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Nature & Importance of Proofs

•• In mathematics, a In mathematics, a proofproof is:is:
tt ( ll( ll d l i ll lid) dd l i ll lid) d l tl t–– a a correctcorrect (well(well--reasoned, logically valid) and reasoned, logically valid) and completecomplete

(clear, detailed) argument that rigorously & undeniably (clear, detailed) argument that rigorously & undeniably 
establishes the truth of a mathematical statement.establishes the truth of a mathematical statement.

•• Why must the argument be correct & complete?Why must the argument be correct & complete?
–– CorrectnessCorrectness prevents us from fooling ourselves.prevents us from fooling ourselves.p gp g
–– CompletenessCompleteness allows anyone to verify the result.allows anyone to verify the result.

•• In this course (& throughout mathematics), a In this course (& throughout mathematics), a very very ( g ),( g ), yy
high standardhigh standard for correctness and completeness of for correctness and completeness of 
proofs is demanded!!proofs is demanded!!
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Overview of §§1.5 & 3.1

•• Methods of mathematical argument (Methods of mathematical argument (i.e.i.e., , 
proof methods) can be formalized in terms proof methods) can be formalized in terms 
of of rules of logical inferencerules of logical inference..f g ff g f

•• Mathematical Mathematical proofsproofs can themselves be can themselves be 
represented formally as discrete structuresrepresented formally as discrete structuresrepresented formally as discrete structures.represented formally as discrete structures.

•• We will review both We will review both correctcorrect & & fallaciousfallacious
inference rules, & several proof methods.inference rules, & several proof methods.
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Applications of Proofs

•• An exercise in clear communication of logical An exercise in clear communication of logical 
arguments in any area of studyarguments in any area of studyarguments in any area of study.arguments in any area of study.

•• The fundamental activity of mathematics is the The fundamental activity of mathematics is the 
discovery and elucidation through proofs ofdiscovery and elucidation through proofs ofdiscovery and elucidation, through proofs, of discovery and elucidation, through proofs, of 
interesting new theorems.interesting new theorems.

•• TheoremTheorem proving has applications in programproving has applications in program•• TheoremTheorem--proving has applications in program proving has applications in program 
verification, computer security, automated verification, computer security, automated 
reasoning systemsreasoning systems etcetcreasoning systems, reasoning systems, etc.etc.

•• Proving a theorem allows us to rely upon on its Proving a theorem allows us to rely upon on its 
correctness even in the most critical scenarioscorrectness even in the most critical scenarios
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Proof Terminology

•• TheoremTheorem
–– A statement that has been proven to be true.A statement that has been proven to be true.

•• AxiomsAxioms postulatespostulates hypotheseshypotheses premisespremises•• AxiomsAxioms, , postulatespostulates, , hypotheseshypotheses,, premisespremises
–– Assumptions (often unproven) defining the Assumptions (often unproven) defining the 

t t b t hi h it t b t hi h istructures about which we are reasoning.structures about which we are reasoning.
•• Rules of inferenceRules of inference

–– Patterns of logically valid deductions from Patterns of logically valid deductions from 
hypotheses to conclusions. hypotheses to conclusions. 
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More Proof Terminology

•• LemmaLemma -- A minor theorem used as a steppingA minor theorem used as a stepping--
stone to proving a major theoremstone to proving a major theoremstone to proving a major theorem.stone to proving a major theorem.

•• CorollaryCorollary -- A minor theorem proved as an easy A minor theorem proved as an easy 
consequence of a major theoremconsequence of a major theoremconsequence of a major theorem.consequence of a major theorem.

•• ConjectureConjecture -- A statement whose truth value has A statement whose truth value has 
not been proven (A conjecture may be widelynot been proven (A conjecture may be widelynot been proven.  (A conjecture may be widely not been proven.  (A conjecture may be widely 
believed to be true, regardless.)believed to be true, regardless.)

•• TheoryTheory The set of all theorems that can beThe set of all theorems that can be•• TheoryTheory –– The set of all theorems that can be The set of all theorems that can be 
proven from a given set of axioms.proven from a given set of axioms.
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Graphical Visualization

A Particular TheoryA Particular Theory

…
A proofA proofpp

Various TheoremsVarious Theorems
The AxiomsThe Axioms

of the Theoryof the Theory

8/9/2008 (c)2001-2003, Michael P. Frank 7



Module #2 - Proofs

Inference Rules - General Form

•• Inference RuleInference Rule ––
–– Pattern establishing that if we know that a set of Pattern establishing that if we know that a set of 

antecedentantecedent statements of certain forms are all statements of certain forms are all 
true, then a certain related true, then a certain related consequentconsequent statement statement 
is true. is true. 

