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Module #1 - Logic

M d l #1 F d ti f L iModule #1: Foundations of Logic
(§§1.1-1.3, ~3 lectures)( )

Mathematical Logic is a tool for working with 
li d d I i l dcomplicated compound statements.  It includes:

• A language for expressing them.
• A concise notation for writing them.
• A methodology for objectively reasoning aboutA methodology for objectively reasoning about 

their truth or falsity.
• It is the foundation for expressing formal proofs in• It is the foundation for expressing formal proofs in 

all branches of mathematics.
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Module #1 - Logic

Foundations of Logic: Overview

•• Propositional logic (Propositional logic (§§1.11.1--1.2)1.2)::
–– Basic definitions. (Basic definitions. (§§1.1)1.1)
–– Equivalence rules & derivations. (Equivalence rules & derivations. (§§1.2)1.2)Equivalence rules & derivations. (Equivalence rules & derivations. (§§1.2)1.2)

•• Predicate logic (Predicate logic (§§1.31.3--1.4)1.4)
–– Predicates.Predicates.
–– Quantified predicate expressions.Quantified predicate expressions.
–– Equivalences & derivations.Equivalences & derivations.
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Module #1 - Logic Topic #1 – Propositional Logic

Propositional Logic (§1.1)

Propositional LogicPropositional Logic is the logic of compound is the logic of compound 
b il f i lb il f i lstatements built from simpler statements statements built from simpler statements 

using sousing so--called called BooleanBoolean connectives.connectives.
Some applications in computer science:Some applications in computer science:
•• Design of digital electronic circuits.Design of digital electronic circuits.

George Boole
(1815-1864)

g gg g
•• Expressing conditions in programs.Expressing conditions in programs.
•• Queries to databases & search enginesQueries to databases & search engines•• Queries to databases & search engines.Queries to databases & search engines.
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Definition of a Proposition

A A propositionproposition ((pp, , qq, , rr, …) is simply a , …) is simply a statement statement ((i.e.i.e., , 
a declarative sentence)a declarative sentence) with a definite meaningwith a definite meaninga declarative sentence)a declarative sentence) with a definite meaningwith a definite meaning, , 
having a having a truth valuetruth value that’s either that’s either truetrue (T) or (T) or falsefalse
(F) ((F) (nevernever both neither or somewhere inboth neither or somewhere in(F) ((F) (nevernever both, neither, or somewhere in both, neither, or somewhere in 
between).between).

(However you might not(However you might not knowknow the actual truththe actual truth(However, you might not (However, you might not knowknow the actual truth the actual truth 
value, and it might be situationvalue, and it might be situation--dependent.)dependent.)

[Later we will study [Later we will study probability theory,probability theory, in which we assign in which we assign [ y[ y p y y,p y y, gg
degrees of certaintydegrees of certainty to propositions.  But for now: think to propositions.  But for now: think 
True/False only!]True/False only!]
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Examples of Propositions

•• ““It is raining.”  (In a given situation.)It is raining.”  (In a given situation.)
•• “Beijing is the capital of China.”   • “1 + 2 = 3”“Beijing is the capital of China.”   • “1 + 2 = 3”
But, the following are But, the following are NOTNOT propositions:propositions:, g, g p pp p
•• “Who’s there?” (interrogative, question)“Who’s there?” (interrogative, question)
•• “La la la la la ” (meaningless interjection)“La la la la la ” (meaningless interjection)•• La la la la la.  (meaningless interjection)La la la la la.  (meaningless interjection)
•• “Just do it!” (imperative, command)“Just do it!” (imperative, command)
•• “Yeah, I sorta dunno, whatever...” (vague)“Yeah, I sorta dunno, whatever...” (vague)
•• “1 + 2” (expression with a non“1 + 2” (expression with a non--true/false value)true/false value)
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Operators / Connectives

An An operatoroperator or or connectiveconnective combines one or combines one or 
more more operand operand expressions into a larger expressions into a larger 
expression.  (expression.  (E.g.E.g., “+” in numeric exprs.), “+” in numeric exprs.)p (p ( gg , p ), p )

UnaryUnary operators take 1 operand (operators take 1 operand (e.g.,e.g., −−3); 3); 
bibi operators take 2 operands (operators take 2 operands ( 33 ×× 4)4)binary binary operators take 2 operands (operators take 2 operands (egeg 3 3 ×× 4).4).

PropositionalPropositional or or BooleanBoolean operators operate on operators operate on 
propositions or truth values instead of on propositions or truth values instead of on 
numbers.numbers.
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Some Popular Boolean Operators

Formal NameFormal Name NicknameNickname ArityArity SymbolSymbolFormal NameFormal Name NicknameNickname ArityArity SymbolSymbol

Negation operatorNegation operator NOTNOT UnaryUnary ¬¬
Conjunction operatorConjunction operator ANDAND BinaryBinary ∧∧
Disjunction operatorDisjunction operator OROR BinaryBinary ∨∨j pj p yy
ExclusiveExclusive--OR operatorOR operator XORXOR BinaryBinary ⊕⊕
I li ti tI li ti t IMPLIESIMPLIES BiBiImplication operatorImplication operator IMPLIESIMPLIES BinaryBinary →→
Biconditional operatorBiconditional operator IFFIFF BinaryBinary ↔↔
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The Negation Operator

The unary The unary negation operatornegation operator “¬” (“¬” (NOTNOT) ) 
transforms a prop. into its logicaltransforms a prop. into its logical negationnegation..

E gE g IfIf pp = “I have brown hair ”= “I have brown hair ”E.g.E.g. If If pp  I have brown hair. I have brown hair.
then ¬then ¬pp = “I do = “I do notnot have brown hair.”have brown hair.”

Truth tableTruth table for NOT:for NOT: p ¬p
T FT ≡ T F ≡ F l T F
F T

T :≡ True;  F :≡ False
“:≡” means “is defined as”

O d R lt
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The Conjunction Operator

The binary The binary conjunction operatorconjunction operator ““∧∧” (” (ANDAND) ) 
combines two propositions to form their combines two propositions to form their 
logical logical conjunctionconjunction.. ∧∧NDNDgg jj

E.g.E.g. If If pp=“I will have salad for lunch.” and =“I will have salad for lunch.” and 
“I will have steak for dinner ” then“I will have steak for dinner ” thenq=q=“I will have steak for dinner.”, then “I will have steak for dinner.”, then 

pp∧∧qq=“I will have salad for lunch =“I will have salad for lunch andand
I will have steak for dinner.”I will have steak for dinner.”

R b “ ” i t lik “A” d it “” i t lik “A” d it “ ””
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Conjunction Truth Table

•• Note that aNote that a p q p∧q
Operand columns

conjunctionconjunction
pp11 ∧∧ pp22∧∧ … … ∧∧ ppnn

p q p∧q
F F Fpp11 pp2 2 ppnn

of of nn propositionspropositions
will have 2will have 2nn rowsrows

F T F
T F Fwill have 2will have 2 rowsrows

in its truth table.in its truth table.
T F F
T T T

•• Also: ¬ and Also: ¬ and ∧∧ operations together are suffioperations together are suffi--
cient to express cient to express anyany Boolean truth table!Boolean truth table!
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The Disjunction Operator

The binary The binary disjunction operatordisjunction operator ““∨∨” (” (OROR) ) 
combines two propositions to form their combines two propositions to form their 
logical logical disjunctiondisjunction..gg jj

pp=“My car has a bad engine.”=“My car has a bad engine.”
h b d bh b d b

∨∨
q=q=“My car has a bad carburetor.”“My car has a bad carburetor.”
pp∨∨qq=“Either my car has a bad engine,=“Either my car has a bad engine, ororpp∨∨qq Either my car has a bad engine, Either my car has a bad engine, oror

my car has a bad carburetor.”my car has a bad carburetor.” After the downward-
pointing “axe” of “∨∨””
splits the wood, yousplits the wood, youi i lik d/ i li h
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splits the wood, yousplits the wood, you
can take 1 piece OR the can take 1 piece OR the 
other, or both.other, or both.

Meaning is like “and/or” in English.



