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Module #4 - Functions

On to section 1.8… Functions

•• From calculus, you are familiar with the From calculus, you are familiar with the 
concept of a realconcept of a real--valued function valued function ff, , 
which assigns to each number which assigns to each number xx∈∈RR a a gg
particular value particular value yy==ff((xx), where ), where yy∈∈RR..

•• But the notion of a function can also beBut the notion of a function can also be•• But, the notion of a function can also be But, the notion of a function can also be 
naturally generalized to the concept of naturally generalized to the concept of 
assigning elements of assigning elements of anyany set to elementsset to elements
of of anyany set.set.
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Function: Formal Definition

•• For any sets For any sets AA, , BB, we say that a , we say that a functionfunction f f 
from (or “mapping”) A to Bfrom (or “mapping”) A to B ((ff::AA→→BB) is a ) is a 
particular assignment of exactly one particular assignment of exactly one p g yp g y
element element ff((xx))∈∈BB to each element to each element xx∈∈A.A.

•• Some further generalizations of this idea:Some further generalizations of this idea:•• Some further generalizations of this idea:Some further generalizations of this idea:
–– A A partial partial (non(non--totaltotal)) function function ff assigns assigns zero or zero or 

oneone elements of elements of BB to each element to each element xx∈∈AA..
–– Functions of Functions of nn arguments; relations (ch. 6).arguments; relations (ch. 6).
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Graphical Representations

•• Functions can be represented graphically in Functions can be represented graphically in 
several ways:several ways:
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PlotBipartite Graph
Like Venn diagrams
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Functions We’ve Seen So Far

•• A A propositionproposition can be viewed as a function can be viewed as a function 
from “situations” to truth values {from “situations” to truth values {TT,,FF}}
–– A logic system calledA logic system called situation theorysituation theory..A logic system called A logic system called situation theorysituation theory..
–– pp=“It is raining.”; =“It is raining.”; ss=our situation here,now=our situation here,now

(( )) {{TT FF}}–– pp((ss))∈∈{{TT,,FF}.}.
•• A A propositional operatorpropositional operator can be viewed as can be viewed as 

a function from a function from ordered pairsordered pairs of truth of truth 
values to truth values:values to truth values: ∨∨((((FF,,TT)) =)) = TT..
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More functions so far…

•• A A predicatepredicate can be viewed as a function can be viewed as a function 
from from objectsobjects to to propositions propositions (or truth (or truth 
values):  values):  P P ::≡≡ “is 7 feet tall”; “is 7 feet tall”; )) ;;
PP(Mike) = “Mike is 7 feet tall.” = (Mike) = “Mike is 7 feet tall.” = FalseFalse..

•• AA bit t i B f l thbit t i B f l th can be viewed as acan be viewed as a•• A A bit string B of length n bit string B of length n can be viewed as a can be viewed as a 
function from the numbers {1,…,function from the numbers {1,…,nn}}
(bi(bi )) hh bb {{ }}(bit (bit positionspositions)) to the to the bits bits {{00,,11}.}.
E.g.E.g.,   ,   BB==101101 BB(3)=(3)=11..
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Still More Functions

•• A A setset SS over universe over universe UU can be viewed as a can be viewed as a 
function from the elements of function from the elements of UU toto
{{TT, , FF}, saying for each element of }, saying for each element of UU{{ ,, }, y g}, y g
whether it is in whether it is in SS.  .  SS={3}; ={3}; SS(0)=(0)=FF, S(3)=, S(3)=TT..

•• AA t tt t s ch ass ch as ∩∩ ∪∪ ⎯⎯ can becan be•• A A set operatorset operator such as such as ∩∩,,∪∪,, can be can be 
viewed as a function from pairs of setsviewed as a function from pairs of sets
to sets. to sets. 
–– Example: Example: ∩∩(({1,3},{3,4})) = {3}(({1,3},{3,4})) = {3}
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A Neat Trick

•• Sometimes we write Sometimes we write YYXX to denote the set to denote the set FF
of of allall possible functions possible functions ff::XX→→YY..