•• antecedent 1antecedent 1
antecedent 2antecedent 2antecedent 2 … antecedent 2 … 
∴∴ consequent           consequent           ““∴∴” means “therefore”” means “therefore”
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Inference Rules & Implications

•• Each logical inference rule corresponds to Each logical inference rule corresponds to 
an implication that is a tautology.an implication that is a tautology.

•• antecedent 1antecedent 1 Inference ruleInference ruleantecedent 1               antecedent 1               Inference ruleInference rule
antecedent 2 … antecedent 2 … 
∴∴ tt∴∴ consequentconsequent

•• Corresponding tautology: Corresponding tautology: 
((((ante. 1ante. 1) ) ∧∧ ((ante. 2ante. 2) ) ∧∧ …) …) →→ consequentconsequent
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Some Inference Rules

•• pp Rule of AdditionRule of Addition
∴∴ pp∨∨qq

•• pp∧∧qq Rule of SimplificationRule of Simplificationpp∧∧qq Rule of SimplificationRule of Simplification
∴∴ pp

l f j il f j i•• pp Rule of ConjunctionRule of Conjunction
qq

∴∴ pp∧∧qq
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Modus Ponens & Tollens

•• pp Rule of Rule of modus ponensmodus ponens
“the mode of 

affirming”
pp→→qq (a.k.a. (a.k.a. law of detachmentlaw of detachment))
∴∴qqqq

•• ¬¬qq
→→ R le ofR le of d t lld t llpp→→qq Rule of Rule of modus tollensmodus tollens
∴¬∴¬pp “the mode of denying”
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Syllogism Inference Rules

•• pp→→qq Rule of hypotheticalRule of hypothetical
qq→→rr syllogismsyllogism

∴∴pp→→rrpp
•• p p ∨∨ qq Rule of disjunctiveRule of disjunctive

s llogisms llogism¬¬pp syllogismsyllogism
∴∴ qq
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Formal Proofs

•• A formal proof of a conclusion A formal proof of a conclusion CC, given , given 
premises premises pp11, , pp22,…,…,,ppnn consists of a sequence consists of a sequence 
of of stepssteps, each of which applies some , each of which applies some pp , pp, pp
inference rule to premises or to previouslyinference rule to premises or to previously--
proven statements (as antecedents) to yieldproven statements (as antecedents) to yieldproven statements (as antecedents) to yield proven statements (as antecedents) to yield 
a new true statement (the consequent).a new true statement (the consequent).

•• A proof demonstrates that A proof demonstrates that ifif the premises the premises 
are true, are true, thenthen the conclusion is true.the conclusion is true.
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Formal Proof Example

•• Suppose we have the following premises:Suppose we have the following premises:
“I i d i i ld ”“I i d i i ld ”“It is not sunny and it is cold.”“It is not sunny and it is cold.”
“We will swim only if it is sunny.”“We will swim only if it is sunny.”
“If d t i th ill ”“If d t i th ill ”“If we do not swim, then we will canoe.”“If we do not swim, then we will canoe.”
“If we canoe, then we will be home early.”“If we canoe, then we will be home early.”

•• Given these premises, prove the theoremGiven these premises, prove the theorem
“We will be home early”“We will be home early” using inference rules.using inference rules.
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Proof Example cont.

•• Let us adopt the following abbreviations:Let us adopt the following abbreviations:
–– sunny sunny = = “It is sunny”“It is sunny”; ; cold cold = = “It is cold”“It is cold”; ; 

swim swim = = “We will swim”“We will swim”; ; canoe canoe = = “We will “We will ;;
canoe”canoe”; ; early early = = “We will be home early”“We will be home early”..

•• Then the premises can be written as:Then the premises can be written as:Then, the premises can be written as:Then, the premises can be written as:
(1) (1) ¬¬sunnysunny ∧∧ coldcold (2) (2) swim swim →→ sunnysunny
(3)(3) ii (4)(4) ll(3) (3) ¬¬swim swim →→ canoecanoe (4) (4) canoe canoe →→ earlyearly
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Proof Example cont.

StepStep Proved byProved by
11 ldld P i #1P i #11. 1. ¬¬sunnysunny ∧∧ coldcold Premise #1.Premise #1.
2. 2. ¬¬sunnysunny Simplification of 1.Simplification of 1.
33 ii P i #2P i #23. 3. swimswim→→sunnysunny Premise #2.Premise #2.
4. 4. ¬¬swimswim Modus tollens on 2,3.Modus tollens on 2,3.
55 ii P i #3P i #35. 5. ¬¬swimswim→→canoecanoe Premise #3.Premise #3.
6. 6. canoecanoe Modus ponens on 4,5.Modus ponens on 4,5.
77 ll P i #4P i #47. 7. canoecanoe→→earlyearly Premise #4.Premise #4.
8. 8. earlyearly Modus ponens on 6,7.Modus ponens on 6,7.
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Inference Rules for Quantifiers

•• ∀∀xx PP((xx))
∴∴PP((oo)) (substitute (substitute anyany object object oo))

