Mass transfer by migration & diffusion (Ch. 4)

Mass transfer equation

Migration

Mixed migration & diffusion near an electrode Mass transfer during electrolysis Effect of excess electrolyte

Diffusion Microscopic view Fick's laws Boundary conditions in electrochemical problems Solution of diffusion equations

Mass transfer equation

Mass transfer by diffusion, migration, convection

- Diffusion & migration result from a gradient in electrochemical potential, $\overline{\mu}$
- Convection results from an imbalance of forces on the solution

Two points in solution; r & s \rightarrow difference of $\overline{\mu_j}$ due to conc. & electric field (ϕ) differences

Flux $\mathbf{J}_{i} \propto \text{grad}\overline{\mu}_{i}$ or $\mathbf{J}_{i} \propto \nabla \overline{\mu}_{i}$

1-D: $\nabla = \mathbf{i}(\partial/\partial \mathbf{x})$ 3-D: $\nabla = \mathbf{i}(\partial/\partial \mathbf{x}) + \mathbf{j}(\partial/\partial \mathbf{y}) + \mathbf{k}(\partial/\partial \mathbf{z})$

 $\mathbf{J}_{j} = -(C_{j}D_{j}/RT)\nabla\overline{\mu_{j}}$ Minus sign: flux direction opposite the direction of increasing $\overline{\mu_{j}}$

If solution moving with a velocity ${\boldsymbol{v}}$

 $\mathbf{J}_{j} = -(\mathbf{C}_{j}\mathbf{D}_{j}/\mathbf{RT})\nabla \overline{\mathbf{\mu}_{j}} + \mathbf{C}_{j}\mathbf{v}$

$$J_{j}(x) = -D_{j}(\partial C_{j}(x)/\partial x) - (z_{j}F/RT)D_{j}C_{j}(\partial \phi(x)/\partial x) + C_{j}v(x)$$

In general

$$\mathbf{J}_{j} = -\mathbf{D}_{j} \nabla \mathbf{C}_{j} - (\mathbf{z}_{j} F/RT) \mathbf{D}_{j} \mathbf{C}_{j} \nabla \mathbf{\phi} + \mathbf{C}_{j} \mathbf{v}$$

diffusion migration convection

Convection absent in this Chapter (<u>Ch.9 for convection</u>) \rightarrow in an unstirred or stagnant solution

For linear system -J_j (mols⁻¹cm⁻²) = i_j/z_jFA [C/s per (Cmol⁻¹cm²)] = $i_{d,j}/z_jFA + i_{m,j}/z_jFA$

With

$$i_{d,j}/z_jFA = D_j(\partial C_j/\partial x)$$

$$i_{m,j}/z_jFA = (z_jFD_j/RT)C_j(\partial \phi/\partial x)$$

 $I_{d,j}$ & $i_{m,j}$: diffusion & migration currents of species j

Total current $i = \sum i_j$

Migration

In the bulk soln (away from the electrode), conc gradient small: migration $i_j = (z_j^2 F^2 A D_j C_j / RT) (\partial \phi / \partial x)$

Einstein-Smoluchowski equation mobility $u_i = |z_i|FD_i/RT$ $i_i = |z_i|FAu_iC_i(\partial \phi/\partial x)$ For a linear electric field $\partial \Phi / \partial \mathbf{x} = \Delta \mathbf{E} / l$ $i_i = |z_i|FAu_iC_i\Delta E/l$ $i = \sum i_i = (FA\Delta E/l) \sum |z_i| u_i C_i$ Total current Conductance (L) L = $1/R = i/\Delta E = (FA/l)\sum |z_i| u_i C_i = A\kappa/l$ K: conductivity (Ω^{-1} cm⁻¹) $\kappa = F \sum |z_i| u_i C_i$ Resistivity $\rho = 1/\kappa$

Transference number

$$t_j = i_j/i = |z_j|u_jC_j/\sum |z_k|u_kC_k = |z_j|C_j\lambda_j/\sum |z_k|C_k\lambda_k$$

Mixed migration and diffusion near an active electrode

 $i = i_d + i_m$

Balance sheets for mass transfer during electrolysis e.g., 4.1. Electrolysis of a solution of HCl at Pt electrode

 λ_+ (conductance of H⁺), λ_- (conductance of Cl⁻): $\lambda_+ \sim 4\lambda_- \rightarrow t_+ = 0.8$, $t_- = 0.2$ Assume total current of 10e/unit time producing 5H₂ (cathode) & 5Cl₂ (anode) Total current in bulk soln: 8H⁺ + 2Cl⁻

→ diffusion of 2 additional H⁺ to cathode with 2Cl⁻ for electroneutrality diffusion of 8Cl⁻ with 8H⁺

For H⁺: $i_d = 2$, $i_m = 8$, for Cl⁻: $i_d = 8$, $i_m = 2 \rightarrow$ total current $i = i_d + i_m = 10$ (same direction of $i_d \& i_m$) For mixture of charged species, current by jth species $i_j = t_j i$ $\rightarrow \#$ of moles of jth species migrating per sec = $t_j i/z_j F$

→ # of moles arriving at the electrode per sec by migration = $\pm i_m/nF$ (positive sign for reduction of j, negative sign for oxidation)

 $\pm i_m/nF = t_j i/z_j F$ $i_m = \pm (n/z_j)t_j i$ $i_d = i - i_m = i(1 - / + nt_j/z_j)$