•• This notation is especially appropriateThis notation is especially appropriateThis notation is especially appropriate, This notation is especially appropriate, 
because for finite because for finite XX, , YY, |, |FF| = || = |YY||||XX||. . 
If iIf i FF 00 TT 11•• If we use representations If we use representations FF≡≡00, , TT≡≡11, , 
22::≡≡{{00,,11}={}={FF,,TT}, then a subset }, then a subset TT⊆⊆SS is just a is just a 
function from function from SS to to 22, so the power set of , so the power set of S S 
(set of all such fns.)(set of all such fns.) isis 22S  S  in this notation.in this notation.
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Some Function Terminology

•• If If ff::AA→→BB, and , and ff((aa)=)=b b (where (where aa∈∈AA & & bb∈∈BB), ), 
thththen:then:
–– AA is the is the domaindomain of of ff.  .  
–– BB is the is the codomaincodomain of of ff..
–– bb is the is the imageimage of of a a under under ff..gg ff
–– aa is a is a prepre--imageimage of of bb under under f.f.

•• In general, In general, bb may have more than 1 premay have more than 1 pre--image.image.g ,g , y py p gg
–– The The rangerange RR⊆⊆BB of of f f is {is {bb | | ∃∃aa ff((aa)=)=bb }.}.
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Range versus Codomain

•• The range of a function might The range of a function might notnot be its be its 
whole codomain.whole codomain.

•• The codomain is the set that the function isThe codomain is the set that the function isThe codomain is the set that the function is The codomain is the set that the function is 
declareddeclared to map all domain values into.to map all domain values into.

h i hh i h ll f l if l i•• The range is the The range is the particularparticular set of values in set of values in 
the codomain that the function the codomain that the function actuallyactually
maps elements of the domain to.maps elements of the domain to.
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Range vs. Codomain - Example

•• Suppose I declare to you that: “Suppose I declare to you that: “ff is a is a 
function mapping students in this class to function mapping students in this class to 
the set of grades {A,B,C,D,E}.”the set of grades {A,B,C,D,E}.”g { , , , , }g { , , , , }

•• At this point, you know At this point, you know ff’s codomain is: ’s codomain is: 
and its range isand its range is{A B C D E} k !__________, and its range is ________.__________, and its range is ________.

•• Suppose the grades turn out all As and Bs.Suppose the grades turn out all As and Bs.
{A,B,C,D,E} unknown!

•• Then the range of Then the range of f f is _________, but its is _________, but its 
codomain iscodomain is

{A,B}
still {A B C D E}!
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Operators (general definition)

•• An An nn--ary ary operatoroperator over the set over the set SS is any is any 
function from the set of ordered function from the set of ordered nn--tuples of tuples of 
elements of elements of SS, to , to SS itself.itself.,,

•• E.g.E.g., if , if SS={={TT,,FF}, }, ¬¬ can be seen as a unary can be seen as a unary 
operator andoperator and are binar operators onare binar operators on SSoperator, and operator, and ∧∧,,∨∨ are binary operators on are binary operators on SS..

•• Another example: Another example: ∪∪ and and ∩∩ are binary are binary 
operators on the set of all sets.operators on the set of all sets.
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Constructing Function Operators

•• If If •• (“dot”) is any operator over (“dot”) is any operator over BB, then we , then we 
can extend can extend •• to also denote an operator over to also denote an operator over 
functions functions ff::AA→→B.B.ff

•• E.g.E.g.: Given any binary operator : Given any binary operator ••::BB××BB→→BB, , 
and f nctionsand f nctions ff ::AA→→BB e definee defineand functions and functions ff,,gg::AA→→BB, we define, we define
((f f •• gg):):AA→→B B to be the function defined by:to be the function defined by:
∀∀aa∈∈AA, (, (f f •• gg)()(aa) = ) = ff((aa))••gg((aa).).
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Function Operator Example

•• ++,,×× (“plus”,“times”) are binary operators (“plus”,“times”) are binary operators 
over over RR. (Normal addition & multiplication.). (Normal addition & multiplication.)