•• PP((gg)) (for(for gg aa generalgeneral element of u d )element of u d )PP((gg)) (for (for gg a a general general element of u.d.)element of u.d.)
∴∀∴∀xx PP((xx))

(( ))•• ∃∃xx PP((xx))
∴∴PP((cc)) (substitute a (substitute a newnew constantconstant cc))

•• PP((oo) ) (substitute any extant object (substitute any extant object oo) ) 
∴∃∴∃xx PP((xx))
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Common Fallacies
•• A A fallacyfallacy is an inference rule or other proof is an inference rule or other proof 

method that is not logicall alidmethod that is not logicall alidmethod that is not logically valid.method that is not logically valid.
–– May yield a false conclusion!May yield a false conclusion!

•• Fallacy of Fallacy of affirming the conclusionaffirming the conclusion::
–– ““pp→→qq is true andis true and qq is true sois true so pp must be true ”must be true ”–– pp→→qq is true, and is true, and qq is true, so is true, so pp must be true.  must be true.  

(No, because (No, because FF→→TT is true.)is true.)
F ll fF ll f d i h h h id i h h h i•• Fallacy of Fallacy of denying the hypothesisdenying the hypothesis::
–– ““pp→→qq is true, and is true, and pp is false, so is false, so qq must be false.” must be false.” 
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Circular Reasoning

•• The fallacy of (explicitly or implicitly) assuming The fallacy of (explicitly or implicitly) assuming 
h i i hh i i hthe very statement you are trying to prove in the the very statement you are trying to prove in the 

course of its proof.  Example:course of its proof.  Example:
•• Prove that an integer Prove that an integer nn is even, if is even, if nn22 is even.is even.
•• Attempted proof:  “Assume Attempted proof:  “Assume nn22 is even.  Then is even.  Then p pp p

nn22=2=2kk for some integer for some integer kk. Dividing both sides by . Dividing both sides by nn
gives gives n n = (2= (2kk)/)/n n = 2(= 2(kk//nn). So there is an integer ). So there is an integer jjgg (( )) (( ) g) g jj
(namely (namely kk//nn) such that ) such that nn=2=2jj.  Therefore .  Therefore nn is even.”is even.”

Begs the question: How do
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Removing the Circularity

Suppose Suppose nn22 is even is even ∴∴2|2|nn22 ∴∴ nn2 2 mod 2 = 0.  Of course mod 2 = 0.  Of course 
d 2 i i h 0 1 If i ’ 1 hd 2 i i h 0 1 If i ’ 1 h 1 ( d 2)1 ( d 2)nn mod 2 is either 0 or 1. If it’s 1, then mod 2 is either 0 or 1. If it’s 1, then nn≡≡1 (mod 2), 1 (mod 2), 

so so nn22≡≡1 (mod 2), 1 (mod 2), using the theorem that if using the theorem that if aa≡≡b b (mod(mod
) d) d dd ( d( d ) h) h bdbd ( d ) i h( d ) i hmm) and) and cc≡≡d d (mod(mod mm) then) then acac≡≡bd bd (mod m), with (mod m), with 

aa==cc==n n and and bb==dd=1.=1. Now Now nn22≡≡1 (mod 2) implies that 1 (mod 2) implies that 
22 d 2 1 Sd 2 1 S b h h h i l ll i lb h h h i l ll i lnn22 mod 2 = 1.  So mod 2 = 1.  So by the hypothetical syllogism ruleby the hypothetical syllogism rule, , 

((n n mod 2 = 1) implies (mod 2 = 1) implies (nn22 mod 2 = 1).  Since we mod 2 = 1).  Since we 
kk 22 d 2 0d 2 0 11 bb d lld ll kkknow know nn22 mod 2 = 0 mod 2 = 0 ≠≠ 1, 1, by by modus tollensmodus tollens we know we know 
that that nn mod 2 mod 2 ≠≠ 1.  So 1.  So by disjunctive syllogismby disjunctive syllogism we we 
h th th th t d 2 0d 2 0 2|2| ii

8/9/2008 (c)2001-2003, Michael P. Frank 20

have that have that nn mod 2 = 0 mod 2 = 0 ∴∴2|2|n n ∴∴ nn is even.is even.



Module #2 - Proofs

Proof Methods for Implications

For proving implications For proving implications pp→→qq, we have:, we have:
•• DirectDirect proof: Assume proof: Assume pp is true, and prove is true, and prove qq..
•• IndirectIndirect proof: Assumeproof: Assume qq and proveand prove pp•• IndirectIndirect proof: Assume proof: Assume ¬¬qq, and prove , and prove ¬¬pp..
•• VacuousVacuous proof: Prove proof: Prove ¬¬pp by itself.by itself.
•• TrivialTrivial proof: Prove proof: Prove qq by itself.by itself.