Module #1 - Logic Topic #1.0 – Propositional Logic: Operators

Disjunction Truth Table

•• Note that Note that pp∨∨q q meansmeans p q p∨qthat that pp is true, or is true, or qq isis
true, true, or bothor both are true!are true!

p q p∨q
F F F
F T T Note,,

•• So, this operation isSo, this operation is
also calledalso called i l ii l i

F T T
T F T

Note
difference
from ANDalso called also called inclusive or,inclusive or,

because it because it includesincludes thethe T T T
possibility that both possibility that both pp and and qq are true.are true.

•• ““¬¬” and “” and “∨∨” together are also universal.” together are also universal.
2008-08-09 (c)2001-2003, Michael P. Frank 13
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Module #1 - Logic Topic #1.0 – Propositional Logic: Operators

Nested Propositional Expressions

•• Use parentheses to Use parentheses to group subgroup sub--expressionsexpressions::
““I just saw my old I just saw my old ffriendriend, and either , and either he’s he’s 
ggrownrown or or I’ve I’ve sshrunkhrunk.” = .” = ff ∧∧ ((gg ∨∨ ss))gg ff ((gg ))
–– ((ff ∧∧ gg) ) ∨∨ ss would mean something differentwould mean something different

ff ∧∧ gg ∨∨ ss would be ambiguouswould be ambiguous–– ff ∧∧ gg ∨∨ ss would be ambiguouswould be ambiguous
•• By convention, “By convention, “¬” takes ¬” takes precedenceprecedence over over 

both “both “∧∧” and “” and “∨∨”.”.
–– ¬¬ss ∧∧ ff means (¬means (¬ss)) ∧∧ ff ,, notnot ¬ (¬ (ss ∧∧ ff))
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A Simple Exercise

Let Let pp=“It rained last night”, =“It rained last night”, 
qq=“The sprinklers came on last night,” =“The sprinklers came on last night,” 
rr=“The lawn was wet this morning.”=“The lawn was wet this morning.”gg

Translate each of the following into English:Translate each of the following into English:
¬¬pp = = 
rr ∧∧ ¬¬pp ==

“It didn’t rain last night.”
“The lawn was wet this morning, and
i did i l i h

rr ∧∧ pp   
¬ ¬ r r ∨∨ pp ∨∨ q =q =

it didn’t rain last night.”
“Either the lawn wasn’t wet this 
morning or it rained last night or
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The Exclusive Or Operator

The binary The binary exclusiveexclusive--or operatoror operator ““⊕⊕” (” (XORXOR) ) 
combines two propositions to form their combines two propositions to form their 
logical “exclusive or” (exjunction?).logical “exclusive or” (exjunction?).g ( j )g ( j )

pp = “I will earn an A in this course,”= “I will earn an A in this course,”
ill d hiill d hiqq == “I will drop this course,”“I will drop this course,”

pp ⊕⊕ qq = “I will either earn an A for this= “I will either earn an A for thispp ⊕⊕ q q  I will either earn an A for this  I will either earn an A for this 
course, or I will drop it (but not both!)”course, or I will drop it (but not both!)”
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Exclusive-Or Truth Table

•• Note that Note that pp⊕⊕q q meansmeans p q p⊕qthat that pp is true, or is true, or qq isis
true, but true, but not bothnot both!!

p q p⊕q
F F F
F T T

,,
•• This operation isThis operation is

calledcalled l il i

F T T
T F Tcalled called exclusive or,exclusive or,

because it because it excludesexcludes thethe T T F Note
difference
f ORpossibility that both possibility that both pp and and qq are true.are true.

•• ““¬¬” and “” and “⊕⊕” together are” together are notnot universal.universal.

from OR.
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Natural Language is Ambiguous

Note that Note that EnglishEnglish “or” can be ambiguous “or” can be ambiguous 
regarding the “both” case!regarding the “both” case!

“Pat is a singer or“Pat is a singer or
p q p "or" q
F F FPat is a singer orPat is a singer or

Pat is a writer.” Pat is a writer.” --
ii

F F F
F T T∨

“Pat is a man or“Pat is a man or
Pat is a woman.” Pat is a woman.” --

T F T
T T ?⊕

Need context to disambiguate the meaning!Need context to disambiguate the meaning!
F thi l “ ”F thi l “ ” i l ii l i

T T ?
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The Implication Operator

The The implicationimplication p p →→ qq states that states that pp implies implies q.q.
antecedent consequent

I.e.I.e., If , If pp is true, then is true, then qq is true; but if is true; but if pp is not is not 
true thentrue then qq could be either true or falsecould be either true or falsetrue, then true, then qq could be either true or false.could be either true or false.

E.g.E.g., let , let p p = “You study hard.”= “You study hard.”
ill d dill d dq q = “You will get a good grade.”= “You will get a good grade.”

pp →→ q =q = “If you study hard, then you will get“If you study hard, then you will getp p →→ q  q  If you study hard, then you will get If you study hard, then you will get 
a good grade.” a good grade.” (else, it could go either way)(else, it could go either way)
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Implication Truth Table

•• p p →→ q q is is falsefalse onlyonly whenwhen p q p→q
pp is true but is true but qq is is notnot true.true.

•• pp →→ qq doesdoes notnot saysay

p q p→q
F F T 
F T Tp p →→ q   q   does does not not saysay

that that pp causescauses qq!!
dd ii

F T T
T F F 

The 
only
False•• p p →→ q   q   does does not not requirerequire

that that pp or or qq are ever trueare ever true!!
T T T

 

 

False
case!

•• E.g.E.g. “(1=0) “(1=0) →→ pigs can fly” is TRUE!pigs can fly” is TRUE!
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Examples of Implications

•• ““If this lecture ends, then the sun will rise If this lecture ends, then the sun will rise 
tomorrow.” tomorrow.” TrueTrue or or FalseFalse??

•• “If Tuesday is a day of the week then I am“If Tuesday is a day of the week then I amIf Tuesday is a day of the week, then I am If Tuesday is a day of the week, then I am 
a penguin.” a penguin.” TrueTrue or or FalseFalse??

f h h i idf h h i id•• “If 1+1=6, then Bush is president.” “If 1+1=6, then Bush is president.” 
TrueTrue or or FalseFalse??

•• “If the moon is made of green cheese, then I “If the moon is made of green cheese, then I 
am richer than Bill Gates ”am richer than Bill Gates ” TrueTrue oror FalseFalse??
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Why does this seem wrong?

•• Consider a sentence like,Consider a sentence like,
–– “If I wear a red shirt tomorrow, then the U.S. will “If I wear a red shirt tomorrow, then the U.S. will 

attack Iraq the same day.”attack Iraq the same day.”

•• In logic, we consider the sentence In logic, we consider the sentence TrueTrue so long as so long as 
either I don’t wear a red shirt, or the US attacks.either I don’t wear a red shirt, or the US attacks.

•• But in normal English conversation, if I were to But in normal English conversation, if I were to 
make this claim, you would think I was lying.make this claim, you would think I was lying.
–– Why this discrepancy between logic & language?Why this discrepancy between logic & language?
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Resolving the Discrepancy
•• In English, a sentence “if In English, a sentence “if pp then then qq” usually really ” usually really 

implicitlyimplicitly means something like,means something like,
–– ““In all possible situationsIn all possible situations, if , if pp then then qq.”.”

•• That is, “For That is, “For pp to be true and to be true and qq false is false is impossibleimpossible.”.”
•• Or “IOr “I guaranteeguarantee that no matter what ifthat no matter what if pp thenthen qq ””Or, I Or, I guaranteeguarantee that no matter what, if that no matter what, if pp, then , then qq..

