Impedance (Ch. 10)

ac circuits Faradaic impedance Kinetic parameters from impedance measurements Electrochemical impedance spectroscopy

Introduction

To perturb the cell with an *ac* of small magnitude

Types of techniques

Faradaic impedance: electrochemical cell \rightarrow WE potential fixed

 \rightarrow lock-in amplifier, frequency-response analyzer: faster & convenient

Electrochemical impedance spectroscopy (EIS): impedance vs. frequency

ac voltammetry: three-electrode cell \rightarrow WE potential, $E_{dc} + ac$ component (E_{ac} , 5 mV peak-to-peak amplitude): dc potential to set the mean surface concentrations of O & R

Review of *ac* (alternating current) circuits Pure sinusoidal voltage to an electric circuit (or EC cell)

 $e = Esin\omega t$

where E is the maximum amplitude, ω the angular frequency (rad/sec, 2 π x Hz)

The response is a current

 $i = Isin(\omega t + \phi)$

where $\boldsymbol{\phi}$ is the phase angle between perturbation and response

<u>Pure resistance (R)</u> V = IR, Ohm's law, $e = Esin \omega t$ $I = (E/R)sin\omega t$

and $\phi = 0 \rightarrow$ no phase difference between potential & current

Pure capacitance (C) For capacitor (q = Ce, i = dq/dt = C(de/dt)) $i = \omega CEcos \omega t = \omega CEsin(\omega t + \pi/2) = (E/X_c)sin(\omega t + \pi/2)$

 $\phi = \pi/2 \rightarrow$ current leads the voltage by $\pi/2$. $X_c = (\omega C)^{-1}$; capacitive reactance (ohms): unlike $R \rightarrow$ magnitude falls with frequency \uparrow

 $j = \sqrt{(-1)}$

 $E = -jX_CI$

Resistance & capacitance in series

Total potential difference = the sum of potential differences across the two elements $E = E_R + E_C$

Current have to be equal (Kirchhoff's law): $I = I_R = I_C$

 $\mathbf{E} = \mathbf{I}(\mathbf{R} - j\mathbf{X}_{\mathbf{C}}) = \mathbf{I}\mathbf{Z}$

Impedance (vector),

 $\mathbf{Z} = \mathbf{R} - j\mathbf{X}_{\mathbf{C}}$

Generally, $Z(\omega) = Z_{Re} - jZ_{Im}$

Where Z_{Re} , Z_{Im} : real & imaginary parts of impedance

The magnitude of the impedance $|\mathbf{Z}| = (\mathbf{R}^2 + \mathbf{X}_{\mathbf{C}}^2)^{1/2} = (\mathbf{Z}_{\mathbf{R}e}^2 + \mathbf{Z}_{\mathbf{Im}}^2)^{1/2}$

The phase angle

 $\phi = \arctan(Z_{\text{Im}}/Z_{\text{Re}}) = \arctan(|X_{\text{C}}|/|R|) = \arctan[1/(\omega RC)]$

<u>Impedance (Z)</u>: the proportionality factor between V and I \rightarrow Z consists of resistances, reactances (derived from capacitive elements), inductances (at very high frequencies > 1 MHz)

 $\begin{array}{l} \underline{Impedance\ plot}\\ Bode\ plot:\ log|Z|\ \&\ \varphi\ vs.\ log\ \omega\\ Nyquist\ plot:\ Z_{Im}\ vs.\ Z_{Re}\ for\ different\ \ \omega \end{array}$

For a series RC circuit

<u>For other textbooks</u> Z': in-phase component of impedance Z'': out-of-phase component , i.e. at $\pi/2$

$$Z = Z' + iZ''$$

 $Z' = R, Z'' = -X_C$

A vertical line in the complex plane impedance plot since Z' is constant but Z'' varies with frequency

Total current (I_{tot}) is the sum of the two parts Potential difference across the two components is equal

$$I_{tot} = (E/R)\sin\omega t + (E/X_c)\sin(\omega t + \pi/2)$$

$$|I_{tot}| = (I_R^2 + I_C^2)^{1/2} = V(1/R^2 + 1/X_C^2)^{1/2}$$

the magnitude of the impedance

$$\mathbf{Z} = (1/R^2 + 1/X_C^2)^{-1/2}$$

the phase angle

$$\phi = \arctan(I_C/I_R) = \arctan[1/(\omega RC)]$$

$$1/\mathbf{Z} = 1/\mathbf{R} + i\omega\mathbf{C}$$
$$\mathbf{Z} = \mathbf{R}/(1 + i\omega\mathbf{R}\mathbf{C}) = \mathbf{R}(1 - i\omega\mathbf{R}\mathbf{C})/[1 + (\omega\mathbf{R}\mathbf{C})^2]$$