P f bP f b•• Proof by cases: Proof by cases: 
Show Show pp→→((aa ∨∨ bb), and (), and (aa→→qq) and () and (bb→→qq).).
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Direct Proof Example

•• Definition:Definition: An integer An integer nn is called is called oddodd iff iff nn=2=2kk+1 +1 
for some integerfor some integer kk;; nn isis eveneven iffiff nn=2=2kk for somefor some kkfor some integer for some integer kk; ; nn is is eveneven iff iff nn=2=2kk for some for some kk..

•• Axiom:Axiom: Every integer is either odd or even.Every integer is either odd or even.
ThTh (F ll b(F ll b ) If) If i ddi dd•• Theorem:Theorem: (For all numbers (For all numbers nn) If ) If nn is an odd is an odd 
integer, then integer, then nn22 is an odd integer.is an odd integer.
P fP f IfIf i dd hi dd h 22kk 1 f i1 f i•• Proof:Proof: If If nn is odd, then is odd, then nn = 2= 2kk+1 for some integer +1 for some integer 
kk.  Thus, .  Thus, nn22 = (2= (2kk+1)+1)22 = 4= 4kk22 + 4+ 4kk + 1 = 2(2+ 1 = 2(2kk22 + 2+ 2kk) ) 
+ 1 Therefore+ 1 Therefore nn22 is of the form 2is of the form 2jj + 1 (with+ 1 (with jj thethe+ 1.  Therefore + 1.  Therefore nn22 is of the form 2is of the form 2jj + 1 (with + 1 (with jj the the 
integer 2integer 2kk22 + 2+ 2kk), thus ), thus nn22 is odd. is odd. □□
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Indirect Proof Example

•• Theorem:Theorem: (For all integers (For all integers nn) ) 
If 3If 3 2 i dd h2 i dd h i ddi ddIf 3If 3nn+2 is odd, then +2 is odd, then nn is odd.is odd.

•• Proof:Proof: Suppose that the conclusion is false, Suppose that the conclusion is false, i.e.i.e., , 
that that nn is even.  Then is even.  Then nn=2=2kk for some integer for some integer kk.  .  
Then 3Then 3nn+2 = 3(2+2 = 3(2kk)+2 = 6)+2 = 6kk+2 = 2(3+2 = 2(3kk+1).  Thus +1).  Thus 
33nn+2 is even, because it equals 2+2 is even, because it equals 2jj for integer for integer jj = = 
33kk+1.  So 3+1.  So 3nn+2 is not odd.  We have shown that +2 is not odd.  We have shown that 
¬(¬(nn is odd)→¬(3is odd)→¬(3nn+2 is odd), thus its contra+2 is odd), thus its contra--
positive (3positive (3nn+2 is odd) → (+2 is odd) → (nn is odd) is also true. is odd) is also true. □□
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Vacuous Proof Example

•• Theorem:Theorem: (For all (For all nn) If ) If nn is both odd and is both odd and 
even, then even, then nn22 = = nn + + nn..

•• Proof:Proof: The statement “The statement “nn is both odd andis both odd andProof: Proof: The statement The statement nn is both odd and is both odd and 
even” is necessarily false, since no number even” is necessarily false, since no number 
can be both odd and even So the theoremcan be both odd and even So the theoremcan be both odd and even.  So, the theorem can be both odd and even.  So, the theorem 
is vacuously true. is vacuously true. □□
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Trivial Proof Example

•• Theorem:Theorem: (For integers (For integers nn) If ) If nn is the sum is the sum 
of two prime numbersof two prime numbers, then either , then either nn is odd is odd 
or or nn is even.is even.

•• Proof:Proof: AnyAny integer integer nn is either odd or even.  is either odd or even.  
So the conclusion of the implication is trueSo the conclusion of the implication is trueSo the conclusion of the implication is true So the conclusion of the implication is true 
regardless of the truth of the antecedent.   regardless of the truth of the antecedent.   
Thus the implication is true trivially. Thus the implication is true trivially. □□
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Proof by Contradiction

•• A method for proving A method for proving pp..
•• Assume Assume ¬¬pp, and prove both , and prove both qq and and ¬¬qq for for 

some propositionsome proposition qqsome proposition some proposition qq..
•• Thus Thus ¬¬pp→→ ((qq ∧∧ ¬¬qq))
•• ((qq ∧∧ ¬¬qq) is a trivial contradition, equal to ) is a trivial contradition, equal to FF
•• ThusThus ¬¬pp→→FF which is only true ifwhich is only true if ¬¬pp==FF•• Thus Thus ¬¬pp→→FF, which is only true if , which is only true if ¬¬pp==FF
•• Thus Thus pp is true.is true.
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Review: Proof Methods So Far

•• DirectDirect, , indirectindirect, , vacuousvacuous, and , and trivialtrivial proofs proofs 
of statements of the form of statements of the form pp→→qq..