•• Therefore we can also add and multiplyTherefore we can also add and multiplyTherefore, we can also add and multiply Therefore, we can also add and multiply 
functionsfunctions ff,,gg::RR→→RR::

((ff )) RR RR h (h (ff )()( )) ff(( )) (( ))–– ((f f ++ gg):):RR→→RR,, where (where (f f ++ gg)()(xx) = ) = ff((xx)) ++ gg((xx))
–– ((f f ×× gg):):RR→→RR, where (, where (f f ×× gg)()(xx) = ) = ff((xx))×× gg((xx))
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Function Composition Operator

•• For functions For functions gg::AA→→BB and and ff::BB→→CC, there is a , there is a 
special operator called special operator called compose compose (“(“○○”).”).
–– ItIt composescomposes (creates) a new function out of(creates) a new function out of ff,,ggIt It composescomposes (creates) a new function out of (creates) a new function out of ff,,gg

by applying by applying ff to the result of to the result of g.g.
–– ((ff○○gg):):AA→→CC wherewhere ((ff○○gg)()(aa) =) = ff((gg((aa))))–– ((ff○○gg):):AA→→CC, where , where ((ff○○gg)()(aa) = ) = ff((gg((aa)).)).
–– Note Note gg((aa))∈∈BB, so , so ff((gg((aa)) is defined and )) is defined and ∈∈CC..

○○–– Note that Note that ○○ (like Cartesian (like Cartesian ××, but , but unlike unlike 
+,+,∧∧,,∪∪) is non) is non--commuting. (Generally, commuting. (Generally, ff○○g g ≠≠
○○
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Images of Sets under Functions

•• Given Given ff::AA→→BB, and , and SS⊆⊆AA,,
•• The The imageimage of of SS under under ff is simply the set of is simply the set of 

all images (underall images (under ff) of the elements of) of the elements of SSall images (under all images (under ff) of the elements of ) of the elements of SS..
ff((SS) :) :≡≡ {{ff((ss) | ) | ss∈∈SS}}

:: {{bb || ∃∃ SS:: ff(( )) bb}}::≡≡ {{bb | | ∃∃ ss∈∈SS: : ff((ss)=)=bb}.}.
•• Note the range of Note the range of ff can be defined as simply can be defined as simply 

the image (under the image (under ff) of ) of ff’s domain!’s domain!
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One-to-One Functions

•• A function is A function is oneone--toto--one (1one (1--1)1), or , or injectiveinjective, or , or an injectionan injection, , 
iff every element of its range hasiff every element of its range has onlyonly 1 pre1 pre imageimageiff every element of its range has iff every element of its range has onlyonly 1 pre1 pre--image. image. 
–– Formally: given Formally: given ff::AA→→B,B,

““x x is injective” :is injective” :≡≡ ((¬∃¬∃xx,,yy: : xx≠≠y y ∧∧ ff((xx))==ff((yy)).)).

•• Only Only one element of the domain is mapped element of the domain is mapped toto any given any given 
oneone element of the range.element of the range.
–– Domain & range have same cardinality. What about codomain?Domain & range have same cardinality. What about codomain?

