Potential Sweep Methods (Ch. 6)

Nernstian (reversible) systems
Totally irreversible systems
Quasireversible systems
Cyclic voltammetry
Multicomponent systems & multistep charge transfers

Introduction

Linear sweep voltammetry (LSV)

Cyclic voltammetry (CV)

Nernstian (reversible) systems

Solution of the boundary value problem

O + ne = R (semi-infinite linear diffusion, initially O present)

$$E(t) = E_i - vt$$

Sweep rate (or scan rate): v (V/s)

Rapid e-transfer rate at the electrode surface

$$C_O(0, t)/C_R(0, t) = f(t) = \exp[nF(E_i - vt - E^{0'})/RT]$$

$$i = nFAC_O^*(\pi D_O^*\sigma)^{1/2}\chi(\sigma t)$$

$$\sigma = (nF/RT)v$$

Peak current and potential

Peak current: $\pi^{1/2}\chi(\sigma t) = 0.4463$

$$i_p = 0.4463 (F^3/RT)^{1/2} n^{3/2} A D_O^{1/2} C_O^* v^{1/2}$$

At 25°C, for A in cm², D_O in cm²/s, C_O^* in mol/cm³, v in $V/s \rightarrow i_p$ in amperes

$$i_p = (2.69 \text{ x } 10^5) n^{3/2} A D_O^{1/2} C_O^* v^{1/2}$$

Peak potential, E_p

$$E_p = E_{1/2} - 1.109(RT/nF) = E_{1/2} - 28.5/n$$
 mV at 25°C

Half-peak potential, E_{p/2}

$$E_{p/2} = E_{1/2} + 1.09(RT/nF) = E_{1/2} + 28.0/n$$
 mV at 25°C

 $E_{1/2}$ is located between E_p and $E_{p/2}$

$$|E_p - E_{p/2}| = 2.20(RT/nF) = 56.5/n$$
 mV at °C

For reversible wave, \underline{E}_p is independent of scan rate, \underline{i}_p is proportional to $v^{1/2}$

Spherical electrodes and UMEs

Spherical electrode (e.g., a hanging mercury drop)

$$i = i(plane) + nFAD_OC_O*\phi(\sigma t)/r_0$$

 $\phi(\sigma t)$: tabulated function (Table 6.2.1)

For large v in conventional-sized electrode \rightarrow i(plane) >> 2nd term Same for hemispherical & UME at fast scan rate

For UME at very small v: r_0 is small \rightarrow i(plane) $<< 2^{nd}$ term

- → voltammogram is a steady-state response independent of v
- \rightarrow v << RTD/nFr₀²

 $r_0 = 5 \ \mu m$, $D = 10^{-5} \ cm^2/s$, $T = 298 \ K \rightarrow steady-state voltammogram at <math>v < 1 \ V/s$ $r_0 = 0.5 \ \mu m \rightarrow steady-state behavior up to <math>10 \ V/s$

Transition from typical peak-shaped voltammograms at fast v to steady-state voltammograms at small v

cf. For potential sweep (Ch.1) Linear potential sweep with a sweep rate v (in V/s)

$$E = vt$$

$$E = E_R + E_C = iR_s + q/C_d$$

$$vt = R_s(dq/dt) + q/C_d$$

$$If q = 0 \text{ at } t = 0, \qquad i = vC_d[1 - exp(-t/R_sC_d)]$$

- Current rises from 0 and attains a steady-state value (vC_d): $\underline{\text{measure C}}_{\underline{d}}$

Effect of double-layer capacitance & uncompensated resistance

Charging current at potential sweep

$$|i_c| = AC_d v$$

Faradaic current measured with baseline of i_c i_p varies with $v^{1/2}$, i_c varies with $v \rightarrow \underline{i_c}$ more important at faster v