•• Proof by contradictionProof by contradiction of any statementsof any statementsProof by contradictionProof by contradiction of any statements.of any statements.
•• Next:  Next:  ConstructiveConstructive and and nonconstructivenonconstructive

ffexistence proofsexistence proofs..
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Proving Existentials

•• A proof of a statement of the form A proof of a statement of the form ∃∃xx PP((xx) ) 
is called an is called an existence proofexistence proof..

•• If the proof demonstrates how to actuallyIf the proof demonstrates how to actuallyIf the proof demonstrates how to actually If the proof demonstrates how to actually 
find or construct a specific element find or construct a specific element aa such such 
thatthat PP(( ) is true then it is a) is true then it is a t tit tithat that PP((aa) is true, then it is a ) is true, then it is a constructiveconstructive
proof.proof.

•• Otherwise, it is Otherwise, it is nonconstructivenonconstructive..
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Constructive Existence Proof

•• Theorem:Theorem: There exists a positive integer There exists a positive integer nn
that is the sum of two perfect cubes in two that is the sum of two perfect cubes in two 
different ways:different ways:yy
–– equal to equal to jj33 + + kk33 and and ll33 + + mm33 where where jj, , kk, , ll, , mm are are 

positive integers and {positive integers and {jj kk}} ≠ {≠ {ll mm}}positive integers, and {positive integers, and {jj,,kk} } ≠ {≠ {ll,,mm}}
•• Proof:Proof: Consider Consider nn = 1729,  = 1729,  jj = 9, = 9, kk = 10, = 10, 

ll 11 12 N j h k h h12 N j h k h hll = 1, = 1, mm = 12.  Now just check that the = 12.  Now just check that the 
equalities hold.equalities hold.
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Another ConstructiveAnother Constructive 
Existence Proof

•• Theorem:  Theorem:  For any integer For any integer nn>0, there exists >0, there exists 
a sequence of a sequence of nn consecutive composite consecutive composite 
integers.integers.gg

•• Same statement in predicate logic:Same statement in predicate logic:
∀∀ >0>0 ∃∃ ∀∀ii (1(1≤≤ii≤≤ ))→→(( ++ii is composite)is composite)∀∀nn>0 >0 ∃∃x x ∀∀ii (1(1≤≤ii≤≤nn))→→((xx++ii is composite)is composite)

•• Proof follows on next slide…Proof follows on next slide…

8/9/2008 (c)2001-2003, Michael P. Frank 30



Module #2 - Proofs

The proof...

•• Given Given nn>0, let >0, let xx = (= (nn + 1)! + 1.+ 1)! + 1.
•• Let Let i i ≥≥ 1 and 1 and i i ≤≤ nn, and consider , and consider xx++ii..
•• NoteNote xx++ii = (= (nn + 1)! + (+ 1)! + (ii + 1)+ 1)•• Note Note xx++ii = (= (nn + 1)! + (+ 1)! + (ii + 1).+ 1).
•• Note (Note (ii+1)|(+1)|(nn+1)!, since 2 +1)!, since 2 ≤≤ ii+1 +1 ≤≤ nn+1.+1.
•• Also (Also (ii+1)|(+1)|(ii+1).  So, (+1).  So, (ii+1)|(+1)|(x+ix+i).  ).  

+i+i i iti it•• ∴∴ x+ix+i is composite.  is composite.  
•• ∴∴ ∀∀nn ∃∃x x ∀∀11≤≤ii≤≤n n : : xx++ii is composite. Q.E.D.is composite. Q.E.D.
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Nonconstructive Existence Proof

•• Theorem:Theorem:
“Th i fi i l i b ”“Th i fi i l i b ”“There are infinitely many prime numbers.”“There are infinitely many prime numbers.”

•• Any finite set of numbers must contain a maximal Any finite set of numbers must contain a maximal 
element, so we can prove the theorem  if we can element, so we can prove the theorem  if we can 
just show that there is just show that there is nono largest prime number.largest prime number.

•• I.e.I.e., show that for any prime number, there is a , show that for any prime number, there is a 
larger number that is larger number that is alsoalso prime.prime.gg pp

•• More generally: For More generally: For anyany number, number, ∃∃ a larger prime.a larger prime.
•• Formally: ShowFormally: Show ∀∀nn ∃∃p>np>n :: pp is primeis prime
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The proof, using proof by cases...