•• Each element of the domain is Each element of the domain is injectedinjected into a different into a different 
l f hl f helement of the range.element of the range.
–– Compare “each dose of vaccine is injected into a different patient.”Compare “each dose of vaccine is injected into a different patient.”
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One-to-One Illustration

•• Bipartite (2Bipartite (2--part) graph representations of part) graph representations of 
f i h ( )f i h ( )functions that are (or not) onefunctions that are (or not) one--toto--one:one:

• •

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•

•
•
•

• •
•
•

•
• •

•
•N

One-to-one
Not one-to-one Not even a 

function!
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Sufficient Conditions for 1-1ness

•• For functions For functions ff over numbers,over numbers,
–– ff is is strictlystrictly (or (or monotonicallymonotonically) ) increasingincreasing iff iff 

x>y x>y →→ ff((x)>f(y) x)>f(y) for all for all x,yx,y in domain;in domain;yy ff(( ) f(y)) f(y) yy ;;
–– ff is is strictlystrictly (or (or monotonicallymonotonically) ) decreasingdecreasing iff iff 

x>yx>y →→ ff((x)<f(y)x)<f(y) for allfor all x,yx,y in domain;in domain;x y x y →→ ff((x) f(y) x) f(y) for all for all x,yx,y in domain;in domain;
•• If If ff is either strictly increasing or strictly is either strictly increasing or strictly 

d i thd i th ff ii tt EE 33decreasing, then decreasing, then ff is oneis one--toto--one. one. E.g.E.g. xx33

–– Converse is not necessarily true. E.g. Converse is not necessarily true. E.g. 1/1/xx
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Onto (Surjective) Functions

•• A function A function ff::AA→→BB is is ontoonto or or surjectivesurjective or or a a 
surjectionsurjection iff its range is equal to its iff its range is equal to its 
codomain (codomain (∀∀bb∈∈BB, , ∃∃aa∈∈AA: : ff((aa)=)=bb).).(( ,, ff(( )) ))

•• An An ontoonto function maps the set function maps the set AA ontoonto (over, (over, 
covering) thecovering) the ti tti t of the setof the set BB not justnot justcovering) the covering) the entiretyentirety of the set of the set BB, not just , not just 
over a piece of it.over a piece of it.

•• E.g.E.g., for domain & codomain , for domain & codomain R, xx3 3 is onto, is onto, 
whereaswhereas xx2 2 isn’t. (Why not?)isn’t. (Why not?)
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Illustration of Onto

•• Some functions that are or are not Some functions that are or are not ontoonto their their 
codomains:codomains:

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•
•

•
• •

• •
• •

• •
• •

•

• •
• •

•

•
Onto

(but not 1-1)

• Not Onto
(or 1-1)

•
Both 1-1
and onto

1-1 but
not onto
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Bijections

•• A function A function ff is is a onea one--toto--one one 
correspondencecorrespondence, or , or a bijectiona bijection, or , or 
reversiblereversible, or , or invertibleinvertible, iff it is both one, iff it is both one--toto--,, ,,
one and onto.one and onto.

•• For bijectionsFor bijections f Af A→→BB there e ists anthere e ists an•• For bijections For bijections f:Af:A→→BB, there exists an  , there exists an  
inverse ofinverse of ff, written, written f f −−11::BB→→AA, which is the , which is the 

1unique function such that                     unique function such that                     
(the identity function)(the identity function)

Iff =− o1
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The Identity Function

•• For any domain For any domain AA, the , the identity function identity function 
I:AI:A→→AA (variously written, (variously written, IIAA, , 11, , 11AA) is the ) is the 
unique function such that unique function such that ∀∀aa∈∈AA: : II((aa)=)=aa..qq (( ))

•• Some identity functions you’ve seen:Some identity functions you’ve seen:
i 0 i b 1i 0 i b 1 i i hi i h TT i i hi i h FF–– ++ing 0, ·ing by 1, ing 0, ·ing by 1, ∧∧ing with ing with TT, , ∨∨ing with ing with FF, , 
∪∪ing with ing with ∅∅, , ∩∩ing with ing with UU..

•• Note that the identity function is both oneNote that the identity function is both one--
toto--one and onto (bijective).one and onto (bijective).

