B. Radioactive material releases

1) Tritium release

a. Types of T release

- Routine releases from faulty valves, connectors, and pumps in the flow systems of the fusion fuel cycle
- External releases by permeation through pipes and vessel walls
- Non-periodic releases accompanied by maintenances and accidents

b. Pathways to environment during normal reactor operation

- From the air purification system in the containment building
- From tritium treatment facilities
- From contaminated coolants
- Routine ventilation from buildings

c. Permeation leakage

- Core tritium plasma leakage by permeation through FW
- Permeation leakage through coolant pipes from blanket to the primary cooling loop
- Permeation leakage through the pipes of heat exchanger system to the steam generator system

d. Amount (Ci/yr) of T release to environment

from a typical commercial reactor

<u>Source</u>	SS-Li-He reactor	STARFIRE reactor	
	gaseous	gaseous + aqueous	
Vacuum & Fuel systems	7500	3700	
Coolant system	75	2740 + 910	
Solid waste treatment syst	em 365	360	
Total	7940	6800 + 910	

(cf) Comparison between commercial reactors

structure SS SS	\underline{E}
breeder liquid Li LiAlC) 2
coolant He water	(H_2O)
<i>major/minorradius</i> (m) 7.5/1.5 7.0/1.9	14
electricity (GWe) 1 1.2	
coolant temp. ($^{\circ}$ C) 200 $^{\circ}$ 435 280 $^{\circ}$	320
Tritium burnt (g/d) 380 536	
<i>bred</i> (g/d) 400 562	
production (kg/y) 7 9	
<i>inventory</i> (kg) 4.58 11.61	

2) Neutron activated materials

- a. Types of major release
 - Activated corrosion and erosion materials from the primary cooling loop
 - Releases from containment building and radioactive waste treatment
 - Cleaner & drain from contaminated area, Decontaminaing liquids, etc.
- b. Amount of activated materials released from a cooling system (S.S./water) of typical commercial reactor
 - Airborne particulate releases (⁵⁸Co, ⁶⁰Co, ⁵⁴Mn, ⁵⁹Fe) : 2.8×10⁻¹ Ci/y
 - Aqueous release (⁵⁵Fe, ⁵⁸Co, ⁵¹Cr, ⁶⁰Co, ⁵⁴Mn) : 1.7×10⁻¹ Ci/y
- c. Activated gaseous releases from the atmosphere of the containment building

<u>Nuclides</u>	<u>Half-life</u>	<u>Release amount (Ci/y)</u>
^{14}C	5730 у	$2.0 \times 10^{-3} \text{ (air)}$
		$1.8 \times 10^{-9} (CO_2)$
$^{16}\!N$	7.11 s	2.9×10^{-3}
$^{41}\!Ar$	1.83 h	7.4×10^{-3}

3) Radioactive solid waste

- a. Solid waste contaminated by tritium
 - Blanket module, Replaced auxiliary equipment
 - Components (filters, getters, sieves, beds, catalysts) used in tritium, gaseous/aqueous release treatment systems
 - Decontaminated waste (papers, gloves, clothes, tools, etc.)

b. Activated solid waste

- Fragments of FW/blanket, structural materials
- Components used in gaseous/aqueous release treatment systems
- Melted or vitrificated waste
- Decontaminated waste

4) Radioactive waste disposal and management

- a. Basic strategy
 - Recycling and reuse if possible
 Breeder & coolant → recycling after purification
 FW/structural materials (worker dose < 0.5 rem/yr) → reuse
 (e.g.) Al. Al₂O₃ (< 1 year), V, Ti alloy (30 years), S.S. (50 years)
 - Final goal of disposal : Shallow burial US NRC 10CFR61 Class C standard

--> 500 mrem/yr : 500 years after shutdown

- Gaseous/aqueous releases : ALARA

(As-Low-As-Reasonably-Achievable)

b. Diagram of radioactive waste management and disposal

c. Public acceptance compared with fission power plants

- Comparable amounts of low-level (class A) waste, but much shorter half-lifes (< 50 years)
- Practically no high-level waste (use of low activation materials : V alloy, SiC composite)
- Much easier processes of waste treatment and decommissioning

d. Radioactive level after decommissioning

4. Evaluation of environmental impacts

Comparison of environmental impacts among power plants (1 GWe) (Dolan 10) Table 28C1)

Emvironments	<u>Fossil</u>	<u>LWR</u>	<u>LMFBR</u>	<u>Fusion</u>
Radionuclides (Ci)				
T	0	33,300	1,400	1,400
Kr	0	3,480	2,080	0
Xe	0	48	0	0
Pu	0	0.2	0.16	0
Radioactive Waste (Fi	· ³)			
High-level	0	69	69	0
Others	0	42,000	42,000	20,000
Radiation Dose (perso	on-rem)			
General Public	0	32.5	5.2	3.2
Employees	0	600	440	600
Pu Discharged (tons)	0	0.53	2.4	0
Nonradioactive (tons)				
SO2	15,700	34	34	34
NOx	36,000	76	76	76
Clorine	27	47	23	23
Material Use (tons)				
Coal	4×10 ⁶	0	0	0
U3O8/ThO2	0	230	30	0
D20	0	0	0	0.066
Land Use (sq. mile)	3	1.3	0.7	0.6

5. Economics