•• This can be expressed in This can be expressed in predicatepredicate logiclogic as:as:
–– “For all situations “For all situations ss, if , if pp is true in situation is true in situation ss, then , then qq is also is also ,, pp ,, qq

true in situation true in situation ss”  ”  
–– Formally, we could write: Formally, we could write: ∀∀ss, , PP((ss) ) → → QQ((ss))

Thi t i l i llThi t i l i ll F lF l i li l•• This sentence is logically This sentence is logically FalseFalse in our example, in our example, 
because for me to wear a red shirt and the U.S. because for me to wear a red shirt and the U.S. notnot to to 
attack Iraq is aattack Iraq is a possiblepossible (even if not actual) situation.(even if not actual) situation.
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attack Iraq is a attack Iraq is a possiblepossible (even if not actual) situation.(even if not actual) situation.
–– Natural language and logic then agree with each other.Natural language and logic then agree with each other.
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English Phrases Meaning p → q

•• ““pp implies implies qq”” •• ““p p only if only if qq””
•• “if “if pp, then , then qq””
•• “if “if pp, , qq””

•• ““p p is sufficient for is sufficient for qq””
•• ““qq is necessary for is necessary for pp””pp,, qq

•• “when “when pp, , qq””
•• “whenever“whenever pp qq””

qq yy pp
•• ““qq follows from follows from pp””
•• ““qq is implied byis implied by pp””•• whenever whenever pp, , qq

•• ““q q if if pp””
•• q q is implied by is implied by pp
We will see some equivalent We will see some equivalent 

logic expressions laterlogic expressions later•• ““qq when when pp””
•• ““qq whenever whenever pp””

logic expressions later.logic expressions later.
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Converse, Inverse, Contrapositive

Some terminology, for an implication Some terminology, for an implication p p →→ qq::
•• Its Its converseconverse is: is: q q →→ pp..
•• ItsIts inverseinverse is:is: ¬¬pp →→ ¬¬qq•• Its Its inverseinverse is: is: ¬¬pp →→ ¬¬qq..
•• Its Its contrapositivecontrapositive:: ¬¬q q →→ ¬¬ p.p.
•• One of these three has the One of these three has the same meaningsame meaning

(same truth table) as(same truth table) as pp →→ qq Can you figureCan you figure(same truth table) as (same truth table) as pp →→ qq.  Can you figure .  Can you figure 
out which?out which?
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How do we know for sure?

Proving the equivalence of Proving the equivalence of p p →→ q q and its and its 
contrapositive contrapositive using truth tables:using truth tables:
p q q p p→q q → pp q ¬q ¬p p→q ¬q →¬p
F F T T T T
F T F T T T
T F T F F F
T T F F T T
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The biconditional operator

The The biconditionalbiconditional p p ↔ q q states that states that pp is true is true if and if and 
l ifl if (IFF)(IFF) iionly ifonly if (IFF) q(IFF) q is true.is true.

p p = “Bush wins the 2004 election.”= “Bush wins the 2004 election.”
qq == “Bush will be president for all of 2005.”“Bush will be president for all of 2005.”
pp ↔ q =q = “If and only if Bush wins the 2004“If and only if Bush wins the 2004p p ↔ q  q  If, and only if, Bush wins the 2004 If, and only if, Bush wins the 2004 

election, Bush will be president for all of 2005.”election, Bush will be president for all of 2005.”
I’  tillI’m still
here!
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Biconditional Truth Table

•• p p ↔ q q means that means that pp and and qq p q p↔q
have the have the samesame truth value.truth value.

•• Note this truth table is theNote this truth table is the

p q p ↔q
F F T

Note this truth table is theNote this truth table is the
exact exact oppositeopposite of of ⊕⊕’s!’s!

(( ⊕⊕ ))

F T F
T F F–– p p ↔ q q means ¬(means ¬(p p ⊕⊕ qq))

•• p p ↔ q q does does not not implyimply

T F F
T T Tpp qq p yp y

pp and and qq are true, or cause each other.are true, or cause each other.
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Boolean Operations Summary

•• We have seen 1 unary operator (out of the 4 We have seen 1 unary operator (out of the 4 
possible) and 5 binary operators (out of the possible) and 5 binary operators (out of the 
16 possible).  Their truth tables are below.16 possible).  Their truth tables are below.p )p )
p q ¬p p∧q p∨q p⊕q p→q p↔q
F F T F F F T TF F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T
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Some Alternative Notations

Name: t d i li iffName: not and or xor implies iff
Propositional logic: ¬ ∧ ∨ ⊕ → ↔
B l l bBoolean algebra: p pq + ⊕
C/C++/Java (wordwise): ! && || != ==
C/C++/Java (bitwise): ~ & | ^
Logic gates:
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Bits and Bit Operations

•• A A bitbit is a is a bibinary (base 2) dignary (base 2) digitit: 0 or 1.: 0 or 1. John Tukey
(1915-2000)

•• Bits may be used to represent truth values.Bits may be used to represent truth values.
•• By convention:By convention:

( )

By convention: By convention: 
0 represents “false”; 1 represents “true”.0 represents “false”; 1 represents “true”.

•• Boolean algebraBoolean algebra is like ordinary algebrais like ordinary algebra•• Boolean algebraBoolean algebra is like ordinary algebra is like ordinary algebra 
except that variables stand for bits, + means except that variables stand for bits, + means 
“or” and multiplication means “and”“or” and multiplication means “and”or , and multiplication means and .or , and multiplication means and .
–– See chapter 10 for more details.See chapter 10 for more details.
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Bit Strings

•• AA Bit stringBit string of of length n length n is an ordered series is an ordered series 
ff ≥≥00 bitbitor sequence of or sequence of nn≥≥00 bits.bits.

–– More on sequences in More on sequences in §§3.2.3.2.
•• By convention, bit strings are written left to By convention, bit strings are written left to 

right: right: e.g.e.g. the first bit of “1001101010” is 1.the first bit of “1001101010” is 1.gg gg
•• When a bit string represents a baseWhen a bit string represents a base--2 2 

number by convention the first bit is thenumber by convention the first bit is thenumber, by convention the first bit is the number, by convention the first bit is the 
most significantmost significant bit.  bit.  Ex. Ex. 1101110122=8+4+1=13.=8+4+1=13.
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Counting in Binary

•• Did you know that you can count Did you know that you can count 
to 1,023 just using two hands?to 1,023 just using two hands?
–– How?  Count in binary!How?  Count in binary!

•• Each finger (up/down) represents 1 bit.Each finger (up/down) represents 1 bit.

•• To increment: Flip the rightmost (lowTo increment: Flip the rightmost (low--order) bit.order) bit.
–– If it changes 1If it changes 1→0, then also flip the next bit to the left,→0, then also flip the next bit to the left,

•• If that bit changes 1→0, then flip the next one, If that bit changes 1→0, then flip the next one, etc.etc.

•• 0000000000, 0000000001, 0000000010, …0000000000, 0000000001, 0000000010, …
…, 1111111101, 1111111110, 1111111111 …, 1111111101, 1111111110, 1111111111 
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Bitwise Operations

•• Boolean operations can be extended to Boolean operations can be extended to 
operate on bit strings as well as single bits.operate on bit strings as well as single bits.

•• E g :E g :E.g.:E.g.:
01 1011 011001 1011 0110
11 0001 110111 0001 110111 0001 110111 0001 1101
11 1011 1111 BitBit--wise ORwise OR
01 0001 0100 BitBit--wise ANDwise AND
10 1010 1011 BitBit--wise XORwise XOR
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End of §1.1

You have learned about:You have learned about: •• Atomic vs. compound Atomic vs. compound 
i ii i•• Propositions: What Propositions: What 

they are.they are.
propositions.propositions.

•• Alternative notations.Alternative notations.
•• Propositional logic Propositional logic 

operators’operators’
•• Bits and bitBits and bit--strings.strings.
•• Next section:Next section: §§1 21 2pp

–– Symbolic notations.Symbolic notations.
–– English equivalents.English equivalents.

Next section: Next section: §§1.21.2
–– Propositional Propositional 

equivalences.equivalences.g qg q
–– Logical meaning.Logical meaning.
–– Truth tables.Truth tables.

equivalences.equivalences.
–– How to prove them.How to prove them.
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Propositional Equivalence (§1.2)

Two Two syntacticallysyntactically ((i.e., i.e., textually) different textually) different 
compound propositions may be the compound propositions may be the 
semantically semantically identical (identical (i.e., i.e., have the same have the same yy (( ,,
meaning).  We call them meaning).  We call them equivalentequivalent. Learn:. Learn:

•• VariousVarious i l li l l oror ll•• Various Various equivalence rules equivalence rules oror lawslaws..
•• How to How to proveprove equivalences using equivalences using symbolic symbolic 

derivationsderivations..
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Tautologies and Contradictions

A A tautologytautology is a compound proposition that is is a compound proposition that is 
tt hh th t th l f itth t th l f ittruetrue no matter whatno matter what the truth values of its the truth values of its 
atomic propositions are!atomic propositions are!

