Artificial Intelligence Chapter 9 Heuristic Search

> Biointelligence Lab School of Computer Sci. & Eng. Seoul National University

Outline

- Using Evaluation Functions
- A General Graph-Searching Algorithm
- Algorithm A*
- Iterative-Deepening A*

• Heuristic Functions and Search Efficiency

9.1 Using Evaluation Functions

- Best-first search (BFS) = Heuristic search
 - proceeds preferentially using heuristics
 - ♦ Basic idea
 - Heuristic evaluation function \hat{f} : based on information specific to the problem domain
 - Expand next that node, n, having the smallest value of $\hat{f}(n)$
 - Terminate when the node to be expanded next is a goal node
- Eight-puzzle

The number of tiles out of places: measure of the goodness of a state description

 $\hat{f}(n)$ = number of tiles out of place (comapred with goal)

9.1 Using Evaluation Functions(Cont'd)

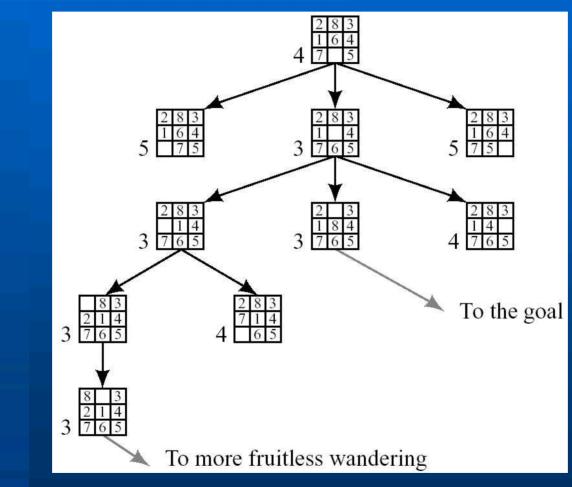


Figure 9.1 A Possible Result of a Heuristic Search Procedure

(c) 2000-2002 SNU CSE Biointelligence Lab

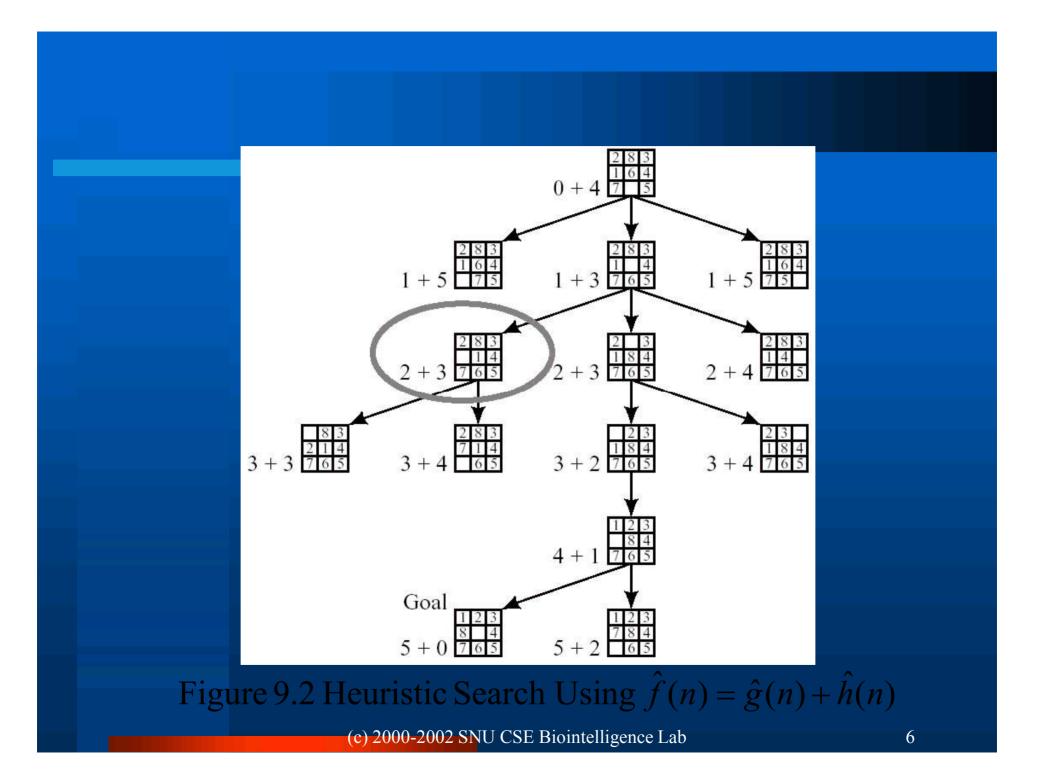
9.1 Using Evaluation Functions (cont'd)