8/9/2008 (c)2001-2003, Michael P. Frank 23

( j )( j )



Module #4 - Functions

Identity Function Illustrations

•• The identity function:The identity function:

•
•

•
•

•
y

•
•

•
•

Domain and range x
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A Fun Application

•• In a computer, the function mapping In a computer, the function mapping state at clock state at clock 
l #l # l k l # 1l k l # 1 i ll d hi ll d hcycle #tcycle #t to to state at clock cycle #t+1 state at clock cycle #t+1 is called the is called the 

computer’s computer’s transition functiontransition function..
•• If the transition function is reversible (a bijection), If the transition function is reversible (a bijection), 

then the computer’s operation in theory requires then the computer’s operation in theory requires 
no energy expenditure.no energy expenditure.

•• The study of lowThe study of low--power power reversible computing reversible computing yy pp p gp g
techniques based on this idea is my primary techniques based on this idea is my primary 
research area.research area.
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Graphs of Functions

•• We can represent a function We can represent a function ff::AA→→BB as a set as a set 
of ordered pairs {(of ordered pairs {(aa,,ff((aa)) | )) | aa∈∈AA}.}.

•• Note thatNote that ∀∀aa there is only 1 pair (there is only 1 pair (aa ff((aa))))Note that Note that ∀∀aa, there is only 1 pair (, there is only 1 pair (aa,,ff((aa)).)).
–– Later (ch.6): Later (ch.6): relationsrelations loosen this restriction.loosen this restriction.

•• For functions over numbers, we can For functions over numbers, we can 
represent an ordered pair (represent an ordered pair (xx,,yy) as a point on ) as a point on p p (p p ( ,,yy) p) p
a plane.  A function is then drawn as a curve a plane.  A function is then drawn as a curve 
(set of points) with only one(set of points) with only one yy for eachfor each xx
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Comment About Representations

•• You can represent any type of discrete You can represent any type of discrete 
structure (propositions bitstructure (propositions bit strings numbersstrings numbersstructure (propositions, bitstructure (propositions, bit--strings, numbers, strings, numbers, 
sets, ordered pairs, functions) in terms of sets, ordered pairs, functions) in terms of 
virtually any of the other structures (orvirtually any of the other structures (orvirtually any of the other structures (or virtually any of the other structures (or 
some combination thereof).some combination thereof).

•• Probably none of these structures isProbably none of these structures is trulytrulyProbably none of these structures is Probably none of these structures is trulytruly
more fundamental than the others (whatever more fundamental than the others (whatever 
that would mean). However, strings, logic,that would mean). However, strings, logic,that would mean).  However, strings, logic, that would mean).  However, strings, logic, 
and sets are often used as and sets are often used as 
the foundation for all else.  the foundation for all else.  E.g.E.g. in in 
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A Couple of Key Functions

•• In discrete math, we will frequently use the In discrete math, we will frequently use the 
following functions over real numbers:following functions over real numbers:
–– ⎣⎣xx⎦⎦ (“floor of(“floor of xx”) is the largest (most positive)”) is the largest (most positive)⎣⎣xx⎦⎦ ( floor of ( floor of xx ) is the largest (most positive) ) is the largest (most positive) 

integer integer ≤≤ x.x.
–– ⎡⎡xx⎤⎤ (“ceiling of(“ceiling of xx”) is the smallest (most”) is the smallest (most–– ⎡⎡xx⎤⎤ ( ceiling of ( ceiling of xx ) is the smallest (most ) is the smallest (most 

negative) integer negative) integer ≥≥ xx..
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Visualizing Floor & Ceiling

•• Real numbers “fall to their floor” or “rise to Real numbers “fall to their floor” or “rise to 
their ceiling.”their ceiling.”

•• Note that ifNote that if xx∉∉ZZ 2
3

.
1 6

⎡1.6⎤=2

Note that if Note that if xx∉∉ZZ,,
⎣−⎣−xx⎦⎦ ≠≠ −− ⎣⎣xx⎦⎦ &&
⎡⎡ ⎤⎤ ≠≠ ⎡⎡ ⎤⎤ 0

1
.