Ex.Ex. p p ∨∨ ¬¬pp [What is its truth table?][What is its truth table?]
AA contradictioncontradiction is a compound propositionis a compound propositionA A contradiction contradiction is a compound proposition is a compound proposition 

that is that is falsefalse no matter what!  no matter what!  Ex.Ex. p p ∧∧ ¬¬p  p  
[Truth table?][Truth table?][Truth table?][Truth table?]

Other compound props. are Other compound props. are contingenciescontingencies..
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Logical Equivalence

Compound proposition Compound proposition pp is is logically logically 
equivalent equivalent to compound proposition to compound proposition qq, , 
written written pp⇔⇔qq, , IFFIFF the compound the compound pp qq,, pp
proposition proposition pp↔↔q q is a tautology.is a tautology.

Compound propositionsCompound propositions andand are logicallyare logicallyCompound propositions Compound propositions pp and and q q are logically are logically 
equivalent to each other equivalent to each other IFFIFF pp and and q q 
contain the same truth values as each other contain the same truth values as each other 
in in allall rows of their truth tables.rows of their truth tables.
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Proving Equivalence
Topic #1.1 – Propositional Logic: Equivalences

Proving Equivalence
via Truth Tables

Ex.Ex. Prove that Prove that pp∨∨qq ⇔⇔¬¬((¬¬p p ∧∧ ¬¬qq).).

p q pp∨∨qq ¬¬pp ¬¬qq ¬¬pp ∧∧ ¬¬qq ¬¬((¬¬pp  ∧∧  ¬¬qq))
F F
F T

F
T

T
T

T T
TF F
F

F T
T F
T T

T
T
T

F
F

F F
FT

TT T TF F FT
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Equivalence Laws

•• These are similar to the arithmetic identities These are similar to the arithmetic identities 
you may have learned in algebra, but for you may have learned in algebra, but for 
propositional equivalences instead.propositional equivalences instead.p p qp p q

•• They provide a pattern or template that can They provide a pattern or template that can 
be used to match all or part of a much morebe used to match all or part of a much morebe used to match all or part of a much more be used to match all or part of a much more 
complicated proposition and to find an complicated proposition and to find an 
equivalence for it.equivalence for it.
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Equivalence Laws - Examples

•• IdentityIdentity:             :             pp∧∧T T ⇔⇔ p      pp      p∨∨F F ⇔⇔ pp
•• DominationDomination:      :      pp∨∨T T ⇔⇔ T      T      pp∧∧F F ⇔⇔ FF
•• IdempotentIdempotent:: pp∨∨pp ⇔⇔ p pp p∧∧pp ⇔⇔ pp•• IdempotentIdempotent:       :       pp∨∨p p ⇔⇔ p       pp       p∧∧p p ⇔⇔ pp
•• Double negation:       Double negation:       ¬¬¬¬p p ⇔⇔ pp
•• Commutative:  pCommutative:  p∨∨q q ⇔⇔ qq∨∨p    pp    p∧∧q q ⇔⇔ qq∧∧pp

A i tiA i ti (( )) (( ))•• Associative:          Associative:          ((pp∨∨qq))∨∨rr ⇔⇔ pp∨∨((qq∨∨rr))
((pp∧∧qq))∧∧rr ⇔⇔ pp∧∧((qq∧∧rr))
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More Equivalence Laws

•• DistributiveDistributive:     :     pp∨∨((qq∧∧rr) ) ⇔⇔ ((pp∨∨qq))∧∧((pp∨∨rr))
(( )) (( )) (( ))pp∧∧((qq∨∨rr) ) ⇔⇔ ((pp∧∧qq))∨∨((pp∧∧rr))

•• De Morgan’sDe Morgan’s::
¬¬((pp∧∧qq) ) ⇔⇔¬¬p p ∨∨ ¬¬qq
¬¬((pp∨∨qq) ) ⇔⇔¬¬p p ∧∧ ¬¬qq

•• Trivial tautology/contradictionTrivial tautology/contradiction::
pp ∨∨ ¬¬pp ⇔⇔ TT pp ∧∧ ¬¬pp ⇔⇔ FF

Augustus
De Morgan
(1806 1871)pp pp pp pp (1806-1871)
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Defining Operators via Equivalences

Using equivalences, we can Using equivalences, we can definedefine operators operators 
in terms of other operators.in terms of other operators.

•• Exclusive or:Exclusive or: pp⊕⊕qq ⇔⇔ ((pp∨∨qq))∧¬∧¬((pp∧∧qq))Exclusive or:   Exclusive or:   pp⊕⊕qq ⇔⇔ ((pp∨∨qq))∧¬∧¬((pp∧∧qq))
pp⊕⊕qq ⇔⇔ ((pp∧¬∧¬qq))∨∨((qq∧¬∧¬pp))

lili•• Implies:           Implies:           pp→→q q ⇔⇔¬¬p p ∨∨ qq
•• Biconditional:Biconditional: pp↔↔qq ⇔⇔ ((pp→→qq)) ∧∧ ((qq→→pp))Biconditional: Biconditional: pp↔↔q q ⇔⇔ ((pp→→qq)) ∧∧ ((qq→→pp))

pp↔↔q q ⇔⇔¬¬((pp⊕⊕qq))
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An Example Problem

•• Check using a symbolic derivation whether Check using a symbolic derivation whether 
(( )) (( ⊕⊕ ))((p p ∧∧ ¬¬qq) ) →→ ((pp ⊕⊕ rr)) ⇔⇔¬¬p p ∨∨ qq ∨∨ ¬¬rr..

((p p ∧∧ ¬¬qq) ) →→ ((pp ⊕⊕ rr)) ⇔⇔
[Expand definition of [Expand definition of →→] ] ¬¬((p p ∧∧ ¬¬qq) ) ∨∨ ((pp ⊕⊕ rr))
[Defn. of [Defn. of ⊕⊕]    ]    ⇔⇔¬¬((p p ∧∧ ¬¬qq) ) ∨∨ ((((pp ∨∨ rr) ) ∧∧ ¬¬((pp ∧∧ rr))))[[ ]] ((pp qq)) ((((pp )) ((pp ))))
[DeMorgan’s Law][DeMorgan’s Law]

⇔⇔ ((¬¬pp ∨∨ qq)) ∨∨ ((((pp ∨∨ rr)) ∧∧ ¬¬((pp ∧∧ rr))))⇔⇔ ((¬¬pp ∨∨ qq)) ∨∨ ((((pp ∨∨ rr) ) ∧∧ ¬¬((pp ∧∧ rr))))
⇔⇔ [associative law] [associative law] cont.cont.
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Example Continued...

((¬¬p p ∨∨ qq) ) ∨∨ ((((pp ∨∨ rr) ) ∧∧ ¬¬((pp ∧∧ rr)))) ⇔⇔ [[∨∨ commutes]commutes]
(( )) (((( )) (( )))) [[ i i ]i i ]⇔⇔ ((qq ∨∨ ¬¬pp)) ∨∨ ((((pp ∨∨ rr) ) ∧∧ ¬¬((pp ∧∧ rr)))) [[∨∨ associative]associative]