• Preference to early path: add "depth factor" \rightarrow Figure 9.2

 $\hat{f}(n) = \hat{g}(n) + \hat{h}(n)$ $\hat{g}(n)$: estimate of the depth of *n*

: the length of the shortest path from the start to n

 $\hat{h}(n)$: heuristic evaluation of node *n*



9.1 Using Evaluation Functions(cont'd)

- Questions
 - How to settle on evaluation functions for guiding BFS?
 - What are some properties of BFS?
 - Does BFS always result in finding good paths to a goal node?

9.2 A General Graph-Searching Algorithm

- GRAPHSEARCH: general graph-searching algorithm
 - 1. Create a search tree, *Tr*, with the start node $n_0 \rightarrow \text{put } n_0$ on ordered list *OPEN*
 - 2. Create empty list *CLOSED*
 - 3. If *OPEN* is empty, exit with failure
 - 4. Select the first node *n* on *OPEN* \rightarrow remove it \rightarrow put it on *CLOSED*
 - 5. If *n* is a goal node, exit successfully: obtain solution by tracing a path backward along the arcs from *n* to n_0 in *Tr*
 - 6. Expand *n*, generating a set *M* of successors + install *M* as successors of *n* by creating arcs from *n* to each member of *M*
 - 7. Reorder the list **OPEN**: by arbitrary scheme or heuristic merit
 - 8. Go to step 3

9.2 A General Graph-Searching Algorithm (Cont'd)

- Breadth-first search
 - New nodes are put at the end of OPEN (FIFO)
 - Nodes are not reordered
- Depth-first search
 - New nodes are put at the beginning of OPEN (LIFO)
- Best-first (heuristic) search
 - OPEN is reordered according to the heuristic merit of the nodes