 $Z' = R/[1 + (\omega RC)^2], \quad Z'' = -\omega R^2 C/[1 + (\omega RC)^2]$ Semicircle in the complex plane of radius R/2 and maximum |Z''| at $\omega RC = 1$

$$\left(\mathbf{Z'} - \frac{\mathbf{R}}{2}\right)^2 + \left(\mathbf{Z''}\right)^2 = \left(\frac{\mathbf{R}}{2}\right)^2$$

→<u>more complicated circuits</u>

At the top of semicircle: the value of capacitor and the time constant of the circuit can be calculated from the frequency (f) $\rightarrow \omega = 2\pi f = 1/\tau = 1/RC$ x-axis (real axis): intercepts give the values of resistor

Impedance in series and in parallel

in series: $\mathbf{Z} = \mathbf{Z}_1 + \mathbf{Z}_2$ in parallel: $1/\mathbf{Z} = 1/\mathbf{Z}_1 + 1/\mathbf{Z}_2$

Admittance

Admittance is the inverse of impedance

 $\mathbf{Y} = 1/\mathbf{Z}$

Useful in the analysis of parallel circuits In phase: Y', phase angle of $\pi/2$: Y'' $Y = 1/Z = 1/(Z' + iZ'') = (Z' - iZ'')/[(Z')^2 + (Z'')^2] = Y' + iY''$ $Y' = Z'/[(Z')^2 + (Z'')^2] = G_p, G_p;$ conductance $Y'' = -Z''/[(Z')^2 + (Z'')^2] = B_p = \omega C_p, B_p;$ susceptance

 $\mathbf{Z} = \mathbf{Z} \mathbf{e}^{j\phi}, \qquad \mathbf{Y} = (1/\mathbf{Z}) \mathbf{e}^{-j\phi}$

Equivalent circuit of an electrochemical cell

Any electrochemical cell can be represented in terms of an *equivalent circuit* that comprises a combination of resistances and capacitances. This circuit should contain at the very least components:

- - the double layer: pure capacitor C_d
- - the impedance of the faradaic process (charge transfer process) \mathbf{Z}_{f}
- - the uncompensated resistance R_{Ω} (the solution resistance)

The combination of these elements: $\mathbf{Z}_{f} \& C_{d}$ in parallel

Equivalent electrical circuit of an electrochemical cell for a simple electrode process. R_{Ω} is the solution resistance, of the constants and electrode materials, Z_{f} the impedance of the electrode process, and C_{d} the double layer capacity. Z_{f} can be subdivided in two equivalent way (1) subdivision into *series resistance* R_s and *pseudocapacity* C_s

(2) subdivision into $\underline{R}_{\underline{ct}}$ (*charge-transfer resistance*) and *Warburg impedance*, $\underline{Z}_{\underline{w}}$ (a kind of resistance to mass transport of the electroactive species)

kinetically favored reactions: $R_{ct} \rightarrow 0$ and Z_w predominates kinetically difficult reactions: $R_{ct} \rightarrow \infty$ and R_{ct} predominates "Randles circuit"

Interpretation of the faradaic impedanceCharacteristics of the equivalent circuitFor a series RC circuit, total voltage drop $E = iR_s + q/C_s$,i = Isin ω tBy differentiation $dE/dt = R_s di/dt + i/C_s = R_s I\omega cos\omega t + (I/C_s)sin\omega t$

Properties of the chemical system

simple charge transfer reaction

 $O + ne^{-} = R$

chage transfer process; $E = E[i, C_0(0,t), C_R(0,t)]$

 $dE/dt = (\partial E/\partial i)(di/dt) + [\partial E/\partial C_0(0,t)](dC_0(0,t)/dt) + [\partial E/\partial C_R(0,t)](dC_R(0,t)/dt)$

