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9.1 Using Evaluation Functions9.1 Using Evaluation Functions

l Best-first search (BFS) = Heuristic search
¨ proceeds preferentially using heuristics
¨ Basic idea

<Heuristic evaluation function       : based on information specific to 
the problem domain

<Expand next that node, n, having the smallest value of 
<Terminate when the node to be expanded next is a goal node

l Eight-puzzle
¨ The number of tiles out of places: measure of the goodness of a 

state description

f̂

)(ˆ nf
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9.1 Using Evaluation Functions 9.1 Using Evaluation Functions 
(Cont’d)(Cont’d)
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Figure 9.1 A Possible Result of a Heuristic Search Procedure



9.1 Using Evaluation Functions 9.1 Using Evaluation Functions 
(cont’d)(cont’d)

¨ Preference to early path: add “depth factor” à Figure 9.2
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9.1 Using Evaluation Functions 9.1 Using Evaluation Functions 
(cont’d)(cont’d)
l Questions

¨ How to settle on evaluation functions for guiding BFS?
¨ What are some properties of BFS?
¨ Does BFS always result in finding good paths to a goal node?
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9.2 A General Graph9.2 A General Graph--Searching Searching 
AlgorithmAlgorithm
l GRAPHSEARCH: general graph-searching algorithm

1. Create a search tree, Tr, with the start node n0 à put n0 on 
ordered list OPEN

2. Create empty list CLOSED
3. If OPEN is empty, exit with failure
4. Select the first node n on OPENà remove it à put it on 
CLOSED

5. If n is a goal node, exit successfully: obtain solution by tracing 
a path backward along the arcs from n to n0 in Tr

6. Expand n, generating a set M of successors + install M as 
successors of n by creating arcs from n to each member of M

7. Reorder the list OPEN: by arbitrary scheme or heuristic merit
8. Go to step 3
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9.2 A General Graph9.2 A General Graph--Searching Searching 
Algorithm (Cont’d)Algorithm (Cont’d)
l Breadth-first search

¨ New nodes are put at the end of OPEN (FIFO)
¨ Nodes are not reordered

l Depth-first search
¨ New nodes are put at the beginning of OPEN (LIFO)

l Best-first (heuristic) search
¨ OPEN is reordered according to the heuristic merit of the nodes
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9.2.1 Algorithm A9.2.1 Algorithm A**

l Algorithm A*

¨ Reorders the nodes on OPEN according to increasing values of 

l Some additional notation
¨ h(n): the actual cost of the minimal cost path between n and a 

goal node
¨ g(n): the cost of a minimal cost path from n0 to n
¨ f(n) = g(n) + h(n): the cost of a minimal cost path from n0 to a 

goal node over all paths via node n
¨ f(n0 ) = h(n0 ): the cost of a minimal cost path from n0 to a goal 

node
¨ : estimate of h(n)
¨ : the cost of the lowest-cost path found by A* so far to n

f̂
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9.2.1 Algorithm A9.2.1 Algorithm A* * (Cont’d)(Cont’d)

l Algorithm A*

¨ If       = 0: uniform-cost search
¨ When the graph being searched is not a tree?

<more than one sequence of actions that can lead to the same world 
state from the starting state

¨ In 8-puzzle problem
<Actions are reversible: implicit graph is not a tree
< Ignore loops in creating 8-puzzle search tree: don’t include the 

parent of a node among its successors
<Step 6

– Expand n, generating a set M of successors that are not already 
parents (ancestors) of n + install M as successors of n by creating 
arcs from n to each member of M

ĥ
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Figure 9.3 Heuristic Search Notation



9.2.1 Algorithm A9.2.1 Algorithm A* * (Cont’d)(Cont’d)

l Modification of A* to prevent duplicate search effort
¨ G

< search graph generated by A*
< structure of nodes and arcs generated by A*

¨ Tr
< subgraph of G
< tree of best (minimal cost) paths

¨ Keep the search graph
< subsequent search may find shorter paths
< the paths use some of the arcs in the earlier search graph, not in the 

earlier search tree
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Figure 9.4 Search Graphs and Trees Produced by a Search Procedure



9.2.1 Algorithm A9.2.1 Algorithm A* * (Cont’d)(Cont’d)

l A* that maintains the search graph
1. Create a search graph, G, consisting solely of the start node, n0