.
1.6

⎣1.6⎦=1

⎡−⎡−xx⎤⎤ ≠≠ −− ⎡⎡xx⎤⎤
•• Note that if Note that if xx∈∈ZZ,,

0
−1
−2

..
.

−1.4

⎡−1.4⎤= −1

⎣⎣xx⎦⎦ = = ⎡⎡xx⎤⎤ = = xx..
−2
−3 . . .

⎣−1.4⎦= −2
−3

⎡−3⎤=⎣−3⎦= −3
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Plots with floor/ceiling

Note that for Note that for ff((xx)=)=⎣⎣xx⎦⎦, the graph of , the graph of ff includes the includes the 
i (i ( 0) f ll l f0) f ll l f h hh h 0 d0 dpoint (point (aa, 0) for all values of , 0) for all values of aa such that such that aa≥≥0 and 0 and 

a<a<1, but not for 1, but not for aa=1.  We say that the set of points =1.  We say that the set of points 
(( 0) h i i0) h i i ff d i l d id i l d i li ili i((aa,0) that is in ,0) that is in ff does not include its does not include its limitlimit or or 
boundaryboundary point (point (aa,1).  Sets that do not include all ,1).  Sets that do not include all 

f h i li i i ll df h i li i i ll d I lI lof their limit points are called of their limit points are called open setsopen sets.  In a plot, .  In a plot, 
we draw a limit point of a curve using an open dot we draw a limit point of a curve using an open dot 
( i l ) if h li i i i h d( i l ) if h li i i i h d(circle) if the limit point is not on the curve, and (circle) if the limit point is not on the curve, and 
with a closed (solid) dot if it is on the curve.with a closed (solid) dot if it is on the curve.
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Plots with floor/ceiling: Example

•• Plot of graph of function Plot of graph of function ff((xx) = ) = ⎣⎣xx/3/3⎦⎦::
f(x)f(x)

Set of points (x f(x)) +2Set of points (x, f(x)) +2

3 x+3

−2

−3
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Review of §1.8 (Functions)

•• Function variables Function variables ff, , gg, , hh, … , … 
•• Notations: Notations: ff::AA→→B, fB, f((aa), ), ff((AA).).
•• Terms: image, preimage, domain, codomain, Terms: image, preimage, domain, codomain, g , p g , , ,g , p g , , ,

range, onerange, one--toto--one, onto, strictly (in/de)creasing, one, onto, strictly (in/de)creasing, 
bijective, inverse, composition.bijective, inverse, composition.j , , pj , , p

•• Function unary operator Function unary operator f f −−11, , 
binary operatorsbinary operators ++ −− etcetc andand○○binary operators binary operators ++, , , , etc.etc., and , and ○○..

•• The The RR→→ZZ functions functions ⎣⎣xx⎦⎦ and and ⎡⎡xx⎤⎤..
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Module #4 Topic #∞:Module #4, Topic #∞:
Cardinality & Infinite Setsy

hhRosen 5Rosen 5thth ed., ed., §§3.23.2
~1 lecture~1 lecture
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Infinite Cardinalities (from §3.2)

•• Using what we learned about Using what we learned about functionsfunctions in in 
§§1.8, it’s possible to formally define 1.8, it’s possible to formally define 
cardinality for infinite sets.cardinality for infinite sets.yy

•• We show that infinite sets come inWe show that infinite sets come in
differentdifferent ii of infinite!of infinite!different different sizessizes of infinite!of infinite!

•• This gives us some interesting proof This gives us some interesting proof 
examples, in anticipation of chapter 3.examples, in anticipation of chapter 3.
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Cardinality: Formal Definition

•• For any two (possibly infinite) sets For any two (possibly infinite) sets AA and and BB, , 
we say that we say that AA and and BB have the same have the same 
cardinality cardinality (written |(written |AA|=||=|BB|) iff there exists a |) iff there exists a yy ( |( | | || | |)|)
bijection (bijective function) from bijection (bijective function) from AA to to BB..