⇔⇔ qq ∨∨ ((¬¬pp ∨∨ ((((pp ∨∨ rr) ) ∧∧ ¬¬((pp ∧∧ rr))) [distrib. ))) [distrib. ∨∨ over over ∧∧]]
⇔⇔ qq ∨∨ ((((((¬¬pp ∨∨ ((pp ∨∨ rr)) )) ∧∧ ((¬¬pp ∨∨ ¬¬((pp ∧∧ rr))))))
[assoc.] [assoc.] ⇔⇔ qq ∨∨ ((((((¬¬pp ∨∨ pp) ) ∨∨ rr) ) ∧∧ ((¬¬pp ∨∨ ¬¬((pp ∧∧ rr))))))
[trivail taut.]  [trivail taut.]  ⇔⇔ qq ∨∨ ((((TT ∨∨ rr) ) ∧∧ ((¬¬pp ∨∨ ¬¬((pp ∧∧ rr))))))
[domination][domination] ⇔⇔ qq ∨∨ ((TT ∧∧ ((¬¬pp ∨∨ ¬¬((pp ∧∧ rr))))))[domination][domination] ⇔⇔ qq ∨∨ ((TT ∧∧ ((¬¬pp ∨∨ ¬¬((pp ∧∧ rr))))))
[identity]       [identity]       ⇔⇔ qq ∨∨ ((¬¬pp ∨∨ ¬¬((pp ∧∧ rr)))) ⇔⇔ cont.cont.
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End of Long Example

qq ∨∨ ((¬¬pp ∨∨ ¬¬((pp ∧∧ rr))))
[DeMorgan’s] [DeMorgan’s] ⇔⇔ qq ∨∨ ((¬¬pp ∨∨ ((¬¬pp ∨∨ ¬¬rr))))
[Assoc ][Assoc ] ⇔⇔ qq ∨∨ (((( pp ∨∨ pp)) ∨∨ rr))[Assoc.]          [Assoc.]          ⇔⇔ qq ∨∨ ((((¬¬pp ∨∨ ¬¬pp) ) ∨∨ ¬¬rr))
[Idempotent]   [Idempotent]   ⇔⇔ qq ∨∨ ((¬¬pp ∨∨ ¬¬rr))
[Assoc.]          [Assoc.]          ⇔⇔ ((qq ∨∨ ¬¬pp) ) ∨∨ ¬¬r r 
[C t ][C t ][Commut.]      [Commut.]      ⇔⇔¬¬p p ∨∨ qq ∨∨ ¬¬r r 
Q.E.D. (quod erat demonstrandum)Q.E.D. (quod erat demonstrandum)
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R i P iti l L i
Topic #1 – Propositional Logic

Review: Propositional Logic
(§§1.1-1.2)( )

•• Atomic propositions: Atomic propositions: pp, , qq, , rr, … , … 
•• Boolean operators:Boolean operators: ¬¬ ∧∧ ∨∨ ⊕⊕→→↔↔
• Compound propositions: s :≡ (p ∧∧ qq)) ∨∨ rr• Compound propositions: s :≡ (p ∧∧ ¬¬qq) ) ∨∨ rr
•• Equivalences:Equivalences: pp∧¬∧¬q q ⇔⇔¬¬((p p →→ qq))
•• Proving equivalences using:Proving equivalences using:

Truth tablesTruth tables–– Truth tables.Truth tables.
–– Symbolic derivations. Symbolic derivations. pp ⇔⇔ q q ⇔⇔ r … r … 
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Predicate Logic (§1.3)

•• Predicate logicPredicate logic is an extension of is an extension of 
propositional logic that permits concisely propositional logic that permits concisely 
reasoning about whole reasoning about whole classesclasses of entities.of entities.gg

•• Propositional logic (recall) treats simple Propositional logic (recall) treats simple 
itiiti (sentences) as atomic entities(sentences) as atomic entitiespropositionspropositions (sentences) as atomic entities.(sentences) as atomic entities.

•• In contrast, In contrast, predicate predicate logic distinguishes the logic distinguishes the 
subjectsubject of a sentence from its of a sentence from its predicate.predicate.
–– Remember these English grammar terms?Remember these English grammar terms?
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Applications of Predicate Logic

It is It is thethe formal notation for writing perfectly formal notation for writing perfectly 
clear, concise, and unambiguous clear, concise, and unambiguous 
mathematical mathematical definitionsdefinitions, , axiomsaxioms, and , and ff ,, ,,
theorems theorems (more on these in chapter 3) for (more on these in chapter 3) for 
anyany branch of mathematicsbranch of mathematicsany any branch of mathematics.  branch of mathematics.  

Predicate logic with function symbols, the “=” operator, and a Predicate logic with function symbols, the “=” operator, and a 
few prooffew proof--building rules is sufficient for definingbuilding rules is sufficient for defining anyanyfew prooffew proof building rules is sufficient for defining building rules is sufficient for defining anyany
conceivable mathematical system, and for proving conceivable mathematical system, and for proving 
anything that can be proved within that system!anything that can be proved within that system!
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Other Applications

•• Predicate logic is the foundation of thePredicate logic is the foundation of the
field offield of mathematical logicmathematical logic whichwhichfield of field of mathematical logicmathematical logic, which , which 
culminated in culminated in Gödel’s incompleteness Gödel’s incompleteness 
theoremtheorem which revealed the ultimatewhich revealed the ultimatetheoremtheorem, which revealed the ultimate , which revealed the ultimate 
limits of mathematical thought:limits of mathematical thought:
–– Given any finitely describable consistentGiven any finitely describable consistent

Kurt Gödel
1906-1978Given any finitely describable, consistent Given any finitely describable, consistent 

proof procedure, there will still be proof procedure, there will still be somesome
true statements that can true statements that can never be provennever be proven
b th t db th t dby that procedure.by that procedure.

•• I.e.I.e., we can’t discover , we can’t discover allall mathematical truths, mathematical truths, 
l ti t t kil ti t t ki

2008-08-09 (c)2001-2003, Michael P. Frank 50

unless we sometimes resort to making unless we sometimes resort to making guesses.guesses.



Module #1 - Logic Topic #3 – Predicate Logic

Practical Applications

•• Basis for clearly expressed formal Basis for clearly expressed formal 
ifi ti f l tifi ti f l tspecifications for any complex system.specifications for any complex system.

•• Basis for Basis for automatic theorem proversautomatic theorem provers and and pp
many other Artificial Intelligence systems.many other Artificial Intelligence systems.

•• Supported by some of the moreSupported by some of the moreSupported by some of the more Supported by some of the more 
sophisticated sophisticated database query enginesdatabase query engines and and 
container class librariescontainer class librariescontainer class libraries container class libraries 
(these are types of programming tools).(these are types of programming tools).
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Subjects and Predicates

•• InIn thethe sentencesentence “The“The dogdog isis sleeping”sleeping”::
–– The phrase “the dog” denotes the The phrase “the dog” denotes the subjectsubject --

the the objectobject or or entity entity that the sentence is about.that the sentence is about.jj yy
–– The phrase “is sleeping” denotes the The phrase “is sleeping” denotes the predicatepredicate--

a property that is truea property that is true ofof the subject.the subject.a property that is true a property that is true ofof the subject.the subject.
•• In predicate logic, a In predicate logic, a predicatepredicate is modeled as is modeled as 

f tif ti PP( ) f bj t t iti( ) f bj t t itia a functionfunction PP(·) from objects to propositions.(·) from objects to propositions.
–– PP((xx) = “) = “xx is sleeping” (where is sleeping” (where xx is any object).is any object).
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More About Predicates

•• Convention:  Lowercase variables Convention:  Lowercase variables xx, , yy, , z...z... denote denote 
bj / i i i blbj / i i i bl PP QQ RRobjects/entities; uppercase variables objects/entities; uppercase variables PP, , QQ, , RR… … 

denote propositional functions (predicates).denote propositional functions (predicates).
•• Keep in mind that the Keep in mind that the result ofresult of applyingapplying a a 

predicate predicate PP to an object to an object xx is the is the proposition Pproposition P((xx).  ).  
But the predicate But the predicate PP itselfitself ((e.g. Pe.g. P=“is sleeping”) is =“is sleeping”) is 
not not a proposition (not a complete sentence).a proposition (not a complete sentence).
–– E.g.E.g. if if PP((xx) = “) = “xx is a prime number”,is a prime number”,

PP(3) is the (3) is the propositionproposition “3 is a prime number.”“3 is a prime number.”