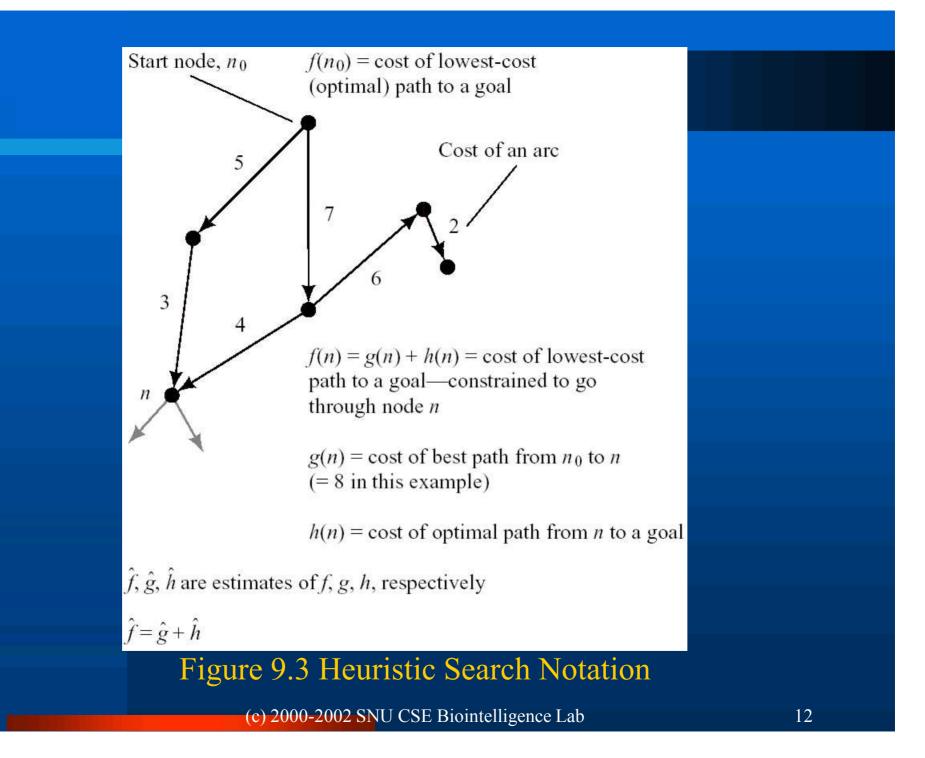
9.2.1 Algorithm A*

- Algorithm A^{*}
 - Reorders the nodes on OPEN according to increasing values of \hat{f}
- Some additional notation
 - *h(n)*: the *actual cost* of the minimal cost path between *n* and a goal node
 - g(n): the cost of a minimal cost path from n_0 to n
 - *f*(*n*) = *g*(*n*) + *h*(*n*): the cost of a minimal cost path from *n*₀ to a goal node over all paths via node *n*
 - $f(n_0) = h(n_0)$: the cost of a minimal cost path from n_0 to a goal node
 - $\hat{h}(n)$: estimate of h(n)
 - $\hat{g}(n)$: the cost of the lowest-cost path found by A* so far to *n*

9.2.1 Algorithm A^{*} (Cont'd)

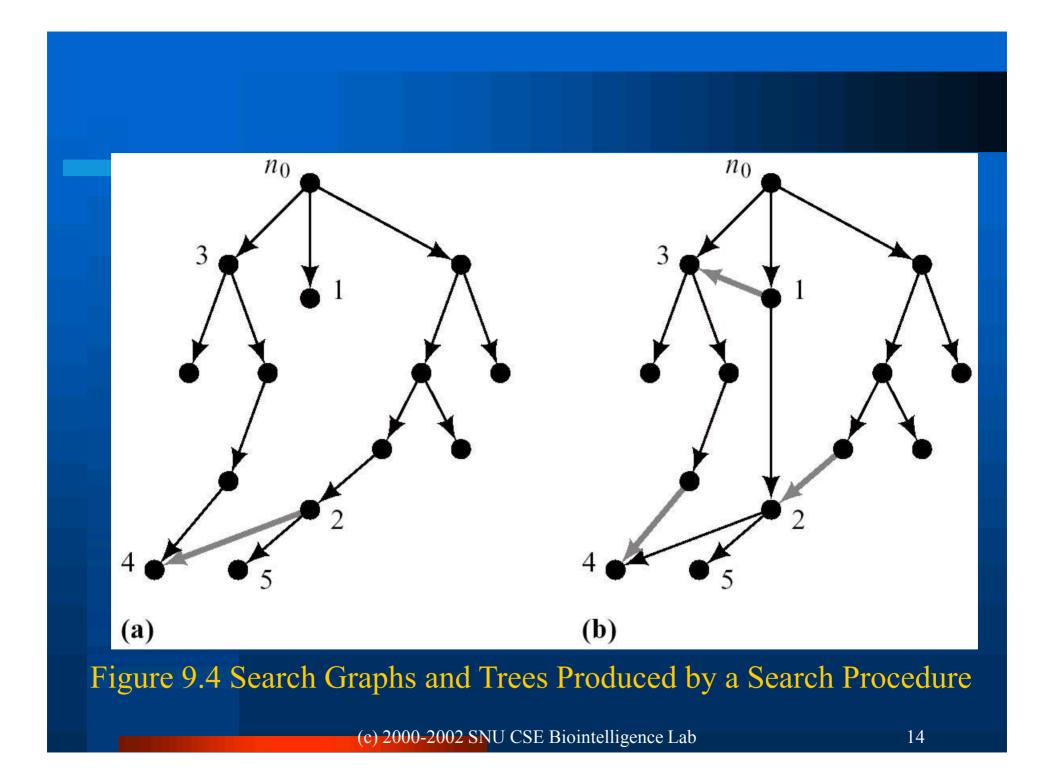
• Algorithm A^{*}

- If $\hat{h} = 0$: uniform-cost search
- When the graph being searched is not a tree?
 - more than one sequence of actions that can lead to the same world state from the starting state
- ◆ In 8-puzzle problem
 - Actions are reversible: implicit graph is not a tree
 - Ignore loops in creating 8-puzzle search tree: don't include the parent of a node among its successors
 - Step 6
 - Expand n, generating a set M of successors that are not already parents (ancestors) of n + install M as successors of n by creating arcs from n to each member of M



