_{OH}$		
ICRH	Commercially available	Complicated wave propagation
(80's	High efficiency (>90%)	Difficult coupling (30-100 MHz,
$P_{ICRH} \ge 3P_{OH}$		$\lambda_{vac} < 10 \ m$
LHH	Commercially available	Complicated wave propagation
(70's	Moderate efficiency (>50%)	Moderate coupling (> GHz,
demonstrated)		λ_{vac} < 30 cm)
ECRH	New technology (gyrotrons)	Simple prop. for $\omega > \omega_{pe} > \Omega_{e}$
(80's	Low efficiency (<25%)	(geometrical optics)
CD expts.)	(300 kW, 90 GHz units)	Easy coupling (> 60 GHz,
		λ_{vac} < 3 mm)

(cf) Ohmic: simplest, but limited at high T_e

NBI, ECRH: simple phys., but difficult production technology ICRH, LHH: complecated phys., but established technology

NBI, ICRH: used in present experiments

4. Adiabatic magnetic compression

: Heating by increasing magnetic pressure adiabatically

A. Heating by adiabatic law

Compression time:
$$\tau_{comp} \equiv B / \frac{\partial B}{\partial t} \approx \sim 10^{-4} - 10^{-3} \text{ (} v_{comp} < v_{th} \text{)}$$

If
$$\Omega_i^{-1} < \tau_{comp} < (\tau_{90})_L$$
 and $\tau_{comp} < \tau_m \equiv \mu_o \sigma L^2$,
$$PV^{\gamma} = const$$
 adiabatic reversible (14)

where $y = \frac{(\delta + 2)}{\delta}$

Notes)

i)
$$.\delta = 1$$
 or 2 if $\tau_{comp} < (\tau_{90})_L$
 $.\delta = 3$ if $\tau_{comp} \ge (\tau_{90})_L$

ii) . δ <3 for ions

. $\delta = 3$ for electrons

$$(\tau_{90}^{ee})_L \approx (\tau_{90}^{ei})_L \approx \sqrt{\frac{m_e}{m_i}} (\tau_{90}^{ii})_L \approx \frac{m_e}{m_i} (\tau_{90}^{ie})_L$$

$$P = nkT = nW$$
, $V \propto n^{-1}$ in (14)

$$Wn^{1-\gamma} = Tn^{1-\gamma} = const$$
 (15)

For $\tau_{\it comp} \ll (\tau_{\it 90})_L$: 1-D comp. with W_{\parallel} ($\delta = 1$)

(15)
$$\Rightarrow \frac{W_{\parallel}^{(1)}}{W_{\perp}^{(2)}} = \left(\frac{n^{(2)}}{n^{(1)}}\right)^{1-\gamma}, \qquad W_{\perp}^{(2)} = W_{\perp}^{(1)}$$

For an initial isotropic distribution

$$W_{\parallel}^{(1)} = \frac{\delta}{3} W^{(1)}, \qquad W^{(1)} = W_{\parallel}^{(1)} + W_{\perp}^{(1)}$$

$$\therefore \frac{W^{(2)}}{W^{(1)}} = \frac{W_{\parallel}^{(2)} + W_{\perp}^{(2)}}{W_{\parallel}^{(1)} + W_{\perp}^{(1)}}$$

$$= \frac{\left(\frac{n^{(2)}}{n^{(1)}}\right)^{\gamma - 1} \frac{\delta}{3} W^{(1)} + \frac{3 - \delta}{3} W^{(1)}}{\frac{\delta}{3} W^{(1)} + \frac{3 - \delta}{3} W^{(1)}}$$

$$= \frac{\left(\frac{n^{(1)}}{n^{(2)}}\right)^{\gamma - 1} \delta + 3 - \delta}{3} = \frac{T^{(2)}}{T^{(1)}}$$

$$\Rightarrow T_{1-D}^{(2)} > T_{2-D}^{(2)} > T_{3-D}^{(2)}$$

$$(16)$$

B. Scaling laws for tokamaks ($\delta = 3$, $\gamma = 5/3$)

$$Wn^{-2/3} = Tn^{-2/3} = const (15)^*$$

Magenetic flux conservation

$$a^2B_{\phi} = const$$
: toroidal flux (17)

$$RaB_{\Theta} = const$$
: poloidal flux (18)