•• WhenWhen AA andand BB are finite it is easy to seeare finite it is easy to see•• When When AA and and BB are finite, it is easy to see are finite, it is easy to see 
that such a function exists iff that such a function exists iff AA and and BB have have 
the same number of elements the same number of elements nn∈∈NN..
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Countable versus Uncountable

•• For any set For any set SS, if , if SS is finite or |is finite or |SS|=||=|NN|, we say |, we say SS is is 
blbl ElEl SS ii blblcountablecountable.  Else, .  Else, SS is is uncountable.uncountable.

•• Intuition behind “Intuition behind “countablecountable:” we can :” we can enumerateenumerate
(generate in series) elements of (generate in series) elements of SS in such a way in such a way 
that that anyany individual element of individual element of SS will eventually be will eventually be 
countedcounted in the enumeration.  Examples: in the enumeration.  Examples: NN, , ZZ..

•• UncountableUncountable: : NoNo series of elements of series of elements of SS (even an (even an ((
infinite series) can include all of infinite series) can include all of SS’s elements.’s elements.
Examples: Examples: RR, , RR22, P(, P(NN) ) 
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Countable Sets: Examples

•• Theorem:Theorem: The set The set ZZ is countable.is countable.
–– Proof:Proof: Consider Consider ff::ZZ→→NN where where ff((ii)=2)=2ii for for ii≥≥0 0 

and and ff((ii) = ) = −−22ii−−1 for 1 for ii<0.  Note <0.  Note ff is bijective.is bijective.ff(( )) ff jj
•• Theorem:Theorem: The set of all ordered pairs of The set of all ordered pairs of 

natural numbers (natural numbers (nn mm) is countable) is countablenatural numbers (natural numbers (nn,,mm) is countable.) is countable.
–– Consider listing the pairs in order by their sum Consider listing the pairs in order by their sum 

h bh b i ii is=ns=n++m,m, then by then by nn.  Every pair appears once in .  Every pair appears once in 
this series; the generating function is bijective.this series; the generating function is bijective.
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Uncountable Sets: Example

•• Theorem:Theorem: The open intervalThe open interval
[0,1) :[0,1) :≡≡ {{rr∈∈RR| 0 | 0 ≤≤ r r < 1}< 1} is uncountable.is uncountable.

•• ProofProof byby diagonalizationdiagonalization: (Cantor 1891): (Cantor 1891)ProofProof by by diagonalizationdiagonalization: (Cantor, 1891): (Cantor, 1891)
–– Assume there is a series {Assume there is a series {rrii} = } = rr11, , rr22, ... , ... 

containingcontaining llll elementselements ∈∈[0 1)[0 1)

Georg Cantor
1845-1918

containing containing allall elements elements rr∈∈[0,1).[0,1).
–– Consider listing the elements of {Consider listing the elements of {rrii} in decimal } in decimal 

i ( l h h b ill d ) i d fi ( l h h b ill d ) i d fnotation (although any base will do) in order of notation (although any base will do) in order of 
increasing index: ...  increasing index: ...  (continued on next slide)(continued on next slide)
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Uncountability of Reals, cont’d

A postulated enumeration of the reals:A postulated enumeration of the reals:
rr11 =  0.=  0.dd1,1 1,1 dd1,2 1,2 dd1,3 1,3 dd1,4 1,4 dd1,5 1,5 dd1,6 1,6 dd1,7 1,7 dd1,81,8……
rr22 =  0.=  0.dd2 12 1 dd2 22 2 dd2 32 3 dd2 42 4 dd2 52 5 dd2 62 6 dd2 72 7 dd2 82 8……22 2,1 2,1 2,2 2,2 2,3 2,3 2,4 2,4 2,5 2,5 2,6 2,6 2,7 2,7 2,82,8
rr33 =  0.=  0.dd3,1 3,1 dd3,2 3,2 dd3,3 3,3 dd3,4 3,4 dd3,5 3,5 dd3,6 3,6 dd3,7 3,7 dd3,83,8……
rr = 0= 0 dd dd dd dd dd dd dd ddrr44   0.  0.dd4,1 4,1 dd4,2 4,2 dd4,3 4,3 dd4,4 4,4 dd4,5 4,5 dd4,6 4,6 dd4,7 4,7 dd4,84,8……
.. Now, consider a real number generated by taking

ll di i d h li l h d l i hi fi..
..

