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l Expert Systems

¨ One of the most successful applications of AI reasoning technique 
using facts and rules

¨ “AI Programs that achieve expert-level competence in solving 
problems by bringing to bear a body of knowledge [Feigenbaum, 
McCorduck & Nii 1988]”

l Expert systems vs. knowledge-based systems
l Rule-based expert systems

¨ Often based on reasoning with propositional logic Horn clauses.

(c) 2000-2002 SNU CSE Biointelligence Lab 1

l Expert Systems
¨ One of the most successful applications of AI reasoning technique 

using facts and rules
¨ “AI Programs that achieve expert-level competence in solving 

problems by bringing to bear a body of knowledge [Feigenbaum, 
McCorduck & Nii 1988]”

l Expert systems vs. knowledge-based systems
l Rule-based expert systems

¨ Often based on reasoning with propositional logic Horn clauses.



17.4 Rule17.4 Rule--Based Expert Systems (2/9)Based Expert Systems (2/9)

l Structure of Expert Systems
¨ Knowledge Base

< Consists of predicate-calculus 
facts and rules about subject at 
hand.

¨ Inference Engine
< Consists of all the processes that 

manipulate the knowledge base to 
deduce information requested by 
the user.

¨ Explanation subsystem
< Analyzes the structure of the 

reasoning performed by the 
system and explains it to the user.
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l Knowledge acquisition subsystem
¨ Checks the growing knowledge base for possible inconsistencies 

and incomplete information.

l User interface
¨ Consists of some kind of natural language processing system or 

graphical user interfaces with menus.
l “Knowledge engineer”

¨ Usually a computer scientist with AI training.
¨ Works with an expert in the field of application in order to 

represent the relevant knowledge of the expert in a forms of that 
can be entered into the knowledge base.

(c) 2000-2002 SNU CSE Biointelligence Lab 3

l Knowledge acquisition subsystem
¨ Checks the growing knowledge base for possible inconsistencies 

and incomplete information.

l User interface
¨ Consists of some kind of natural language processing system or 

graphical user interfaces with menus.
l “Knowledge engineer”

¨ Usually a computer scientist with AI training.
¨ Works with an expert in the field of application in order to 

represent the relevant knowledge of the expert in a forms of that 
can be entered into the knowledge base.



17.4 Rule17.4 Rule--Based Expert Systems (4/9)Based Expert Systems (4/9)

sheet.) balanceexcellent an  hasapplicant  (The BAL
expenses.)his/her  exceeds income sapplicant' (The INC

rating.)credit  good a hasapplicant  (TheRATING 
amount.)loan  n thegrater tha         

lysufficient is collateral on the appraisal (The APP
.)reputation financial good a hasapplicant  (The REP

payments.)loan   the toable isapplicant  (The PYMT
ry.)satisfacto isloan  for the collateral (The COLLAT

approved.) be shouldloan  (TheOK 

Example: loan officer in a bank
“Decide whether or not to grant a personal loan to an individual.”

Facts
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l To prove OK
¨ The inference engine searches fro AND/OR proof tree using either 

backward or forward chaining.

l AND/OR proof tree
¨ Root node: OK
¨ Leaf node: facts
¨ The root and leaves will be connected through the rules.

l Using the preceding rule in a backward-chaining
¨ The user’s goal, to establish OK, can be done either by proving 

both BAL and REP or by proving each of COLLAT, PYMT, and 
REP.

¨ Applying the other rules, as shown, results in other sets of nodes to 
be proved.
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l By backward-chaining
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l Consulting system
¨ Attempt to answer a user’s query by asking questions about the 

truth of propositions that they might know about.
¨ Backward-chaining through the rule is used to get to askable 

questions.
¨ If a user were to “volunteer” information, bottom-up, forward 

chaining through the rules could be used in an attempt to connect 
to the proof tree already built.

¨ The ability to give explanations for a conclusion
< Very important for acceptance of expert system advice.

¨ Proof tree
< Used to guide the explanation-generation process.
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l In many applications, the system has access only to 

uncertain rules, and the user not be able to answer 
questions with certainty.

l MYCIN [Shortliffe 1976]: Diagnose bacterial infections.

(.5). a-group-cusstreptococ ; (.75) pos-coag-ccusstaphyloco
isinfection   thecausing bemight  which smears)or  cultureson 
seen an those(orther th organism  that theevidence is There :Then

bacterial isinfection   theof  typeThe 4)
and culture,  theofstain  on theseen not   wereOrganisms 3)

and infection,
esoft tissuor skin  serious of evidence have doespatient  The 2)

and ,meningitis is therapy requireswhich infection  The 1) : If
300 Rule
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¨ PROSPECTOR [Duda, Gaschnig & Hart 1979, 
Campbell, et al. 1982]
<Reason about ore deposits.

¨ The numbers (.75 and .5 in MYCIN, and 5, 0.7 in 
PROSPECTOR) are ways to represent the certainty or 
strength of a rule.