9.2.1 Algorithm A^{*} (Cont'd)

- Modification of A* to prevent duplicate search effort
 - ♦ G
 - search graph generated by A*
 - structure of nodes and arcs generated by A*
 - ♦ *Tr*
 - subgraph of *G*
 - tree of best (minimal cost) paths
 - Keep the search graph
 - subsequent search may find shorter paths
 - the paths use some of the arcs in the earlier search graph, not in the earlier search tree



9.2.1 Algorithm A^{*} (Cont'd)

- A* that maintains the search graph
 - 1. Create a search graph, *G*, consisting solely of the start node, $n_0 \rightarrow \text{put } n_0$ on a list *OPEN*
 - 2. Create a list *CLOSED*: initially empty
 - 3. If *OPEN* is empty, exit with failure
 - 4. Select the first node on OPEN \rightarrow remove it from *OPEN* \rightarrow put it on *CLOSED*: node *n*
 - 5. If *n* is a goal node, exit successfully: obtain solution by tracing a path along the pointers from *n* to n_0 in *G*
 - 6. Expand node *n*, generating the set, *M*, of its successors that are not already ancestors of *n* in G →install these members of *M* as successors of *n* in G

9.2.1 Algorithm A* (Cont'd)

- 7. Establish a pointer to *n* from each of those members of *M* that were not already in G → add these members of *M* to OPEN
 → for each member, *m*, redirect its pointer to *n* if the best path to *m* found so far is through n → for each member of *M* already on CLOSED, redirect the pointers of each of its descendants in G
- 8. Reorder the list OPEN in order of increasing \hat{f} values
- 9. Go to step 3
- Redirecting pointers of descendants of nodes
 Save subsequent search effort

9.2.2 Admissibility of A*

- Conditions that guarantee A* always finds minimal cost paths
 - Each node in the graph has a finite number of successors
 - All arcs in the graph have costs greater than some positive amount *\varepsilon*
 - For all nodes in the search graph, $\hat{h}(n) \le h(n)$
- Theorem 9.1
 - Under the conditions on graphs and on \hat{h} , and providing there is a path with finite cost from n_0 to a goal node, algorithm A* is guaranteed to terminate with a minimal-cost path to a goal

9.2.2 Admissibility of A* (Cont'd)

• Lemma 9.1

- At every step before termination of A*, there is always a node,
 *n**, on *OPEN* with the following properties
 - \square *n** is on an optimal path to a goal
 - A* has found an optimal path to n^*

$$\hat{f}(n^*) \le f(n_0)$$

- Proof : by mathematical induction
 - Base case
 - at the beginning of search, n_0 is on **OPEN** and on an optimal path to the goal
 - A* has found this path

$$-\hat{f}(n_0) \le f(n_0) \text{ because } \hat{f}(n_0) = \hat{h}(n_0) \le f(n_0)$$

 $- n_0$: n^* of the lemma at this stage

9.2.2 Admissibility of A* (Cont'd)

Induction step

- assume the conclusions of the lemma at the time *m* nodes have been expanded ($m \ge 0$)
- prove the conclusions true at the time m+1 nodes have been expanded
- Continuing the proof of the theorem
 - ♦ A* must terminate
 - ◆ A* terminates in an optimal path
- Admissible
 - Algorithm that is guaranteed to find an optimal path to the goal
 - With the 3 conditions of the theorem, A* is admissible
 - Any \hat{h} function not overestimating h is admissible