 $\partial E/\partial i$ is the charge transfer resistance, R_{ct}

 $dE/dt = (R_{ct} + \sigma/\omega^{1/2})I\omega\cos\omega t + I\sigma\omega^{1/2}\sin\omega t$

where $\sigma = (I/nFA\sqrt{2})(\beta_0/D_0^{1/2} - \beta_R/D_R^{1/2}), \beta = (\partial E/\partial C(0,t))$

$$R_{s} = R_{ct} + \sigma \omega^{-1/2}$$
$$1/C_{s} = \sigma \omega^{1/2}$$

 $R_s, C_s \rightarrow Randles circuit (R_{ct} + Warburg impedance Z_w)$

From Z = Z' + iZ'' $\begin{aligned} Z_w' = R_w = \sigma \omega^{-1/2} \\
Z_w'' = -X_w = -(\omega C_w)^{-1} = -\sigma \omega^{-1/2}
\end{aligned}$

In terms of faradaic impedance Z_f $\begin{array}{c} Z_f'=R_{ct}+\sigma\omega^{-1/2}\\ Z_f''=-\sigma\omega^{-1/2} \end{array}$

Straight line: slope σ , intercept R_{ct} (infinite frequency) $R_{ct} \rightarrow 0, Z_f = Z_w = \sigma \omega^{-1/2}(1 - i) \rightarrow \text{phase angle } \pi/2$

Kinetic parameters from impedance measurements

For faradaic impedance experiment: WE's mean potential at equilibrium & small sinusoidal perturbation \rightarrow linearized i- n characteristics to describe the electrical response to the departure from equilibrium

For one-step, one-electron process
$$k_f$$

 $O + e^- = R$
 k_b
[Equation (3.4.30), p.106]
 $\eta = (RT/F) \{ [C_O(0,t)/C_O^*] - [C_R(0,t)/C_R^*] + i/i_0 \}$
Hence
 $R_{ct} = RT/Fi_0$
 $\beta_O = RT/FC_O^*$
 $\beta_R = -RT/FC_R^*$
 $R_s - 1/\omega C_s = R_{ct} = RT/Fi_0$

Exchange current (i_0), therefore k^0 , can be evaluated from $R_s \& C_s$

Experimentally, frequency dependency measurement \rightarrow slope σ

 $\sigma = (RT/F^2A\sqrt{2})(1/D_0^{1/2}C_0^* - 1/D_R^{1/2}CR^*)$

 R_s plot: intercept $R_{ct} \rightarrow i_0$ (extrapolating at infinite frequency) Warburg impedance drops out at high frequencies because time scale is so short that diffusion cannot manifest itself as a factor influencing the current \rightarrow surface conc never change \rightarrow charge-transfer kinetics alone dictate the current

If non-linear \rightarrow complex situation

Quasireversible multistep mechanism

 $R_{ct} = RT/nFi_0$

<u>General impedance properties of a reversible system</u> When charge-transfer kinetics are very facile, $i_0 \rightarrow \infty$: $R_{ct} \rightarrow 0$ $\rightarrow R_s \rightarrow \sigma / \omega^{1/2}$

Resistance & capacitive reactance are equal: $Z_f = (2/\omega)^{1/2} \sigma$ \rightarrow magnitude of Warburg impedance alone (mass-transfer impedance)

If kinetics are observable: R_{ct}

Effect of concentration: high conc \rightarrow reduce mass-transfer impedance

Phase angle between I_{ac} & E_{ac} $\Phi = \tan^{-1}(1/\omega R_s C_s) = \tan^{-1}[\sigma/\omega^{1/2}/(R_{ct} + \sigma/\omega^{1/2})]$

For the reversible case, $R_{ct} = 0 \rightarrow \Phi = \pi / 4 \text{ or } 45^{\circ}$ A quasireversible, $R_{ct} > 0 \rightarrow \Phi < \pi / 4$, $\Phi > 0$ unless $R_{ct} \rightarrow \infty$

For reversible multi-electron mechanisms

 $\sigma = (RT/n^2F^2A\sqrt{2})(1/D_0^{1/2}C_0^* - 1/D_R^{1/2}CR^*)$

Electrochemical impedance spectroscopy

Real electrochemical system: R_{Ω} , C_d , Z_f

- measure in the absence of the electroactive species $\rightarrow \mathbf{Z}_{f} = 0 \rightarrow \text{directly } \mathbf{R}_{\Omega}, \mathbf{C}_{d}$
- study the variation of Z with frequency $\rightarrow \mathbf{Z}_{f}$, \mathbf{R}_{Ω} , \mathbf{C}_{d} , \mathbf{R}_{ct} can be extracted