$$|i_c|/i_p = [C_d v^{1/2} (10^{-5})]/[2.69 n^{3/2} D_O^{1/2} C_O^*]$$

At high v & low $C_0^* \rightarrow$ severe distortion of the LSV wave

 R_u cause E_p to be a function of v

Totally irreversible systems

Solution of the boundary value problem

 $\zeta_{\rm f}$

Totally irreversible one-step, one-electron reaction: $O + e \rightarrow R$

$$i/FA = D_O(\partial C_O(x, t)/\partial x)_{x=0} = k_f(t)C_O(0, t)$$

Where
$$k_f = k^0 e^{-\alpha f(E(t) - E0')}$$
, $E(t) = E_i - vt$

$$\longrightarrow$$

$$k_f(t)C_O(0, t) = k_{fi}C_O(0, t)e^{bt}$$

Where
$$b = \alpha f v \& k_{fi} = k^0 exp[-\alpha f(E_i - E^{0'})]$$

$$i = FAC_O * D_O^{1/2} v^{1/2} (\alpha F/RT)^{1/2} \chi(bt)$$

 χ (bt) (Table 6.3.1). i varies with $v^{1/2}$ and C_O^*

For spherical electrodes

$$i = i(plane) + FAD_0C_0*\phi(bt)/r_0$$

Peak current and potential

Maximum $\chi(bt)$ at $\pi^{1/2}\chi(bt) = 0.4958$ Peak current

$$i_p = (2.99 \text{ x } 10^5)\alpha^{1/2}AC_O^*D_O^{1/2}v^{1/2}$$

n-electron process with RDS: n in right side

Peak potential

$$\alpha(E_p-E^{0'}) + (RT/F)ln[(\pi D_O b)^{1/2}/k^0] = -0.21(RT/F) = -5.34 \ mV \ at \ 25^{\circ}C$$

Or

$$\begin{split} E_p &= E^{0'} - (RT/\alpha F)[0.780 + ln(D_O^{1/2}/k^0) + ln(\alpha Fv/RT)^{1/2}] \\ &|E_p - E_{p/2}| = 1.857RT/\alpha F = 47.7/\alpha \ mV \ at \ 25^{\circ}C \end{split}$$

 E_p : ftn of $v \rightarrow$ for reduction, 1.15RT/ α F (or 30/ α mV at 25°C) negative shift for tenfold increase in v

$$i_p = 0.227 FAC_O^* k^0 exp[-\alpha f(E_P - E^{0'})]$$

 \rightarrow i_p vs. E_p – E^{0'} plot at different v: slope of – α f and intercept proportional to k⁰ n-electron process with RDS: n in right side

Quasireversible systems

For one-step, one-electron system

$$O + e = R$$

For the quasireversible one-step, one-electron case (5.5.3, p. 191)

$$i/FA = D_O(\partial C_O(x, t)/\partial x)_{x=0} = k_f C_O(0, t) - k_b C_R(0, t)$$

Where
$$k_f = k^0 e^{-\alpha f(E - E0')} \& k_b = k^0 e^{(1 - \alpha)f(E - E0')}, f = F/RT$$

The shape of peak & peak parameters \rightarrow ftns of α & \wedge

Or for
$$D_O = D_R = D$$

Current

 $\Psi(E)$ (Fig. 6.4.1): $\Lambda > 10 \rightarrow$ approach to the reversible

Cyclic voltammetry

$$\begin{array}{ll} (0 < t \leq \lambda) & \quad E = E_i - vt \\ (t > \lambda) & \quad E = E_i - 2v\lambda + vt \end{array}$$

Nernstian systems

i-t curve at different E_{λ}

i-E curve (CV) at different E_{λ}

(1) E_{λ} (1) $E_{1/2} - 90/n$, (2) $E_{1/2} - 130/n$, (3) $E_{1/2} - 200/n$ mV, (4) <u>after $i_{pc} \rightarrow 0$ </u>

 $i_{pa}/i_{pc} = 1$ for nernstian regardless of scan rate, E_{λ} (> 35/n mV past E_{pc}), D

 $i_{pa}/i_{pc} \rightarrow kinetic information$ If actual baseline cannot be determined,

$$i_{pa}/i_{pc} = (i_{pa})_0/i_{pc} + 0.485(i_{sp})_0/i_{pc} + 0.086$$

Reversal charging current is same as forward scan, but opposite sign

$$\Delta E_p = E_{pa} - E_{pc} \sim 2.3RT/nF$$
 (or 59/n mV at 25°C)

Quasireversible systems

Wave shape & $\Delta E_p \rightarrow$ ftns of v, k^0 , α & E_{λ} If $E_{\lambda} > 90/n$ mV beyond cathodic peak \rightarrow small E_{λ} effect

$$\Psi = \Lambda \pi^{-1/2} = [k^0 (D_0/D_R)^{\alpha}]/(\pi D_0 f v)^{1/2}$$

(1)
$$\Psi = 0.5$$
, $\alpha = 0.7$, (2) $\Psi = 0.5$, $\alpha = 0.3$, (3) $\Psi = 7$, $\alpha = 0.5$, (4) $\Psi = 0.25$, $\alpha = 0.5$

For $0.3 < \alpha < 0.7 \rightarrow \Delta E_p$ independent of α ; depend only on Ψ \rightarrow estimating k^0 in quasireversible systems

 $\Delta E_p \text{ vs. } v \rightarrow \Delta E_p \text{ vs } \Psi$

Multicomponent systems & Multistep charge transfers

O & O' system

Method for obtaining baselines Constant E after 1

Sweep stop beyond E_{p1}

In vivo applications of LSV & CV e.g., rat brain