9.2.2 Admissibility of A^{*} (Cont'd)

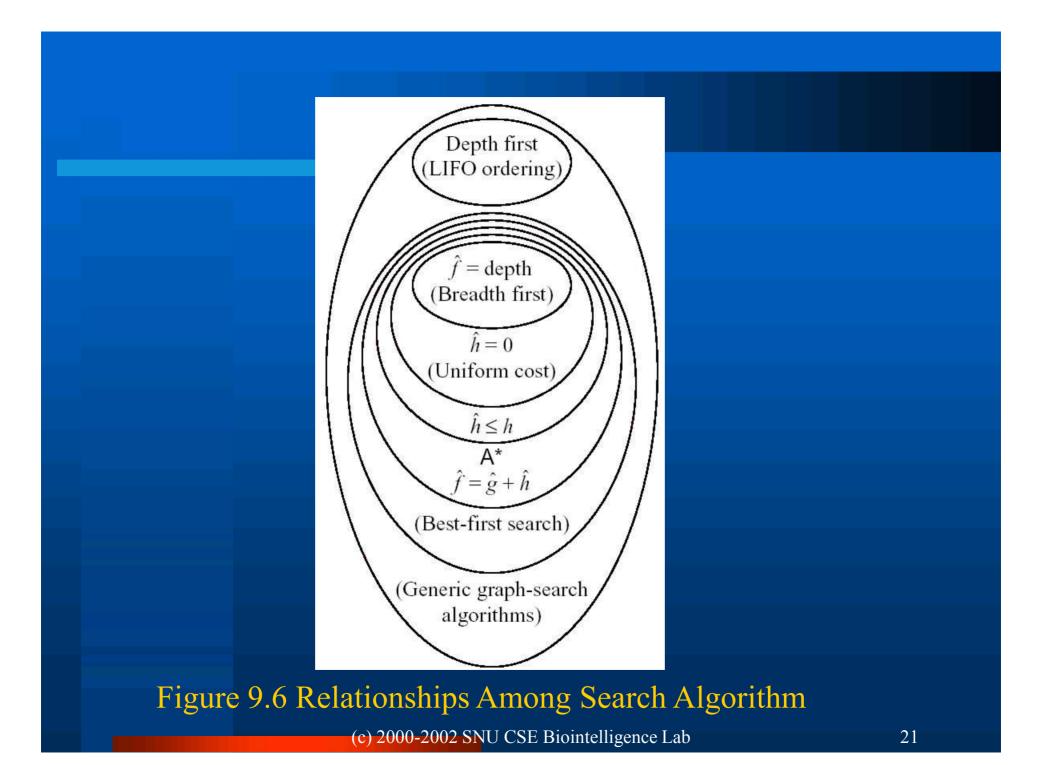
• Theorem 9.2

• If A_2^* is more informed than A_1^* , then at the termination of their searches on any graph having a path from n_0 to a goal node, every node expanded by A_2^* is also expanded by A_1^* A_1^* expands at least as many nodes as does A_2^*

 A_2^* is more efficient

Figure 9.6

- $\hat{h} \equiv 0$: uniform-cost search
- $\hat{f}(n) = \hat{g}(n) = \operatorname{depth}(n)$: breadth-first search
- uniform-cost/breadth-first search: admissible



9.2.3 The Consistency (or Monotone)Condition

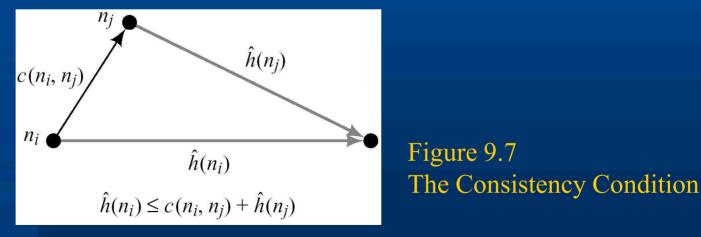
- Consistency condition
 - n_i is a successor of n_i

$$\hat{h}(n_i) - \hat{h}(n_j) \le c(n_i, n_j)$$

- $c(n_i, n_j)$: cost of the arc from n_i to n_j
- Rewriting

$$\hat{h}(n_i) \le \hat{h}(n_j) + c(n_i, n_j) \qquad \hat{h}(n_j) \ge \hat{h}(n_i) - c(n_i, n_j)$$