$$(17) \quad \Rightarrow \quad B_{\phi} \, \propto \, a^{-2}$$

(18)
$$\Rightarrow$$
 $B_{\theta} \propto a^{-1}R^{-1}$
$$I_{\phi} = \frac{2\pi a}{\mu_{o}} B_{\theta} \propto R^{-1}$$

$$n = \frac{N}{V} = \frac{N}{2\pi R^{\pi}a^{2}} \propto a^{-2}R^{-1}$$

$$(15)^* \Rightarrow T \propto n^{2/3} \propto a^{-4/3}R^{-2/3}$$

$$\beta_p = \frac{nT}{B_{\theta}^2} \approx a^{-4/3}R^{1/3}$$

$$\frac{\beta}{\beta_p} = \frac{B_{\theta}^2}{B_{\phi}^2 + B_{\theta}^2} \propto \left(\frac{B_{\theta}}{B_{\phi}}\right)^2 \propto a^2R^{-2}$$

$$\beta \propto a^2R^{-2}\beta_p \propto a^{2/3}R^{-5/3}$$

C. Compression schemes in tokamak

1) Type A = comp. of a at const. R by $B_{\phi} \uparrow (I_{TF} \uparrow)$

$${f a}
ightarrow c^{-1} a$$
, $R
ightarrow R$ $B_{\phi}
ightarrow c^2 B_{\phi}$ $T
ightarrow c^{4/3} T$

2) Type B = comp. of a and R at $\frac{a}{R}$ =const. by $I_{\phi} \uparrow$ and $B_{v} \uparrow$

3) Type C = comp. of a and R at $\frac{a^2}{R}$ =const. by $B_v \uparrow$, B_{ϕ} =const

$$a \rightarrow c^{-1/2}a, \ R \rightarrow c^{-1}R \qquad \textit{Note}) \ B_{\phi}a^2 = \textit{const}$$

$$B_{\phi} \rightarrow B_{\phi} \ \text{at fixed pt.} \qquad B_{\phi} = B_{\phi}^o R_o/R$$

$$B_{\phi} \rightarrow cB_{\phi} \ \text{at plasma} \qquad \Rightarrow a^2/R = \textit{const}$$

$$I_{\phi} \rightarrow cI_{\phi}, \ T \rightarrow c^{4/3}T \qquad \Rightarrow a \downarrow \textit{as } R \downarrow$$

(automatically)

D. Features

- 1) Can heat to ignition
- 2) No additional sources (NBI or RF)
- 3) Larger tokamak to accomodate compressed plasma
- 4) Difficult to control plasma shape and size
- 5) Technical problem due to high-power pulse operation

5. Fusion a-particle heating

- = Intrinsic self-heating by Coulomb collision of fusion a particles with plasma particles in D-T reactions
- A. Charged particle source

 $R_{DT}(r) = n_D(r)n_T(r)\langle \sigma v \rangle_f$: Birth distribution of α

Ideal igintion temperature for self-sustaining reactor

$$R_{DT}E_{a} = P_{br} \implies T_{ig} \approx 4 \text{ keV}$$

B. a-particle loss fraction by radial excursion due to drifts

$$\langle F_I \rangle = f(r, \triangle r)$$

where r: born flux surface.

 $\triangle r$: radial excursion

$$\triangle r(\theta) \propto \frac{r/R}{\Omega_{\odot}} \propto \frac{r/a}{(R/a)B_{\odot}(r)}$$

$$B_{\theta}(r) = \frac{\mu_o}{2\pi r} \int_0^r j_{\phi}(r') 2\pi r' dr'$$

$$j_{\scriptscriptstyle \varphi}(r) = j_{\scriptscriptstyle \varphi}^o \left(1 - \frac{r^2}{a^2} \right)^{\scriptscriptstyle \vee}$$

$$\langle F_L \rangle \downarrow \text{ as } I_{\phi} \uparrow$$
 , $\forall \uparrow$, $(\frac{r}{a}) \downarrow$, $(\frac{R}{a}) \uparrow$

 \Rightarrow more than 90 % of a can be confined by $I_{\phi} \ge 5$ MA

C. Sharing of ϵ_{α} between plasma ions and electrons

Note) High T_e improve ion heating

Homework: Stacey 1 \sim 6