2008-08-09 (c)2001-2003, Michael P. Frank 53



Module #1 - Logic Topic #3 – Predicate Logic

Propositional Functions

•• Predicate logic Predicate logic generalizesgeneralizes the grammatical the grammatical 
notion of a predicate to also include notion of a predicate to also include 
propositional functions of propositional functions of anyany number of number of p pp p yy
arguments, each of which may take arguments, each of which may take anyany
grammatical role that a noun can takegrammatical role that a noun can takegrammatical role that a noun can take.grammatical role that a noun can take.
–– E.g.E.g. let let PP((xx,,y,zy,z) = “) = “x x gavegave y y the gradethe grade zz”, then if”, then if

“Mik ”“Mik ” “M ”“M ” “A” th“A” th PP(( ))x=x=“Mike”, “Mike”, yy=“Mary”, =“Mary”, zz=“A”, then =“A”, then PP((xx,,yy,,zz) = ) = 
“Mike gave Mary the grade A.”“Mike gave Mary the grade A.”
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Universes of Discourse (U.D.s)

•• The power of distinguishing objects from The power of distinguishing objects from 
predicates is that it lets you state things predicates is that it lets you state things 
about about manymany objects at once.objects at once.yy jj

•• E.g., let E.g., let PP((xx)=“)=“xx+1>+1>xx”.  We can then say,”.  We can then say,
“For“For numbernumber PP(( ) is true” instead of) is true” instead of“For “For anyany number number xx, , PP((xx) is true” instead of) is true” instead of
((00+1>+1>00) ) ∧∧ ((11+1>+1>11)) ∧∧ ((22+1>+1>22)) ∧∧ ......

•• The collection of values that a variable The collection of values that a variable xx
can take is calledcan take is called xx’s’s universe of discourseuniverse of discourse..

2008-08-09 (c)2001-2003, Michael P. Frank 55

can take is called can take is called xx s s universe of discourseuniverse of discourse..



Module #1 - Logic Topic #3 – Predicate Logic

Quantifier Expressions

•• QuantifiersQuantifiers provide a notation that allows provide a notation that allows 
us to us to quantify quantify (count) (count) how manyhow many objects in objects in 
the univ. of disc. satisfy a given predicate.the univ. of disc. satisfy a given predicate.y g py g p

•• ““∀∀” is the FOR” is the FOR∀∀LL or LL or universaluniversal quantifier.quantifier.
∀∀ PP(( ) means) means f llf ll in the din the d PP holdsholds∀∀xx PP((xx) means ) means for allfor all x in the u.d., x in the u.d., PP holds.holds.

•• ““∃∃” is the ” is the ∃∃XISTS or XISTS or existentialexistential quantifier.quantifier.
∃∃x Px P((xx) means ) means there there existsexists an an xx in the u.d. in the u.d. 
(that is, 1 or more)(that is, 1 or more) such thatsuch that PP((xx) is true.) is true.
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The Universal Quantifier ∀

•• Example: Example: 
Let the u.d. of x be Let the u.d. of x be parking spaces at UFparking spaces at UF..
Let Let PP((xx) be the ) be the predicatepredicate ““xx is full.”is full.”(( )) pp
Then the Then the universal quantification of Puniversal quantification of P((xx), ), 
∀∀xx PP((xx) is the) is the proposition:proposition:∀∀xx PP((xx), is the ), is the proposition:proposition:
–– “All parking spaces at UF are full.”“All parking spaces at UF are full.”
–– i.e.i.e., “Every parking space at UF is full.”, “Every parking space at UF is full.”
–– i.e.i.e., “For each parking space at UF, that space is full.”, “For each parking space at UF, that space is full.”
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The Existential Quantifier ∃

•• Example: Example: 
Let the u.d. of x be Let the u.d. of x be parking spaces at UFparking spaces at UF..
Let Let PP((xx) be the ) be the predicatepredicate ““xx is full.”is full.”(( )) pp
Then the Then the existential quantification of Pexistential quantification of P((xx), ), 
∃∃xx PP((xx) is the) is the propositionproposition::∃∃xx PP((xx), is the ), is the propositionproposition::
–– “Some parking space at UF is full.”“Some parking space at UF is full.”
–– “There is a parking space at UF that is full.”“There is a parking space at UF that is full.”
–– “At least one parking space at UF is full.”“At least one parking space at UF is full.”
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Free and Bound Variables

•• An expression like An expression like PP((xx) is said to have a ) is said to have a 
free variablefree variable x x (meaning, (meaning, xx is undefined).is undefined).

•• A quantifier (eitherA quantifier (either ∀∀ oror ∃∃)) operatesoperates on anon anA quantifier (either A quantifier (either ∀∀ or or ∃∃) ) operatesoperates on an on an 
expression having one or more free expression having one or more free 
variables andvariables and bi dbi d one or more of thoseone or more of thosevariables, and variables, and bindsbinds one or more of those one or more of those 
variables, to produce an expression having variables, to produce an expression having 
one or more one or more boundbound variablesvariables..
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Example of Binding

•• PP((x,yx,y) has 2 free variables, ) has 2 free variables, xx and and yy..
•• ∀∀xx PP((xx,,yy) has 1 free variable, and one bound ) has 1 free variable, and one bound 

variable.  [Which is which?]variable.  [Which is which?]
•• ““PP((xx), where ), where xx=3” is another way to bind =3” is another way to bind xx..
•• An expression withAn expression with zerozero free variables is a bonafree variables is a bona--An expression with An expression with zerozero free variables is a bonafree variables is a bona

fide (actual) proposition.fide (actual) proposition.
•• An expression withAn expression with one or moreone or more free variables isfree variables is•• An expression with An expression with one or moreone or more free variables is free variables is 

still only a predicate: still only a predicate: ∀∀xx PP((xx,,yy))
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Nesting of Quantifiers

Example: Let the u.d. of Example: Let the u.d. of xx & & yy be people.be people.
Let Let LL((xx,,yy)=“)=“x x likes likes yy” (a predicate w. 2 f.v.’s)” (a predicate w. 2 f.v.’s)
ThenThen ∃∃y Ly L((x yx y) = “There is someone whom) = “There is someone whom xxThen Then ∃∃y Ly L((x,yx,y) = There is someone whom ) = There is someone whom xx

likes.” (A predicate w. 1 free variable, likes.” (A predicate w. 1 free variable, xx))
Then Then ∀∀xx ((∃∃y Ly L((x,yx,y)) =)) =

“Everyone has someone whom they like.”“Everyone has someone whom they like.”Everyone has someone whom they like.Everyone has someone whom they like.
(A __________ with ___ free variables.)(A __________ with ___ free variables.)
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R i P iti l L iReview: Propositional Logic
(§§1.1-1.2)( )

•• Atomic propositions: Atomic propositions: pp, , qq, , rr, … , … 
•• Boolean operators:Boolean operators: ¬¬ ∧∧ ∨∨ ⊕⊕→→↔↔
• Compound propositions: s ≡ (p ∧∧ qq)) ∨∨ rr• Compound propositions: s ≡ (p ∧∧ ¬¬qq) ) ∨∨ rr
•• Equivalences:Equivalences: pp∧¬∧¬q q ⇔⇔¬¬((p p →→ qq))
•• Proving equivalences using:Proving equivalences using:

Truth tablesTruth tables–– Truth tables.Truth tables.
–– Symbolic derivations. Symbolic derivations. pp ⇔⇔ q q ⇔⇔ r … r … 
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Review: Predicate Logic (§1.3)

•• Objects Objects xx, , yy, , zz, … , … 
•• Predicates Predicates PP, , QQ, , RR, … are functions , … are functions 

mapping objectsmapping objects xx to propositionsto propositions PP((xx))mapping objects mapping objects xx to propositions to propositions PP((xx).).
•• MultiMulti--argument predicates argument predicates PP((xx, , yy).).
•• Quantifiers: [Quantifiers: [∀∀xx PP((xx)] :)] :≡≡ “For all “For all xx’s, ’s, PP((xx).” ).” 

[[∃∃x Px P((xx)] :≡ “There is an)] :≡ “There is an xx such thatsuch that PP((xx).”).”[[∃∃x Px P((xx)] :  There is an )] :  There is an xx such that such that PP((xx).).
•• Universes of discourse, bound & free vars.Universes of discourse, bound & free vars.
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Quantifier Exercise

If If RR((xx,,yy)=“)=“xx relies upon relies upon yy,” express the ,” express the 
following in unambiguous English:following in unambiguous English:

∀∀xx((∃∃y Ry R((x yx y))=))= Everyone has someone to rely on.
∀∀xx((∃∃y Ry R((x,yx,y))))
∃∃yy((∀∀xx RR((x,yx,y))=))=

There’s a poor overburdened soul whom 
everyone relies upon (including himself)!

∃∃xx((∀∀y Ry R((x,yx,y))=))=
∀∀yy((∃∃x Rx R((x yx y))=))=

There’s some needy person who relies 
upon everybody (including himself).