•• Given Given nn>0, prove there is a prime >0, prove there is a prime pp>>nn. . 
•• Consider Consider x x = = nn!+1.  Since !+1.  Since xx>1, we know >1, we know 

((xx is prime)is prime)∨∨((xx is composite)is composite)((xx is prime)is prime)∨∨((x x is composite).is composite).
•• Case 1:Case 1: xx is prime.  Obviously is prime.  Obviously xx>>nn, so let , so let 

d dd dpp==xx and we’re done.and we’re done.
•• Case 2:Case 2: xx has a prime factorhas a prime factor pp. But if. But if pp≤≤nn,,Case 2:Case 2: xx has a prime factor has a prime factor pp.  But if .  But if pp≤≤nn, , 

then then pp mod mod xx = 1.  So = 1.  So pp>>nn, and we’re done., and we’re done.
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The Halting Problem (Turing‘36)
•• The The halting problemhalting problem was the first was the first 

mathematical function proven to mathematical function proven to pp
have have nono algorithm that computes it!  algorithm that computes it!  
–– We say, it is We say, it is uncomputable.uncomputable.

•• The desired function isThe desired function is HaltsHalts((PP II) :) :≡≡•• The desired function is The desired function is HaltsHalts((PP,,II) :) :≡≡
the truth value of this statement: the truth value of this statement: 
–– “Program P, given input I, eventually terminates.”“Program P, given input I, eventually terminates.”

ThTh H lH l i t bl !i t bl ! Alan Turing•• Theorem:Theorem: HaltsHalts is uncomputable!is uncomputable!
–– I.e., There does I.e., There does notnot exist exist anyany algorithm algorithm AA that that 

computes computes HaltsHalts correctly for correctly for allall possible inputs.possible inputs.

Alan Turing
1912-1954

•• Its proof is thus a Its proof is thus a nonnon--existence proof.existence proof.
•• Corollary: General impossibility of predictive analysis of Corollary: General impossibility of predictive analysis of 

arbitrary computer programsarbitrary computer programs
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The Proof

•• Given any Given any arbitrary arbitrary program program HH((P,IP,I),),
•• Consider algorithm Consider algorithm BreakerBreaker, defined as:, defined as:

procedureprocedure BreakerBreaker((PP: a program): a program) Breaker makes aprocedureprocedure BreakerBreaker((PP: a program): a program)
halts halts :=:= HH((PP,,PP))
ifif h lth lt then whilethen while T begin endT begin end

Breaker makes a 
liar out of H, by 

doing the opposite 
of whatever Hifif haltshalts then whilethen while T begin endT begin end

•• Note that Note that BreakerBreaker((BreakerBreaker) halts iff ) halts iff 

of whatever H
predicts.

HH((BreakerBreaker,,BreakerBreaker) = ) = FF..
•• SoSo HH doesdoes notnot compute the functioncompute the function HaltsHalts!!
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Limits on Proofs

•• Some very simple statements of number Some very simple statements of number 
theory haven’t been proved or disproved!theory haven’t been proved or disproved!
–– E.g. Goldbach’s conjectureE.g. Goldbach’s conjecture: Every integer: Every integer nn≥≥22E.g. Goldbach s conjectureE.g. Goldbach s conjecture: Every integer : Every integer nn≥≥2 2 

is exactly the average of some two primes.is exactly the average of some two primes.
–– ∀∀n≥n≥22 ∃∃ primesprimes pp qq:: nn=(=(pp++qq)/2)/2–– ∀∀n≥n≥2 2 ∃∃ primes primes pp,,qq: : nn=(=(pp++qq)/2.)/2.

•• There are true statements of number theory There are true statements of number theory 
(or any sufficiently powerful system) that (or any sufficiently powerful system) that 
can can nevernever be proved (or disproved) (Gödel).be proved (or disproved) (Gödel).
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More Proof Examples

•• Quiz question 1a: Is this argument correct or Quiz question 1a: Is this argument correct or 
i ?i ?incorrect?incorrect?
–– “All TAs compose easy quizzes.  Ramesh is a TA.  “All TAs compose easy quizzes.  Ramesh is a TA.  

Th f R h i ”Th f R h i ”Therefore, Ramesh composes easy quizzes.”Therefore, Ramesh composes easy quizzes.”

•• First, separate the premises from conclusions:First, separate the premises from conclusions:
–– Premise #1: All TAs compose easy quizzes.Premise #1: All TAs compose easy quizzes.
–– Premise #2: Ramesh is a TA.Premise #2: Ramesh is a TA.
–– Conclusion: Ramesh composes easy quizzes.Conclusion: Ramesh composes easy quizzes.
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Answer

Next, reNext, re--render the example in logic notation.render the example in logic notation.
•• Premise #1: All TAs compose easy quizzes.Premise #1: All TAs compose easy quizzes.

