

On to section 1.8... Functions

- From calculus, you are familiar with the concept of a real-valued function f, which assigns to each number $x \in \mathbf{R}$ a particular value y=f(x), where $y \in \mathbf{R}$.
- But, the notion of a function can also be naturally generalized to the concept of assigning elements of *any* set to elements of *any* set.

Function: Formal Definition

- For any sets *A*, *B*, we say that a *function* f *from* (*or "mapping"*) *A* to *B* ($f:A \rightarrow B$) is a particular assignment of exactly one element $f(x) \in B$ to each element $x \in A$.
- Some further generalizations of this idea:
 - A partial (non-total) function f assigns zero or one elements of B to each element $x \in A$.

– Functions of *n* arguments; relations (ch. 6).

Functions We've Seen So Far

- A *proposition* can be viewed as a function from "situations" to truth values {**T**,**F**}
 - A logic system called *situation theory*.
 - p="It is raining."; s=our situation here,now - $p(s) \in \{\mathbf{T}, \mathbf{F}\}.$
- A *propositional operator* can be viewed as a function from *ordered pairs* of truth values to truth values: $\lor((\mathbf{F},\mathbf{T})) = \mathbf{T}$.

-2000, IVIICIIACI I. I TAIIN

Another example: \rightarrow ((**T**,**F**)) = **F**.

Module #4 - Functions

More functions so far...

- A *predicate* can be viewed as a function from *objects* to *propositions* (or truth values): P :≡ "is 7 feet tall";
 P(Mike) = "Mike is 7 feet tall." = False.
- A bit string B of length n can be viewed as a function from the numbers {1,...,n}
 (bit positions) to the bits {0,1}.
 E.g., B=101 → B(3)=1.

Still More Functions

- A set S over universe U can be viewed as a function from the elements of U to {T, F}, saying for each element of U whether it is in S. S={3}; S(0)=F, S(3)=T.
- A set operator such as ∩, ∪, ⁻ can be viewed as a function from pairs of sets to sets.

- Example: $\cap((\{1,3\},\{3,4\})) = \{3\}$

Module #4 - Functions

A Neat Trick

- Sometimes we write Y^X to denote the set F of *all* possible functions $f:X \rightarrow Y$.
- This notation is especially appropriate, because for finite X, Y, $|F| = |Y|^{|X|}$.
- If we use representations F=0, T=1,
 2:={0,1}={F,T}, then a subset T⊆S is just a function from S to 2, so the power set of S (set of all such fns.) is 2^S in this notation.

Some Function Terminology

- If $f:A \rightarrow B$, and f(a)=b (where $a \in A \& b \in B$), then:
 - -A is the *domain* of *f*.
 - -B is the *codomain* of *f*.
 - -b is the *image* of a under f.
 - *a* is a *pre-image* of *b* under *f*.
 - In general, *b* may have more than 1 pre-image.
 - The range $R \subseteq B$ of f is $\{b \mid \exists a f(a) = b\}$.

Range versus Codomain

- The range of a function might *not* be its whole codomain.
- The codomain is the set that the function is *declared* to map all domain values into.
- The range is the *particular* set of values in the codomain that the function *actually* maps elements of the domain to.

Range vs. Codomain - Example

- Suppose I declare to you that: "*f* is a function mapping students in this class to the set of grades {A,B,C,D,E}."
- At this point, you know f's codomain is: {A,B,C,D,E}, and its range is <u>unknown</u>!
- Suppose the grades turn out all As and Bs.
- Then the range of *f* is <u>{A,B}</u>, but its codomain is <u>still {A,B,C,D,E}!</u>.

Operators (general definition)

- An *n*-ary *operator* over the set *S* is any function from the set of ordered *n*-tuples of elements of *S*, to *S* itself.
- *E.g.*, if $S = \{T, F\}$, \neg can be seen as a unary operator, and \land, \lor are binary operators on *S*.
- Another example: \cup and \cap are binary operators on the set of all sets.