à put n0 on a list OPEN
2. Create a list CLOSED: initially empty
3. If OPEN is empty, exit with failure
4. Select the first node on OPEN à remove it from OPENà put 

it on CLOSED: node n
5. If n is a goal node, exit successfully: obtain solution by tracing 

a path along the pointers from n to n0 in G
6. Expand node n, generating the set, M, of its successors that are 

not already ancestors of n in G àinstall these members of M
as successors of n in G
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9.2.1 Algorithm A9.2.1 Algorithm A* * (Cont’d)(Cont’d)
7. Establish a pointer to n from each of those members of M that 

were not already in G à add these members of M to OPEN
à for each member, m, redirect its pointer to n if the best path 
to m found so far is through n à for each member of M
already on CLOSED, redirect the pointers of each of its 
descendants in G

8. Reorder the list OPEN in order of increasing       values
9. Go to step 3

¨ Redirecting pointers of descendants of nodes
< Save subsequent search effort
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9.2.2 Admissibility of A9.2.2 Admissibility of A**

l Conditions that guarantee A* always finds minimal cost 
paths
¨ Each node in the graph has a finite number of successors
¨ All arcs in the graph have costs greater than some positive 

amount e
¨ For all nodes in the search graph, 

l Theorem 9.1
¨ Under the conditions on graphs and on      , and providing there 

is a path with finite cost from n0 to a goal node, algorithm A* is 
guaranteed to terminate with a minimal-cost path to a goal
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9.2.2 Admissibility of A9.2.2 Admissibility of A* * (Cont’d)(Cont’d)

l Lemma 9.1
¨ At every step before termination of A*, there is always a node, 

n*, on OPEN with the following properties
<n* is on an optimal path to a goal
<A* has found an optimal path to n*
<

¨ Proof : by mathematical induction
<Base case

– at the beginning of search, n0 is on OPEN and on an optimal path to 
the goal

– A* has found this path
–
– n0 : n* of the lemma at this stage

)(*)(ˆ
0nfnf £
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9.2.2 Admissibility of A9.2.2 Admissibility of A* * (Cont’d)(Cont’d)
< Induction step

– assume the conclusions of the lemma at the time m nodes have been 
expanded (            )

– prove the conclusions true at the time m+1 nodes have been expanded

l Continuing the proof of the theorem
¨ A* must terminate
¨ A* terminates in an optimal path

l Admissible
¨ Algorithm that is guaranteed to find an optimal path to the goal
¨ With the 3 conditions of the theorem, A* is admissible
¨ Any       function not overestimating h is admissible

0³m
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9.2.2 Admissibility of A9.2.2 Admissibility of A* * (Cont’d)(Cont’d)

l Theorem 9.2
¨ If        is more informed than       , then at the termination of 

their searches on any graph having a path from  n0 to a goal 
node, every node expanded by        is also expanded by 

¨ expands at least as many nodes as does 
¨ is more efficient

l Figure 9.6
¨ : uniform-cost search
¨ : breadth-first search
¨ uniform-cost/breadth-first search: admissible

*
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1A
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Figure 9.6 Relationships Among Search Algorithm



9.2.3 The Consistency (or Monotone) 9.2.3 The Consistency (or Monotone) 
ConditionCondition
l Consistency condition

¨ nj is a successor of ni

¨
¨ : cost of the arc from ni to nj

¨ Rewriting

¨ A type of triangle inequality

),()(ˆ)(ˆ jiji nncnhnh £-

),( ji nnc
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Figure 9.7
The Consistency Condition



9.2.3 The Consistency (or Monotone) 9.2.3 The Consistency (or Monotone) 
Condition (Cont’d)Condition (Cont’d)

¨ Implies that       values of the nodes are monotonically 
nondecreasing as we move away from the start node