Negative sign for cathodic current, positive sign for anodic current)

e.g., 4.2. Electrolysis of a solution of 10^{-3} M Cu(NH₃)₄²⁺, 10^{-3} M Cu(NH₃)₂⁺, 3 x 10⁻³ M Cl⁻ in 0.1 M NH₃ at two Hg electrodes

Assume
$$\lambda_{Cu(II)} = \lambda_{Cu(I)} = \lambda_{CI-} = \lambda$$

From $t_j = i_j/i = |z_j|u_jC_j/\sum |z_k|u_kC_k = |z_j|C_j\lambda_j/\sum |z_k|C_k\lambda_k$
 $t_{Cu(II)} = 1/3, t_{Cu(I)} = 1/6, t_{CI-} = 1/2$
Assume total current of 6e/unit time, $i = 6, n = 1$
For Cu(II) at cathode: $|i_m| = (1/2)(1/3)(6) = 1, i_d = 6 - 1 = 5$,
for Cu(I) at anode: $|i_m| = (1/1)(1/6)(6) = 1, i_d = 6 + 1 = 7$

Effect of adding excess electrolyte

e.g., 4.3. Electrolysis of a solution of 10⁻³ M Cu(NH₃)₄²⁺, 10⁻³ M Cu(NH₃)₂⁺, 3 x 10⁻³ M Cl⁻ in 0.1 M NH₃ + 0.1 M NaClO₄ (as excess electrolyte) at two Hg electrodes

Assume λ_{Na+} = λ_{ClO4-} = λ
→ t_{Na+} = t_{ClO4-} = 0.485, t_{Cu(II)} = 0.0097, t_{Cu(I)} = 0.00485, t_{Cl-} = 0.0146
*Na⁺ & ClO₄⁻ do not participate in e-transfer rxns, but because their conc are high, they carry 97% of the current in the bulk solution
→ Most of Cu(II) reaches the cathode by <u>diffusion</u> & 0.5% flux by <u>migration</u>

Addition of an excess of nonelectroactive ions (a *supporting electrolyte*): 1. nearly eliminates the contribution of migration to the mass transfer of the electroactive species \rightarrow eliminate $\nabla \phi$ or $\partial \phi / \partial x$ in mass transfer equations

2. Decreases the solution resistance, improve the accuracy of WE potential

Disadvantage: impurities, altered medium

Diffusion

A microscopic view-discontinuous source model

Diffusion occurs by a "random walk" process

Probability, P(m, r) after m time units (m = t/ τ)

 $P(m, r) = (m!/r!(m-r)!)(1/2)^m$ where x = (-m + 2r)*l* with r = 0, 1,...m Mean square displacement of the molecule

 $\overline{\Delta^2} = ml^2 = (t/\tau)l^2 = 2Dt$

D: diffusion coefficient (= $l^2/2\tau$), cm²/s (Einstein in 1905)

Root-mean square displacement

$$\overline{\Delta} = \sqrt{2} D t$$

→ estimating the thickness of diffusion layer
 e.g., D = 5 x 10⁻⁵ cm²/s: diffusion layer thickness 10⁻⁴ cm in 1 ms, 10⁻³ cm in 0.1 s, 10⁻² cm in 10 s

For N₀ molecules at the original position at $t = 0 \rightarrow$ Gaussian distribution later N(x, t) in a segment Δx wide on x

 $N(x, t)/N_0 = (\Delta x/2\sqrt{\pi}Dt)exp(-x^2/4Dt)$

2-D: $\overline{\Delta} = \sqrt{4}$ Dt, 3-D: $\overline{\Delta} = \sqrt{6}$ Dt

Diffusional velocity (v_d)

$$v_d = \overline{\Delta}/t = (2D/t)^{1/2}$$

Migration ($v = u_i E$) vs. diffusion (v_d)

Einstein-Smoluchowski equation mobility $u_i = |z_i|FD_i/RT$

 $v = |z_j|FD_jE/RT$

(E: electric field strength)

v << v_d rearrange $D_{i}E/(RT/|z_{i}|F) \le (2D_{i}/t)^{1/2}$ $(2D_{i}t)^{1/2}E \le 2RT/|z_{i}|F$

 \rightarrow voltage drop over length scale of diffusion $\ll 2RT/|z_i|F$: migration negligible

Fick's laws of diffusion

<u>Fick's 1st law</u>: flux \propto conc gradient

 $-\mathbf{J}_{\mathbf{O}}(\mathbf{x}, \mathbf{t}) = \mathbf{D}_{\mathbf{O}}(\partial \mathbf{C}_{\mathbf{O}}(\mathbf{x}, \mathbf{t}) / \partial \mathbf{x})$

<u>Fick's 2nd law</u>: change in concentration of O with time $\partial C_0(x, t)/\partial t = D_0(\partial^2 C_0(x, t)/\partial x^2)$

 \rightarrow solution gives concentration profiles, C₀(x, t)

General formulation of Fick's 2nd law

 $\partial C_0 / \partial t = D_0 \nabla^2 C_0$

Fig. (a): Planar electrode (linear diffusion equation) $\partial C_O(x, t)/\partial t = D_O(\partial^2 C_O(x, t)/\partial x^2)$

Fig. (b): spherical electrode (hanging Hg drop) $\partial C_O(r, t)/\partial t = D_O[(\partial^2 C_O(r, t)/\partial x^2) + (2/r)(\partial C_O(r, t)/\partial r)]$

Consider O transported purely by diffusion to an electrode O + ne = R

 $-J_{O}(0, t) = i/nFA = D_{O}[\partial C_{O}(x, t)/\partial x]_{x=0}$