∀∀yy((∃∃x Rx R((x,yx,y))=))=
∀∀xx((∀∀yy RR((x,yx,y))=))=

Everyone has someone who relies upon them.

Everyone relies upon everybody, 
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Natural language is ambiguous!

•• ““Everybody likes somebody.”Everybody likes somebody.”
–– For everybody, there is somebody they like,For everybody, there is somebody they like,

•• ∀∀xx ∃∃yy LikesLikes((xx,,yy)) [Probably more likely ]yy (( ,,yy))
–– or, there is somebody (a popular person) whom or, there is somebody (a popular person) whom 

everyone likes?everyone likes?

[Probably more likely.]

everyone likes?everyone likes?
•• ∃∃yy ∀∀xx LikesLikes((xx,,yy))

“S b d lik b d ”“S b d lik b d ”•• “Somebody likes everybody.”“Somebody likes everybody.”
–– Same problem: Depends on context, emphasis.Same problem: Depends on context, emphasis.
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Game Theoretic Semantics
•• Thinking in terms of a competitive game can help you tell Thinking in terms of a competitive game can help you tell 

whether a proposition with nested quantifiers is truewhether a proposition with nested quantifiers is truewhether a proposition with nested quantifiers is true.whether a proposition with nested quantifiers is true.
•• The game has two players, The game has two players, both with the same knowledgeboth with the same knowledge::

–– Verifier: Wants to demonstrate that the proposition is true.Verifier: Wants to demonstrate that the proposition is true.
–– Falsifier: Wants to demonstrate that the proposition is false.Falsifier: Wants to demonstrate that the proposition is false.

•• The Rules of the Game “Verify or Falsify”:The Rules of the Game “Verify or Falsify”:
R d th tifi fR d th tifi f l ft t i htl ft t i ht i ki l f i bli ki l f i bl–– Read the quantifiers from Read the quantifiers from left to rightleft to right, picking values of variables., picking values of variables.

–– When you see “When you see “∀∀”, the falsifier gets to select the value.”, the falsifier gets to select the value.
–– When you see “When you see “∃∃”, the verifier gets to select the value.”, the verifier gets to select the value.yy , g, g

•• If the verifier If the verifier can always wincan always win, then the proposition is true., then the proposition is true.
•• If the falsifier If the falsifier can always wincan always win, then it is false., then it is false.
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Let’s Play, “Verify or Falsify!”

Let B(x,y) :≡  “x’s birthday is followed within 7 days 
b bi hdby y’s birthday.”

Suppose I claim that among you: 
∀x ∃y B(x,y) • Let’s play it in class.

Wh i thi ?
y ( y)

Your turn, as falsifier: 
You pick any x → (so-and-so)

• Who wins this game?
• What if I switched the

quantifiers and I
∃y B(so-and-so,y)

My turn, as verifier: 

quantifiers, and I
claimed that
∃y ∀x B(x,y)?

I pick any y → (such-and-such)

B(so-and-so,such-and-such)
Who wins in that
case?
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Still More Conventions

•• Sometimes the universe of discourse is Sometimes the universe of discourse is 
restricted within the quantification, restricted within the quantification, e.g.e.g.,,
–– ∀∀x>x>00 PP((xx) is shorthand for) is shorthand for∀∀xx 0 0 PP((xx) is shorthand for) is shorthand for

“For all “For all xx that are greater than zero, that are greater than zero, PP((xx).”).”
==∀∀xx ((x>x>00 →→ PP((xx))))∀∀x x ((x>x>0 0 →→ PP((xx))))

–– ∃∃x>x>0 0 PP((xx) is shorthand for) is shorthand for
“There is an“There is an xx greater than zero such thatgreater than zero such that PP((xx) ”) ”There is an There is an x x greater than zero such that greater than zero such that PP((xx).).
==∃∃x x ((x>x>0 0 ∧∧ PP((xx))))
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More to Know About Binding

•• ∀∀xx ∃∃x Px P((xx) ) -- xx is not a free variable in is not a free variable in 
∃∃x Px P((xx), therefore the ), therefore the ∀∀xx binding binding isn’t usedisn’t used..

•• ((∀∀xx PP((xx)))) ∧∧ Q(Q(xx)) The variableThe variable xx is outsideis outside•• ((∀∀xx PP((xx)))) ∧∧ Q(Q(xx) ) -- The variable The variable xx is outside is outside 
of the of the scopescope of the of the ∀∀x x quantifier, and is quantifier, and is 
h f f N i i !h f f N i i !therefore free.  Not a proposition!therefore free.  Not a proposition!

•• ((∀∀xx PP((xx)))) ∧∧ ((∃∃xx Q(Q(xx)))) –– This is legalThis is legal((∀∀xx PP((xx)))) ∧∧ ((∃∃x x Q(Q(xx))) ) This is legal, This is legal, 
because there are 2 because there are 2 differentdifferent xx’s!’s!
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Quantifier Equivalence Laws

•• Definitions of quantifiers: If u.d.=a,b,c,… Definitions of quantifiers: If u.d.=a,b,c,… 
∀∀x Px P((xx) ) ⇔⇔ PP(a) (a) ∧∧ PP(b) (b) ∧∧ PP(c) (c) ∧∧ … … 
∃∃x Px P((xx) ) ⇔⇔ PP(a) (a) ∨∨ PP(b) (b) ∨∨ PP(c) (c) ∨∨ ……(( )) ( )( ) ( )( ) ( )( )

•• From those, we can prove the laws:From those, we can prove the laws:
∀∀ PP(( )) ⇔⇔ ∃∃ PP(( ))∀∀x Px P((xx) ) ⇔⇔¬∃¬∃x x ¬¬PP((xx))
∃∃x Px P((xx) ) ⇔⇔¬∀¬∀x x ¬¬PP((xx))

•• Which Which propositionalpropositional equivalence laws can equivalence laws can 
be used to prove this?be used to prove this?
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More Equivalence Laws

•• ∀∀x x ∀∀y Py P((xx,,yy) ) ⇔⇔∀∀y y ∀∀x Px P((xx,,yy))
∃∃x x ∃∃y Py P((xx,,yy) ) ⇔⇔ ∃∃y y ∃∃x Px P((xx,,yy))

•• ∀∀xx ((PP((xx)) ∧∧ QQ((xx)))) ⇔⇔ ((∀∀x Px P((xx)))) ∧∧ ((∀∀x Qx Q((xx))))∀∀x x ((PP((xx) ) ∧∧ QQ((xx)))) ⇔⇔ ((∀∀x Px P((xx)))) ∧∧ ((∀∀x Qx Q((xx))))
∃∃x x ((PP((xx) ) ∨∨ QQ((xx)))) ⇔⇔ ((∃∃x Px P((xx)))) ∨∨ ((∃∃x Qx Q((xx))))

ii•• Exercise: Exercise: 
See if you can prove these yourself.See if you can prove these yourself.

–– What propositional equivalences did you use?What propositional equivalences did you use?
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Review: Predicate Logic (§1.3)

•• Objects Objects xx, , yy, , zz, … , … 
•• Predicates Predicates PP, , QQ, , RR, … are functions , … are functions 

mapping objectsmapping objects xx to propositionsto propositions PP((xx))mapping objects mapping objects xx to propositions to propositions PP((xx).).
•• MultiMulti--argument predicates argument predicates PP((xx, , yy).).
•• Quantifiers: (Quantifiers: (∀∀xx PP((xx)) =“For all )) =“For all xx’s, ’s, PP((xx).” ).” 