Let U D = all peopleLet U D = all people–– Let U.D. = all peopleLet U.D. = all people
–– Let Let TT((xx) :) :≡ “≡ “xx is a TA”is a TA”
–– Let Let EE((xx) :≡ “) :≡ “xx composes easy quizzes”composes easy quizzes”
–– Then Premise #1 says: Then Premise #1 says: ∀∀xx, , TT((xx)→)→EE((xx))
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Answer cont…

•• Premise #2: Ramesh is a TA.Premise #2: Ramesh is a TA.
–– Let R :Let R :≡ Ramesh≡ Ramesh
–– Then Premise #2 says:Then Premise #2 says: TT(R)(R)Then Premise #2 says: Then Premise #2 says: TT(R)(R)
–– And the Conclusion says: And the Conclusion says: EE(R)(R)

Th i b i bTh i b i b•• The argument is correct, because it can be The argument is correct, because it can be 
reduced to a sequence of applications of reduced to a sequence of applications of 
valid inference rules, as follows:valid inference rules, as follows:
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The Proof in Gory Detail

•• StatementStatement How obtainedHow obtained
1.1. ∀∀xx, , TT((xx) ) → → EE((xx)) (Premise #1)(Premise #1)
22 TT(Ramesh) →(Ramesh) → EE(Ramesh)(Ramesh) (Universal(Universal2.2. TT(Ramesh) → (Ramesh) → EE(Ramesh)     (Ramesh)     (Universal (Universal 

instantiation)instantiation)
3.3. TT(Ramesh)(Ramesh) (Premise #2)(Premise #2)
44 EE(Ramesh)(Ramesh) ((Modus PonensModus Ponens fromfrom4.4. EE(Ramesh)(Ramesh) ((Modus PonensModus Ponens from from 

statements #2 and #3)statements #2 and #3)
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Another example

•• Quiz question 2b:  Correct or incorrect: At least Quiz question 2b:  Correct or incorrect: At least 
f h 280 d i h l i i llif h 280 d i h l i i llione of the 280 students in the class is intelligent.  one of the 280 students in the class is intelligent.  

Y is a student of this class.  Therefore, Y is Y is a student of this class.  Therefore, Y is 
i llii lliintelligent.intelligent.

•• First: Separate premises/conclusion,First: Separate premises/conclusion,
& translate to logic:& translate to logic:
–– Premises: (1) Premises: (1) ∃∃xx InClass(InClass(xx) ) ∧∧ Intelligent(Intelligent(xx))

(2) InClass(Y)(2) InClass(Y)
–– Conclusion: Intelligent(Y)Conclusion: Intelligent(Y)
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Answer
•• No, the argument is invalid; we can disprove it  No, the argument is invalid; we can disprove it  

with a counterwith a counter--example as follows:example as follows:with a counterwith a counter example, as follows:example, as follows:
•• Consider a case where there is only one intelligent Consider a case where there is only one intelligent 

student X in the class, and Xstudent X in the class, and X≠Y.≠Y.,, ≠≠
–– Then the premise Then the premise ∃∃xx InClass(InClass(xx) ) ∧∧ Intelligent(Intelligent(xx)) is is 

true, by existential generalization of true, by existential generalization of 
InClass(X)InClass(X) ∧∧ Intelligent(X)Intelligent(X)InClass(X) InClass(X) ∧∧ Intelligent(X)Intelligent(X)

–– But the conclusion But the conclusion Intelligent(Y)Intelligent(Y) is false, since X is is false, since X is 
the only intelligent student in the class, and Y≠X.the only intelligent student in the class, and Y≠X.

•• Therefore, the premises Therefore, the premises do notdo not imply the imply the 
conclusion.conclusion.
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Another Example

•• Quiz question #2: Prove that the sum of a rational Quiz question #2: Prove that the sum of a rational 
b d i i l b i lb d i i l b i lnumber and an irrational number is always number and an irrational number is always 

irrational.irrational.
•• First, you have to understand exactly what the First, you have to understand exactly what the 

question is asking you to prove:question is asking you to prove:
–– “For all real numbers “For all real numbers xx,,y,y, if if xx is rational and is rational and yy is is 

irrational, then irrational, then xx++yy is irrational.”is irrational.”
–– ∀∀xx,,yy: Rational(: Rational(xx) ) ∧∧ Irrational(Irrational(yy) → Irrational() → Irrational(xx++yy))
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Answer

•• Next, think back to the definitions of the Next, think back to the definitions of the 
t d i th t t t f th tht d i th t t t f th thterms used in the statement of the theorem:terms used in the statement of the theorem:
–– ∀∀ reals reals rr: : Rational(Rational(rr) ) ↔↔

(( )) (( )) //∃∃ Integer(Integer(ii) ) ∧∧ Integer(Integer(jj): ): rr = = ii//jj..
–– ∀∀ reals reals rr: : Irrational(Irrational(rr) ↔ ¬Rational() ↔ ¬Rational(rr))

•• You almost always need the definitions of You almost always need the definitions of 
the terms in order to prove the theorem!the terms in order to prove the theorem!pp

•• Next, let’s go through one valid proof:Next, let’s go through one valid proof:
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What you might write
•• Theorem: Theorem: 