all digits di,i that lie along the diagonal in this figure
and replacing them with different digits.
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Uncountability of Reals, fin.

•• E.g.E.g., a postulated enumeration of the reals:, a postulated enumeration of the reals:
rr11 = = 0.3019485710.301948571……
rr22 = = 0.1039184810.103918481……22
rr33 = = 0.0391941930.039194193……
rr44 == 0 9182374610 918237461rr44   0.9182374610.918237461……

•• OK, now let’s add 1 to each of the diagonal OK, now let’s add 1 to each of the diagonal 
digits (mod 10), that is changing 9’s to 0.digits (mod 10), that is changing 9’s to 0.

•• 0.4103… can’t be on the list anywhere!0.4103… can’t be on the list anywhere!
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Transfinite Numbers

•• The cardinalities of infinite sets are not The cardinalities of infinite sets are not 
natural numbers, but are special objects natural numbers, but are special objects 
called called transfinitetransfinite cardinal numbers.cardinal numbers.ff

•• The cardinality of the natural numbers, The cardinality of the natural numbers, 
ℵℵ :: ||NN| is the| is the fi t t fi it di lfi t t fi it di lℵℵ00::≡≡||NN|, is the |, is the first transfinite cardinalfirst transfinite cardinal
number.  (There are none smaller.) number.  (There are none smaller.) 

•• The The continuum hypothesiscontinuum hypothesis claims that claims that 
||RR|=|=ℵℵ11, the, the second transfinite cardinal.second transfinite cardinal.
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Do Uncountable Sets Really Exist?
•• The set of objects that can be defined using finiteThe set of objects that can be defined using finite--length length 

strings of symbols (“descriptions”) is only strings of symbols (“descriptions”) is only countablecountable..
•• Therefore, any uncountable set must consist primarily of Therefore, any uncountable set must consist primarily of 

elements which individually have elements which individually have nono finite description.finite description.yy pp
•• LöwenheimLöwenheim--Skolem theorem: No consistent theory can Skolem theorem: No consistent theory can 

everever forceforce an interpretation involving uncountables.an interpretation involving uncountables.ever ever forceforce an interpretation involving uncountables.an interpretation involving uncountables.
•• The “constructivist school” asserts that only objects The “constructivist school” asserts that only objects 

constructible from finite descriptions exist (constructible from finite descriptions exist (e ge g ¬∃¬∃RR))constructible from finite descriptions exist.  (constructible from finite descriptions exist.  (e.g. e.g. ¬∃¬∃RR) ) 
•• Most mathematicians are happy to use uncountable sets Most mathematicians are happy to use uncountable sets 

b t l ti th i i t h t l db t l ti th i i t h t l d
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anyway, because postulating their existence has not led anyway, because postulating their existence has not led 
to any demonstrated contradictions (so far).to any demonstrated contradictions (so far).
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Countable vs. Uncountable

•• You should:You should:
–– Know how to define “same cardinality” in the Know how to define “same cardinality” in the 

case of infinite sets.case of infinite sets.
–– Know the definitions of Know the definitions of countablecountable and and 

uncountableuncountable..uncountableuncountable..
–– Know how to prove (at least in easy cases) that Know how to prove (at least in easy cases) that 

sets are either countable or uncountablesets are either countable or uncountablesets are either countable or uncountable.sets are either countable or uncountable.
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