• A type of triangle inequality



(c) 2000-2002 SNU CSE Biointelligence Lab

9.2.3 The Consistency (or Monotone)Condition (Cont'd)

• Implies that \hat{f} values of the nodes are monotonically nondecreasing as we move away from the start node

 $\hat{h}(n_j) \ge \hat{h}(n_i) - c(n_i, n_j)$ $\hat{h}(n_j) + \hat{g}(n_j) \ge \hat{h}(n_i) + \hat{g}(n_j) - c(n_i, n_j)$

$$\longrightarrow \hat{f}(n_j) \ge \hat{f}(n_i)$$

 $\hat{g}(n_j) = \hat{g}(n_i) + c(n_i, n_j)$

- Consistency condition on \hat{h} is often called the monotone condition on \hat{f}
- Theorem 9.3
 - If the consistency condition on \hat{h} is satisfied, then when A* expands a node *n*, it has already found an optimal path to *n*

9.2.3 The Consistency (or Monotone)Condition (Cont'd)

- Argument for the admissibility of A* under the consistency condition
 - Monotonicity of \hat{f} : search expands outward along contours of increasing \hat{f} values

• The first goal node selected will be a goal node having a minimal \hat{f}

• For any goal node,
$$n_g$$
, $\hat{f}(n_g) = \hat{g}(n_g)$

- The first goal node selected will be one having minimal \hat{g}
- Whenever a goal node, n_g , is selected for expansion, we have found an optimal path to that goal node $(\hat{g}(n_g) = g(n_g))$
- The first goal node selected will be one for which the algorithm has found an optimal path

9.2.4 Iterative-Deepening A*

- Breadth-first search
 - Exponentially growing memory requirements
- Iterative deepening search
 - ♦ Memory grows linearly with the depth of the goal
 - Parallel implementation of IDA*: further efficiencies gain
- IDA*
 - Cost cut off in the first search: $\hat{f}(x)$

$$\hat{g}(n_0) = \hat{g}(n_0) + \hat{h}(n_0) = \hat{h}(n_0)$$

- Depth-first search with backtracking
- If the search terminates at a goal node: minimal-cost path
- ♦ Otherwise
 - increase the cut-off value and start another search
 - The lowest \hat{f} values of the nodes visited (not expanded) in the previous search is used as the new cut-off value in the next search

2000-2002 SNU CSE Biointelligence Lab

9.2.5 Recursive Best-First Search

- RBFS (recursive best-first search)
 - uses slightly more memory than does IDA*
 - ◆ generates fewer nodes than does IDA*
- Backing up \hat{f} value
 - When a node *n* is expanded, computes \hat{f} values of successors of *n* and recomputes \hat{f} values of *n* and all of *n*'s ancestors
- Process of backing up

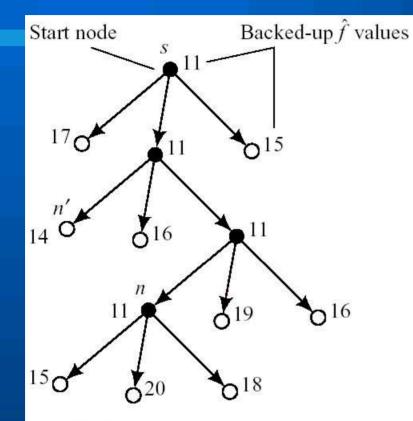
• Backed-up value, $\hat{f}(m)$, of node *m* with successors m_i

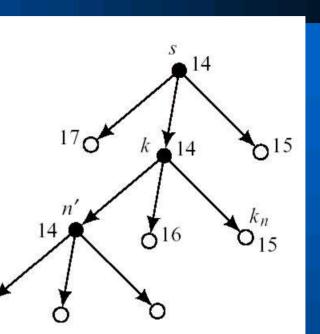
 $|\hat{f}(m) = \min \hat{f}(m_i)|$

9.2.5 Recursive Best-First Search (Cont'd)

• Description

- One of successors of node *n* has the smallest \hat{f} over all *OPEN* nodes, it is expanded in turn, and so on.
- When other *OPEN* node, n', (not a successor of n) has the lowest value of \hat{f}
 - backtracks to the lowest common ancestor, node *k*
 - k_n : successor of node k on the path to n
 - **RBFS** removes the subtree rooted at k_n , from **OPEN**
 - k_n becomes an **OPEN** node with \hat{f} value (its backed-up value)
 - Search continues below that **OPEN** node with the lowest value of \hat{f}