Full Randles equivalent circuit

$$Z_{\text{Re}} \qquad Z' = R_{\Omega} + \frac{R_{\text{ct}} + \sigma \omega^{-1/2}}{(\sigma \omega^{1/2} C_{\text{d}} + 1)^2 + \omega^2 C_{\text{d}}^2 (R_{\text{ct}} + \sigma \omega^{-1/2})^2}$$
$$Z_{\text{Im}} \qquad -Z'' = \frac{\omega C_{\text{d}} (R_{\text{ct}} + \sigma \omega^{-1/2})^2 + \sigma^2 C_{\text{d}} + \sigma \omega^{-1/2}}{(\sigma \omega^{1/2} C_{\text{d}} + 1)^2 + \omega^2 C_{\text{d}}^2 (R_{\text{ct}} + \sigma \omega^{-1/2})^2}$$

Consider two limiting forms of these equation: (a) Low frequency limit: $\omega \rightarrow 0$

$$Z' = R_{\Omega} + R_{ct} + \sigma \omega^{-1/2}$$
$$Z'' = \sigma \omega^{-1/2} + 2\sigma^2 C_d$$

$$Z_{\rm Im} = Z_{\rm Re} - R_{\Omega} - R_{\rm ct} + 2 \sigma^2 C_{\rm d}$$

The low frequency limit is a straight line of unit slope, which extrapolated to the real axis gives an intercept of $R_{\Omega} + R_{ct} - 2\sigma^2 C_d$. The line corresponds to a reaction controlled solely by diffusion, and the impedance is the Warburg impedance, the phase angle being $\pi/2$.

 \rightarrow "diffusion-controlled electrode process"

(b) high-frequency limit: $\omega \to \infty$, At the high-frequency limit the control is purely kinetic, and $R_{ct} \gg Z_w$. The electrical analogy is an RC parallel combination.

$$Z' = R_{\Omega} + [R_{ct}/(1 + \omega^2 C_d^2 R_{ct}^2)]$$

$$Z'' = [\omega C_d R_{ct}^2/(1 + \omega^2 C_d^2 R_{ct}^2)]$$

Simplifying to the equation of a circle of radius $R_{ct}/2$ with intercepts on the Z' axis of $R_{\Omega} (\omega \to \infty)$ and of $R_{\Omega} + R_{ct} (\omega \to 0)$ $(Z' - R_{\Omega} - R_{ct}/2)^2 + (Z'')^2 = (R_{ct}/2)^2$ (c) Application to real systems

If kinetically sluggish \rightarrow large R_{ct}

kinetically facile

Equivalent Circuit Impedance

Equivalent Circuit Impedance

Bulk resistance $R_{el} \rightarrow$ Ionic conductivity of electrolyte

 $G = 1 / R = \kappa \cdot A / L$ G: Conductance (Ω^{-1} or S), κ : conductivity, A : area L: distance between the electrodes

> $\kappa = G \cdot L /A$ L/A: cell constant (cm⁻¹)

> > A simple equivalent circuit representing a solid electrolyte cell (a) and its response in the impedance plane (b). $R_L C_L$; $R_{gb} C_{gb}$; and R_p , C_{dl} are resistances and capacitances associated with the electrolyte bulk (intragrain), the grain boundary (intergrain) and electrode processes, respectively.

Measurement of impedance

a.c. bridge

These bridge use the principle of balance between the electrochemical cell and a variable impedance (Z_s)

 $Z_{s} = R_{s} - i/\omega C_{s}$ $Z_{cell}/R_{1} = Z_{s}/R_{2}$ $Z_{cell} = R_{s}R_{1}/R_{2} - I(R_{1}/\omega C_{s}R_{2})$ $= R_{cell} - i/\omega C_{cell}$ That is, $R_{cell} = R_{s}R_{1}/R_{2}, \quad C_{cell} = C_{s}R_{2}/R_{1}$

Electrochemical Impedance spectroscopy (EIS)

Impedance techniques involves applying a sinusoidal signal of low magnitude (mV range) to the electrochemical system under investigation and comparing the input and output responses to determine impedance and phase shift.

EIS based on lock-in amplifier or frequency response analyser (FRA) lock-in amplifier: specialized AC voltmeter w/ typical frequency range $50 \ \mu$ Hz-100 kHz

 \rightarrow sensitive, low cost, but slow, low frequency range

FRA: fast, easy to operate, digitallized, expensive