¨ The numbers are used by these systems in computing 
the certainty of conclusions.

deposit.
copperporphyry  afor  favorablet environmen regional a 0.7) (5, is

e then thersystem,fault  going- thoroughintrusive,-pre a is  thereIf
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l Inductive rule learning
¨Creates new rules about a domain, not derivable from 

any previous rules.
¨ Ex) Neural networks

l Deductive rule learning
¨ Enhances the efficiency of a system’s performance by 

deducting additional rules from previously known 
domain rules and facts.

¨ Ex) EBG (explanation-based generalization)
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l Train rules from given training set
¨ Seek a set of rules that covers only positive instances

< Positive instance: OK = 1
< Negative instance: OK = 0

¨ From training set, we desire to induce rules of the form

¨ We can make some rule more specific by adding an atom to its 
antecedent to make it cover fewer instances.
< Cover: If the antecedent of a rule has value True for an instance in the 

training set, we say that the rule covers that instance.
¨ Adding a rule makes the system using these rules more general.
¨ Searching for a set of rules can be computationally difficult.

< èhere, we use “greedy” method which is called separate and 
conquer.
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l Separate and conquer
¨ First attempt to find a single rule that covers only 

positive instances
<Start with a rule that covers all instances
<Gradually make it more specific by adding atoms to its 

antecedent.

¨Gradually add rules until the entire set of rules covers 
all and only the positive instances.

¨ Trained rules can be simplified using pruning.
<Operations and noise-tolerant modifications help minimize the 

risk of overfitting.

17.5.1 Learning Propositional Calculus 17.5.1 Learning Propositional Calculus 
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l Example: loan officer in a bank
¨ Start with the provisional rule              .

<Which cover all instances.

¨Add an atom it cover fewer negative instances-working 
toward covering only positive ones.

¨Decide, which item should we added ?
<From                                                   by
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l Select that      yielding the largest value of     .
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So, we select BAL, yielding the provisional rule.
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l Rule                covers the positive instances 3,4, and 7, 

but also covers the negative instance 1.
¨ So, select another atom to make this rule more specific.

l We have already decided that the first component in 
the antecedent is BAL, so we have to consider it.

OKBALÉ
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We select RATING because            is based on a  larger sample.RATINGr
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We need more rules which cover positive instance 6. 
To learn the next rule, eliminate from the table all of 
the positive instances already covered by the first rule.
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l Begin the process all over again with reduced table
¨ Start with the rule              .

¨ Finally we get                                               which covers 
only positive instances with first rule, so we are finished.
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¨ Start with the rule              .
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This rule covers negative instances 1, 8, and 9      
è we need another atom to the antecedent.
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This rule covers negative example 9.
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l Pseudocode of this rule learning process.
¨Generic Separate-and-conquer algorithm (GSCA)
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17.5.2 Learning First17.5.2 Learning First--Order Logic Order Logic 
Rules (1/10)Rules (1/10)
l Inductive logic programming (ILP)

¨ Concentrate on methods for inductive learning of Horn clauses in 
first order predicate calculus (FOPC) and thus PROLOG program.

¨ FOIL [Quinlan, 1990]

l The Objective of ILP
¨ To learn a program,    ,consisting of Horn clauses,    ,each of which is 

of the form                      where, the       are atomic formulas that 
unify with ground atomic facts.
< :    should evaluate to True when its variables are bound to 

some set of values known to be in the relation we are trying to 
learn (positive instance: training set).

< :    should evaluate to False when its variables are bound to 
some set of values known not to be in the relation (negative 
instance).
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l We want     to cover the positives instances and not 
cover negative ones.

l Background knowledge
¨ The ground atomic facts with which the      are to unify.
¨ They are given-as either subsidiary PROLOG programs, 

which can be run and evaluated, or explicitly in the form 
of a list of facts.

l Example: A delivery robot navigating around in a building 
finds through experience, that it is easy to go between  certain 
pairs of locations and not so easy to go between certain other 
pairs.

17.5.2 Learning First17.5.2 Learning First--Order Logic Order Logic 
Rules (2/10)Rules (2/10)
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l A, B, C: junctions
l All of the other locations:  

shops
l Junction(x)

¨Whether junction or not.
l Shop(x,y)

¨Whether shop or not which 
is connected to junction x.
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}CC2,,CC1,,C2C,,C1C,,BB2,,B1B,
,B2B,,B1B,,AA2,,AA1,,A2A,,A1A,

,BC, ,AC, ,AB, ,CB, ,CA, ,BA,{
Ξ  :Easy of instances Positive

><><><><><><
><><><><><><

><><><><><><

+

¨ We want a learning program to learn a program, Easy(x,y) that covers the 
positive instances in      but not the negative ones.

¨ Easy(x,y) can use the background subexpressions Junction(x) and 
Shop(x,y).