(a) RBFS has just expanded node n but has not yet backed up the \hat{f} values of its successors

(b) \hat{f} values have been backed up, the subtree below k_n has been discarded, and search continues below n'

Figure 9.9 Recursive Best-First Search

9.3 Heuristic Functions and Search Efficiency

- Selection of heuristic function
 - Crucial for the efficiency of A*
 - $\hat{h} \equiv 0$
 - assures admissibility
 - Uniform-cost search \rightarrow inefficient
 - \hat{h} = the highest possible lower bound on h
 - maintains admissibility
 - expands the fewest nodes
- Using relaxed model
 - \hat{h} functions are always admissible

9.3 Heuristic Functions and Search Efficiency (Cont'd)

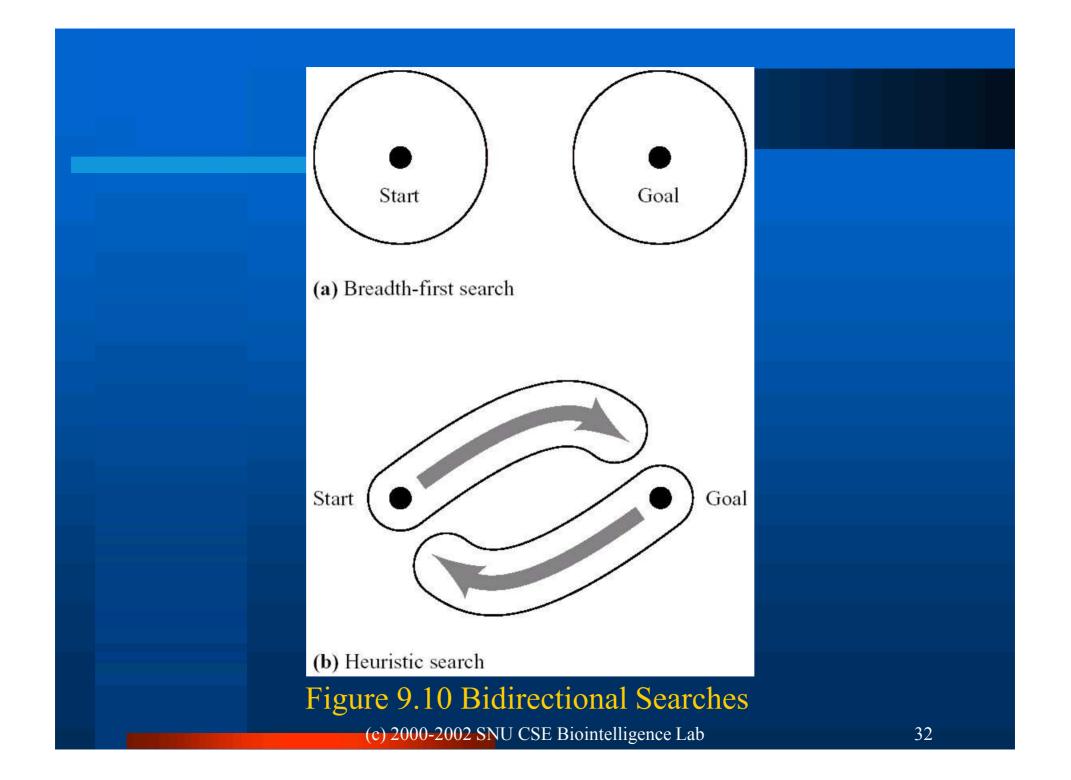
• Selecting \hat{h} function

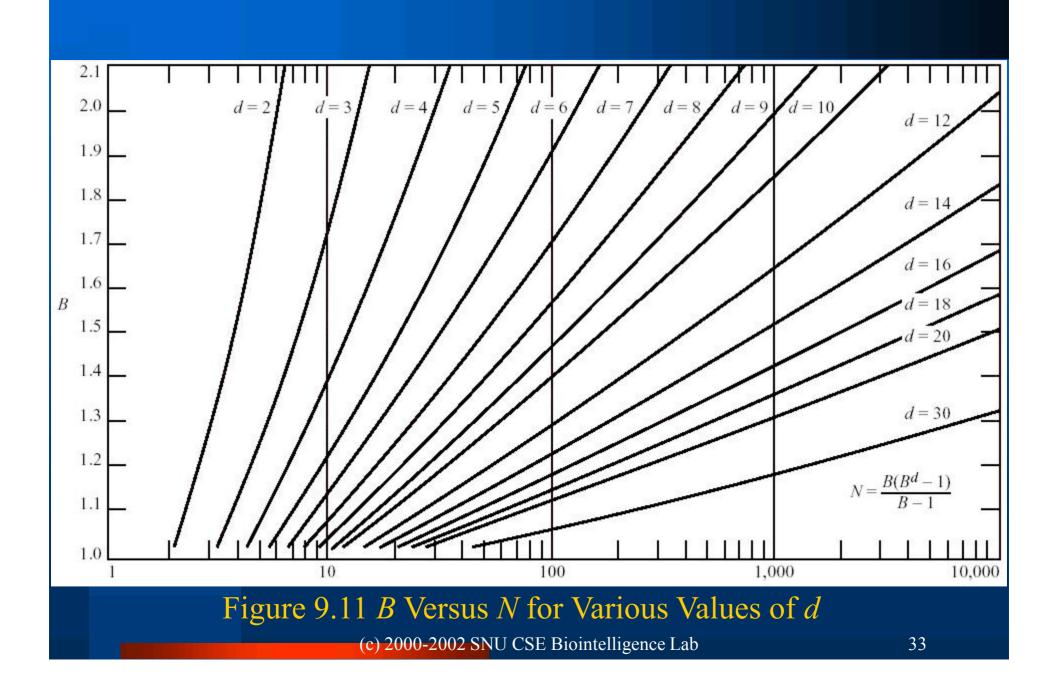
- must consider the amount of effort involved in calculating it
- Less relaxed model: better heuristic function (difficult in calculating)
- Trade off between the benefits gained by an accurate \hat{h} and the cost of computing it
- Using \hat{h} instead of the lower bound of h
 - increases efficiency at the expense of admissibility
 - \hat{h} : easier to compute
- Modifying the relative weights of \hat{g} and \hat{h} in the evaluation function $\hat{f} = \hat{g} + w\hat{h}$