∀∀xx yy: Rational(: Rational(xx) ) ∧∧ IrrIrrational(ational(yy) ) →→ Irrational(Irrational(xx++yy))∀∀xx,,yy: Rational(: Rational(xx) ) ∧∧ IrrIrrational(ational(yy) ) Irrational(Irrational(xx++yy))
•• Proof:Proof: Let Let xx, , yy be any rational and irrational be any rational and irrational 

numbers, respectivelynumbers, respectively.  … (universal generalization).  … (universal generalization)
•• Now, just from this, what do we know about Now, just from this, what do we know about xx and and yy?  You ?  You 

should think back to the definition of rational:should think back to the definition of rational:
Si  Si  i  ti l   k  (f  th   i  ti l   k  (f  th   •• … … Since Since xx is rational, we know (from the very is rational, we know (from the very 

definition of rational) that there must be some definition of rational) that there must be some 
integers integers ii and and jj such that such that xx = = ii//jj.. So, let So, let iixx,,jjxx be be gg jj uu //jj.. ,, xx,,jjxx
such integers such integers ……

•• We give them unique names so we can refer to them later.We give them unique names so we can refer to them later.
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What next?
•• What do we know about What do we know about yy?  Only that ?  Only that yy is is 

irrational:irrational: ¬¬∃∃ integersintegers ii jj:: yy == ii//jjirrational: irrational: ∃∃ integers integers ii,,jj: : yy   ii//jj..
•• But, it’s difficult to see how to use a direct proof But, it’s difficult to see how to use a direct proof 

in this case.  We could try indirect proof also, but in this case.  We could try indirect proof also, but y p ,y p ,
in this case, it is a little simpler to just use proof in this case, it is a little simpler to just use proof 
by contradiction (very similar to indirect).by contradiction (very similar to indirect).
S h i h ? J hS h i h ? J h ii•• So, what are we trying to show?  Just that So, what are we trying to show?  Just that xx++yy is is 
irrational.  That is, ¬irrational.  That is, ¬∃∃ii,,jj: (: (x x + + yy) = ) = ii//jj..

•• What happens if we hypothesize the negation ofWhat happens if we hypothesize the negation of•• What happens if we hypothesize the negation of What happens if we hypothesize the negation of 
this statement?this statement?
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More writing…
•• Suppose that Suppose that xx++yy were not irrational.  Then were not irrational.  Then 

xx++yy would be rational  so would be rational  so ∃∃ integers integers ii jj: : xx++yyxx++yy would be rational, so would be rational, so ∃∃ integers integers ii,,jj: : xx++yy
= = ii//jj.  So, let .  So, let iiss and and jjss be any such integers be any such integers 
where where xx++yy = = iiss/ / jjss..

•• Now, with all these things named, we can start Now, with all these things named, we can start 
seeing what happens when we put them together.seeing what happens when we put them together.
S   h  th t (S   h  th t (ii //jj )  )   ( (ii //jj ))•• So, we have that (So, we have that (iixx//jjxx) + ) + yy = (= (iiss//jjss).).

•• Observe!  We have enough information now that Observe!  We have enough information now that 
we can conclude something useful aboutwe can conclude something useful about yy bybywe can conclude something useful about we can conclude something useful about yy, by , by 
solving this equation for it.solving this equation for it.
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Finishing the proof.

•• Solving that equation for Solving that equation for yy, we have: , we have: 
yy = = ((ii //jj ) ) ((ii //jj ))yy = = ((iiss//jjss) ) –– ((iixx//jjxx))

= (= (iissjjxx –– iixxjjss)/()/(jjssjjxx))
Now  since the numerator and denominator Now  since the numerator and denominator Now, since the numerator and denominator Now, since the numerator and denominator 
of this expression are both integers, of this expression are both integers, yy is is 
(by definition) rational.  This contradicts (by definition) rational.  This contradicts ( y )( y )
the assumption that the assumption that yy was irrational.  was irrational.  
Therefore, our hypothesis that Therefore, our hypothesis that xx++yy is is 

i l  b  f l  d  h  h  i l  b  f l  d  h  h  rational must be false, and so the theorem rational must be false, and so the theorem 
is proved.is proved.
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Example wrong answer

•• 1 is rational.  √2 is irrational.  1+√2 is 1 is rational.  √2 is irrational.  1+√2 is 
i ti l   Th f  th   f  i ti l   Th f  th   f  irrational.  Therefore, the sum of a irrational.  Therefore, the sum of a 
rational number and an irrational number is rational number and an irrational number is 
i ti l  (Di t f )i ti l  (Di t f )irrational. (Direct proof.)irrational. (Direct proof.)

•• Why does this answer merit no credit?Why does this answer merit no credit?
–– The student attempted to use an example to prove a The student attempted to use an example to prove a 

universal statement.  universal statement.  This is always wrong!This is always wrong!
–– Even as an example, it’s incomplete, because the Even as an example, it’s incomplete, because the 

student never even proved that 1+student never even proved that 1+√2 is irrational!√2 is irrational!
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