((∃∃x Px P((xx))=“There is an))=“There is an xx such thatsuch that PP((xx).”).”((∃∃x Px P((xx)) There is an )) There is an xx such that such that PP((xx).).
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More Notational Conventions

•• Quantifiers bind as loosely as needed:Quantifiers bind as loosely as needed:
parenthesize parenthesize ∀∀x x PP((xx) ) ∧∧ Q(Q(xx))

•• Consecutive quantifiers of the same typeConsecutive quantifiers of the same type
(               )

Consecutive quantifiers of the same type Consecutive quantifiers of the same type 
can be combined: can be combined: ∀∀x x ∀∀y y ∀∀z Pz P((xx,,yy,,zz) ) ⇔⇔
∀∀ PP(( ) or e en) or e en ∀∀ PP(( ))∀∀x,y,z Px,y,z P((xx,,yy,,zz)    or even    )    or even    ∀∀xyz Pxyz P((xx,,yy,,zz))

•• All quantified expressions can be reducedAll quantified expressions can be reduced
to the canonical to the canonical alternatingalternating form form 
∀∀xx11∃∃xx22∀∀xx33∃∃xx44…… PP((xx11,, xx22,, xx33,, xx44 …)…)
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Defining New Quantifiers

As per their name, quantifiers can be used to As per their name, quantifiers can be used to 
express that a predicate is true of any given express that a predicate is true of any given 
quantityquantity (number) of objects.(number) of objects.q yq y ( ) j( ) j

Define Define ∃∃!!xx PP((xx) to mean “) to mean “PP((xx) is true of ) is true of 
tltl in the universe of discourse ”in the universe of discourse ”exactly oneexactly one xx in the universe of discourse.”in the universe of discourse.”

∃∃!!xx PP((xx)) ⇔⇔ ∃∃xx ((PP((xx)) ∧∧ ¬∃¬∃yy ((PP((yy)) ∧∧ yy≠≠ xx))))∃∃!!xx PP((xx) ) ⇔⇔ ∃∃x x ((PP((xx) ) ∧∧ ¬∃¬∃y y ((PP((yy) ) ∧∧ yy≠≠ xx))))
“There is an “There is an xx such that such that PP((xx), where there is ), where there is 
nono yy such that P(such that P(yy) and) and yy is other thanis other than xx ””
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Some Number Theory Examples

•• Let u.d. = the Let u.d. = the natural numbersnatural numbers 0, 1, 2, … 0, 1, 2, … 
•• “A number “A number xx is is eveneven, , EE((xx), if and only if it is equal ), if and only if it is equal 

to 2 times some other number.”to 2 times some other number.”
∀∀x x ((EE((xx) ) ↔↔ ((∃∃y  x=y  x=22yy))))

•• “A number is “A number is primeprime, , PP((xx), iff it’s greater than 1 ), iff it’s greater than 1 pp ,, (( ), g), g
and it isn’t the product of two nonand it isn’t the product of two non--unity unity 
numbers.”numbers.”
∀∀x x ((PP((xx) ) ↔↔ ((xx>1 >1 ∧∧ ¬∃¬∃yz  xyz  x==yzyz ∧∧ yy≠≠1 1 ∧∧ zz≠≠11))))
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Goldbach’s Conjecture (unproven)

Using Using EE((xx) and ) and PP((xx) from previous slide,) from previous slide,
∀∀EE((xx>2): >2): ∃∃PP((pp),),PP((qq): ): pp++qq = = xx

or with more explicit notationor with more explicit notation::or, with more explicit notationor, with more explicit notation::
∀∀xx [[xx>2 >2 ∧∧ EE((xx)] )] → → 

∃∃pp ∃∃q Pq P((pp) ) ∧∧ PP((qq) ) ∧∧ pp++qq = = xx..
“E b t th 2“E b t th 2“Every even number greater than 2 “Every even number greater than 2 

is the sum of two primes.”is the sum of two primes.”
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Calculus Example

•• One way of precisely defining the calculus One way of precisely defining the calculus 
concept of a concept of a limitlimit, using quantifiers:, using quantifiers:

( )( )⇔=
→

)(lim Lxf
ax

⎟
⎞

⎜
⎛ ∀>∃>∀
→

δε ::0:0 x
ax

( ) ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
<−→<− εδ |)(||| Lxfax

2008-08-09 (c)2001-2003, Michael P. Frank 77

( ) ( )⎠⎝ |)(||| f



Module #1 - Logic Topic #3 – Predicate Logic

Deduction Example

•• Definitions:Definitions:
s :s :≡≡ Socrates Socrates (ancient Greek philosopher)(ancient Greek philosopher);;
HH((xx) :≡ “) :≡ “xx is human”;is human”;(( )) ;;
MM((xx) :≡ “) :≡ “xx is mortal”is mortal”..

•• Premises:Premises:•• Premises:Premises:
HH(s)                        (s)                        Socrates is human.Socrates is human.
∀∀xx HH((xx))→→MM((xx)      )      All hAll humans are mortal.umans are mortal.
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Deduction Example Continued

Some valid conclusions you can draw:Some valid conclusions you can draw:
HH(s)(s)→→MM(s)      (s)      [Instantiate universal.][Instantiate universal.] If Socrates is humanIf Socrates is human

then he is mortal.then he is mortal.
HH(s)(s) ∨∨ MM(s)(s) Socrates is inhuman or mortalSocrates is inhuman or mortal¬¬HH(s) (s) ∨∨ MM(s)                           (s)                           Socrates is inhuman or mortal.Socrates is inhuman or mortal.

HH(s) (s) ∧∧ ((¬¬HH(s) (s) ∨∨ MM(s))  (s))  
Socrates is human, and also either inhuman or mortal.Socrates is human, and also either inhuman or mortal.,,

((HH(s) (s) ∧∧ ¬¬HH(s)) (s)) ∨∨ ((HH(s) (s) ∧∧ MM(s))      (s))      [Apply distributive law.][Apply distributive law.]
FF ∨∨ ((HH(s) (s) ∧∧ MM(s))                              (s))                              [Trivial contradiction.][Trivial contradiction.]
HH(s) (s) ∧∧ MM(s)                                                (s)                                                [Use identity law.][Use identity law.]
MM(s)                                                             (s)                                                             Socrates is mortal.Socrates is mortal.
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Another Example

•• Definitions:  Definitions:  HH((xx) :) :≡≡ ““xx is human”; is human”; 
MM((xx) :≡ “) :≡ “xx is mortal”;is mortal”; GG((xx) :≡ “) :≡ “xx is a god”is a god”

•• Premises:Premises:Premises:Premises:
–– ∀∀xx HH((xx) ) →→ MM((xx) (“Humans are mortal”) and) (“Humans are mortal”) and

(( )) (( ) ( d i l )) ( d i l )–– ∀∀xx GG((xx) ) →→¬¬MM((xx) (“Gods are immortal”).) (“Gods are immortal”).
•• Show that Show that ¬∃¬∃x x ((HH((xx) ) ∧∧ GG((xx))))(( (( )) (( ))))

(“No human is a god.”)(“No human is a god.”)
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The Derivation

•• ∀∀xx HH((xx))→→MM((xx) and ) and ∀∀xx GG((xx))→¬→¬MM((xx).).
•• ∀∀xx ¬¬MM((xx))→¬→¬HH((xx)   )   [Contrapositive.][Contrapositive.]
•• ∀∀xx [[GG((xx))→→ MM((xx)])] ∧∧ [[ MM((xx))→→ HH((xx)])]•• ∀∀xx [[GG((xx))→¬→¬MM((xx)] )] ∧∧ [[¬¬MM((xx))→¬→¬HH((xx)])]
•• ∀∀xx GG((xx))→¬→¬HH((xx)       )       [Transitivity of [Transitivity of →→.].]
•• ∀∀xx ¬¬GG((xx) ) ∨∨ ¬¬HH((xx)    )    [Definition of [Definition of →→.].]
∀∀ ((GG(( )) HH(( )))) [D M ’ l ][D M ’ l ]•• ∀∀xx ¬¬((GG((xx) ) ∧∧ HH((xx))     ))     [DeMorgan’s law.][DeMorgan’s law.]

•• ¬∃¬∃xx GG((xx) ) ∧∧ HH((xx)       )       [An equivalence law.][An equivalence law.]
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End of §1.3-1.4, Predicate Logic

•• From these sections you should have learned:From these sections you should have learned:
–– Predicate logic notation & conventionsPredicate logic notation & conventions
–– Conversions: predicate logic Conversions: predicate logic ↔↔ clear Englishclear English
–– Meaning of quantifiers, equivalencesMeaning of quantifiers, equivalences
–– Simple reasoning with quantifiersSimple reasoning with quantifiers

•• Upcoming topics: Upcoming topics: 
–– Introduction to proofIntroduction to proof--writing.writing.pp gg
–– Then: Set theory Then: Set theory ––

•• a language for talking about collections of objects.a language for talking about collections of objects.
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