¨ Training set

X
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¨ For all of the locations named in      , only the following 
pairs give a value True for Shop:

¨ The following PROLOG program covers all of the positive
instances of the training set and none of the negative ones

Easy(x, y) :- Junction(x), Junction(y)

:- Shop(x, y)

:- Shop(y, x)

17.5.2 Learning First17.5.2 Learning First--Order Logic Order Logic 
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¨ For all of the locations named in      , only the following 
pairs give a value True for Shop:

¨ The following PROLOG program covers all of the positive
instances of the training set and none of the negative ones

Easy(x, y) :- Junction(x), Junction(y)

:- Shop(x, y)

:- Shop(y, x)



l Learning process: generalized separate and conquer 
algorithm (GSCA)
¨ Start with a program having a single rule with no body
¨Add literals to the body until the rule covers only (or 

mainly) positive instances
¨Add rules in the same way until the program covers all (or 

most) and only (with few exceptions) positive instances.
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¨ Practical ILP systems restrict the literals in various 
ways.

¨ Typical allowed additions are
<Literals used in the background knowledge
<Literals whose arguments are a subset of those in the head of 

the clause.
<Literals that introduce a new distinct variable different from 

those in the head of the clause.
<A literal that equates a variable in the head of the clause with 

another such variable or with a term mentioned in the 
background knowledge.

<A literal that is the same (except for its arguments) as that in 
the head of the clause.

17.5.2 Learning First17.5.2 Learning First--Order Logic Order Logic 
Rules (7/10)Rules (7/10)
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l The literals that we might consider adding to a clause are

l ILP version of GSCA
¨ First, initialize first clause as Easy(x, y) :-
¨ Add Junction(x), so Easy(x, y) :- Junction(x) covers the following 

instances

¨ Include more literal ‘Junction(y)’ è Easy(x, y)  :- Junction(x), Junction(y)

Junction(x), Junction(y), Junction(z)
Shop(x,y), Shop(y,x), Shop(x,z)
Shop(z,y), (x=y)

(c) 2000-2002 SNU CSE Biointelligence Lab 27

l The literals that we might consider adding to a clause are

l ILP version of GSCA
¨ First, initialize first clause as Easy(x, y) :-
¨ Add Junction(x), so Easy(x, y) :- Junction(x) covers the following 

instances

¨ Include more literal ‘Junction(y)’ è Easy(x, y)  :- Junction(x), Junction(y)

}C2C,,C1C,,B2B,,B1B,,A2A,,A1A,
,BC, ,AC, ,AB, ,CB, ,CA, ,BA,{

><><><><><><
><><><><><><

}C2B,,C1B,,A2B,,A1B,,B2C,,B1C,
,A2C, ,A1C, ,C2A, ,C1A, ,B2A, ,B1A,{

><><><><><><
><><><><><><

çPositive instances

çNegative instances

}BC, ,AC, ,AB, ,CB, ,CA, ,BA,{ ><><><><><><



¨But program      does not cover the following positive instances.

¨Remove the positive instance covered by Easy(x,y):-
Junction(x), Junction(y) from       to form the         to be used in 
next pass through inner loop.
< : all negative instance in      + the positive instance that are not            

covered yet.

¨ Inner loop create another initial clause “Easy(x,y) :-”
<Add literal Shop(x,y) : Easy(x,y) :- Shop(x,y) è cover no negative 

instances, so we are finished with another pass through inner loop.
<Covered positive instance by this rule ( remove this from         )

17.5.2 Learning First17.5.2 Learning First--Order Logic Order Logic 
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¨But program      does not cover the following positive instances.

¨Remove the positive instance covered by Easy(x,y):-
Junction(x), Junction(y) from       to form the         to be used in 
next pass through inner loop.
< : all negative instance in      + the positive instance that are not            

covered yet.

¨ Inner loop create another initial clause “Easy(x,y) :-”
<Add literal Shop(x,y) : Easy(x,y) :- Shop(x,y) è cover no negative 

instances, so we are finished with another pass through inner loop.
<Covered positive instance by this rule ( remove this from         )

X CURX
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¨Now we have Easy(x,y) :- Junction(x), Junction(y)
:- Shop(x, y)

¨ To cover following instance

¨Add Shop(y, x)
¨ Then we have  Easy(x,y) :- Junction(x), Junction(y)

:- Shop(x, y)
:- Shop(y, x)

¨ This cover only positive instances.
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17.5.3 Explanation17.5.3 Explanation--Based Based 
Generalization (1/2)Generalization (1/2)

l Example: “Block world”
¨General knowledge of the “Block world”.

<Rules

<Fact

<We want to proof
“                        ”

<Proof is very simple è
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17.5.3 Explanation17.5.3 Explanation--Based Based 
Generalization (2/2)Generalization (2/2)

l Explanation: Set of facts used in the proof
¨ Ex) explanation for “                    ” is “              ”
¨ From this explanation, we can make  “                                   ”

<Replacing constant ‘A’ by variable ‘x’, then, we have “Green(x)”
<Then we can proof  “                     ”, as like the case of  “                      ”
<èExplanation Based Generalization

l Explanation-based generalization (EBG): Generalizing 
the explanation by replacing constant by variable
¨More rules might slow down the reasoning process, so EBG 

must be used with care-possibly by keeping information about 
the utility of the learned rules.
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l [Kautz, Kearns, & Selman 1993]

¨Characteristic model
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