¨ Consistency condition on      is often called the monotone 
condition on  

¨ Theorem 9.3
< If the consistency condition on      is satisfied, then when A* expands 

a node n, it has already found an optimal path to n

f̂
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9.2.3 The Consistency (or Monotone) 9.2.3 The Consistency (or Monotone) 
Condition (Cont’d)Condition (Cont’d)

l Argument for the admissibility of A* under the consistency 
condition
¨ Monotonicity of       : search expands outward along contours of 

increasing       values
¨ The first goal node selected will be a goal node having a minimal
¨ For any goal node, ng, 
¨ The first goal node selected will be one having minimal
¨ Whenever a goal node, ng, is selected for expansion, we have found 

an optimal path to that goal node (                      )
¨ The first goal node selected will be one for which the algorithm has 

found an optimal path

f̂
f̂

f̂
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9.2.4 Iterative9.2.4 Iterative--Deepening ADeepening A**

l Breadth-first search
¨ Exponentially growing memory requirements

l Iterative deepening search
¨ Memory grows linearly with the depth of the goal
¨ Parallel implementation of IDA*: further efficiencies gain

l IDA*
¨ Cost cut off in the first search:
¨ Depth-first search with backtracking
¨ If the search terminates at a goal node: minimal-cost path
¨ Otherwise

< increase the cut-off value and start another search
<The lowest       values of the nodes visited (not expanded) in the 

previous search is used as the new cut-off value in the next search
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9.2.5 Recursive Best9.2.5 Recursive Best--First SearchFirst Search

l RBFS (recursive best-first search)
¨ uses slightly more memory than does IDA*
¨ generates fewer nodes than does IDA*

l Backing up     value
¨ When a node n is expanded, computes      values of successors 

of n and recomputes        values of n and all of n’s ancestors

l Process of backing up
¨ Backed-up value,            , of node m with successors        

f̂

f̂
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9.2.5 Recursive Best9.2.5 Recursive Best--First Search First Search 
(Cont’d)(Cont’d)

l Description
¨ One of successors of node n has the smallest        over all OPEN

nodes, it is expanded in turn, and so on.
¨ When other OPEN node, n’, (not a successor of n) has the lowest 

value of       
<backtracks to the lowest common ancestor, node k
< kn: successor of node k on the path to n
<RBFS removes the subtree rooted at kn, from OPEN
< kn becomes an OPEN node with       value (its backed-up value)
<Search continues below that OPEN node with the lowest value of 

f̂

f̂
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Figure 9.9 Recursive Best-First Search



9.3 Heuristic Functions and Search 9.3 Heuristic Functions and Search 
EfficiencyEfficiency
l Selection of heuristic function

¨ Crucial for the efficiency of A*
¨

< assures admissibility
<Uniform-cost search à inefficient

¨ = the highest possible lower bound on h
<maintains admissibility
< expands the fewest nodes

l Using relaxed model
¨ functions are always admissible

0ˆ ºh
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9.3 Heuristic Functions and Search 9.3 Heuristic Functions and Search 
Efficiency (Cont’d)Efficiency (Cont’d)

l Selecting      function
¨ must consider the amount of effort involved in calculating it
¨ Less relaxed model: better heuristic function (difficult in calculating)
¨ Trade off between the benefits gained by an accurate         and the 

cost of computing it

l Using      instead of the lower bound of h
¨ increases efficiency at the expense of admissibility
¨ : easier to compute

l Modifying the relative weights of     and      in the evaluation 
function
¨ Large values of w: overemphasize the heuristic component
¨ Very small values of w: give the search a predominantly breadth-first 

character

ĥ

ĥ
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9.3 Heuristic Functions and Search 9.3 Heuristic Functions and Search 
Efficiency (Cont’d)Efficiency (Cont’d)

l Simultaneous searches from both the start and a goal node
¨ Breadth-first search

< search frontiers meet between start and goal
<guaranteed to find an optimal path

¨ Heuristic search
<Two search frontiers might not meet to produce an optimal path

l Effective branching factor
¨ describes how sharply a search process is focused toward a goal
¨ B = the number of successors of each node in the tree having the 

following properties
<Nonleaf node has the same number (B) of successors
<Leaf nodes are all of depth d
<Total number of nodes is N
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Figure 9.10 Bidirectional Searches
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Figure 9.11 B Versus N for Various Values of d



9.3 Heuristic Functions and Search 9.3 Heuristic Functions and Search 
Efficiency (Cont’d)Efficiency (Cont’d)

l 3 important factors influencing the efficiency of algorithm A*
¨ The cost (or length) of the path found
¨ The number of nodes expanded in finding the path
¨ The computational effort required to compute

l Time complexity: O(n)
¨ Breadth-first search: O(Bd)
¨ Uniform-cost search (            ): O(BC/c)

<C: cost of an optimal solution
< c: cost of the least costly arc

ĥ
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9.4 Additional Readings and 9.4 Additional Readings and 
DiscussionDiscussion
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