 - ◆ Large values of *w*: overemphasize the heuristic component
 - Very small values of w: give the search a predominantly breadth-first character

9.3 Heuristic Functions and Search Efficiency (Cont'd)

- Simultaneous searches from both the start and a goal node
 - Breadth-first search
 - search frontiers meet between start and goal
 - guaranteed to find an optimal path
 - ♦ Heuristic search
 - Two search frontiers might not meet to produce an optimal path
- Effective branching factor
 - describes how sharply a search process is focused toward a goal
 - ♦ B = the number of successors of each node in the tree having the following properties
 - Nonleaf node has the same number (*B*) of successors
 - Leaf nodes are all of depth *d*
 - Total number of nodes is N

$$B + B2 + \dots + Bd = N$$
$$\frac{(Bd - 1)B}{(B - 1)} = N$$





9.3 Heuristic Functions and Search Efficiency (Cont'd)

- 3 important factors influencing the efficiency of algorithm A*
 - The cost (or length) of the path found
 - The number of nodes expanded in finding the path
 - The computational effort required to compute \hat{h}
- Time complexity: O(n)
 - Breadth-first search: $O(B^d)$
 - Uniform-cost search ($\hat{h} \equiv 0$): $O(B^{C/c})$
 - C: cost of an optimal solution
 - *c*: cost of the least costly arc

9.4 Additional Readings and Discussion