Constructing Function Operators

- If ("dot") is any operator over *B*, then we can extend to also denote an operator over functions $f:A \rightarrow B$.
- *E.g.*: Given any binary operator $\bullet: B \times B \rightarrow B$, and functions $f,g:A \rightarrow B$, we define $(f \bullet g):A \rightarrow B$ to be the function defined by: $\forall a \in A, (f \bullet g)(a) = f(a) \bullet g(a).$

Function Operator Example

- +, × ("plus", "times") are binary operators over R. (Normal addition & multiplication.)
- Therefore, we can also add and multiply *functions f,g*: $\mathbf{R} \rightarrow \mathbf{R}$:
 - $-(f+g): \mathbf{R} \rightarrow \mathbf{R}$, where (f+g)(x) = f(x) + g(x)
 - $-(f \times g): \mathbf{R} \rightarrow \mathbf{R}$, where $(f \times g)(x) = f(x) \times g(x)$

Function Composition Operator

- For functions $g:A \rightarrow B$ and $f:B \rightarrow C$, there is a special operator called *compose* (" \bigcirc ").
 - It <u>composes</u> (creates) a new function out of *f*,*g* by applying *f* to the result of *g*.
 - $-(f \bigcirc g):A \rightarrow C$, where $(f \bigcirc g)(a) = f(g(a))$.
 - Note g(a)∈B, so f(g(a)) is defined and ∈C.
 - Note that \bigcirc (like Cartesian ×, but unlike +, \land , \bigcirc) is non-commuting. (Generally, $f \bigcirc g \neq$

Images of Sets under Functions

- Given $f: A \rightarrow B$, and $S \subseteq A$,
- The *image* of S under f is simply the set of all images (under f) of the elements of S.
 f(S) := {f(s) | s∈S}
 := {b | ∃ s∈S: f(s)=b}.
- Note the range of *f* can be defined as simply the image (under *f*) of *f*'s domain!

Module #4 - Functions

One-to-One Functions

- A function is *one-to-one* (1-1), or *injective*, or *an injection*, iff every element of its range has *only* 1 pre-image.
 - Formally: given $f:A \rightarrow B$, "x is injective" := $(\neg \exists x, y: x \neq y \land f(x) = f(y))$.
- Only <u>one</u> element of the domain is mapped <u>to</u> any given <u>one</u> element of the range.
 - Domain & range have same cardinality. What about codomain?
- Each element of the domain is <u>injected</u> into a different element of the range.
 - Compare "each dose of vaccine is injected into a different patient."

Module #4 - Functions

One-to-One Illustration

• Bipartite (2-part) graph representations of functions that are (or not) one-to-one:

Sufficient Conditions for 1-1ness

- For functions f over numbers,
 - -f is *strictly* (or *monotonically*) *increasing* iff $x > y \rightarrow f(x) > f(y)$ for all x, y in domain;
 - -f is *strictly* (or *monotonically*) *decreasing* iff $x > y \rightarrow f(x) < f(y)$ for all x, y in domain;
- If *f* is either strictly increasing or strictly decreasing, then *f* is one-to-one. *E.g.* x³

- Converse is not necessarily true. E.g. 1/x

Onto (Surjective) Functions

- A function $f:A \rightarrow B$ is *onto* or *surjective* or *a surjection* iff its range is equal to its codomain ($\forall b \in B, \exists a \in A: f(a)=b$).
- An *onto* function maps the set A <u>onto</u> (over, covering) the *entirety* of the set B, not just over a piece of it.
- *E.g.*, for domain & codomain **R**, x^3 is onto, whereas x^2 isn't. (Why not?)

Module #4 - Functions

Illustration of Onto

• Some functions that are or are not *onto* their codomains:

(c)2001-2003, Michael P. Frank

Module #4 - Functions

Bijections

- A function *f* is *a one-to-one correspondence*, or *a bijection*, or *reversible*, or *invertible*, iff it is both one-toone and onto.
- For bijections *f*:*A*→*B*, there exists an *inverse of f*, written *f*⁻¹:*B*→*A*, which is the unique function such that *f*⁻¹ ∘ *f* = *I* (the identity function)

The Identity Function

- For any domain *A*, the *identity function* $I:A \rightarrow A$ (variously written, I_A , **1**, **1**_A) is the unique function such that $\forall a \in A: I(a) = a$.
- Some identity functions you've seen:
 - -+ing 0, ·ing by 1, ∧ing with **T**, ∨ing with **F**, ∪ing with \emptyset , ∩ing with *U*.
- Note that the identity function is both one-to-one and onto (bijective).

A Fun Application

- In a computer, the function mapping *state at clock cycle #t* to *state at clock cycle #t+1* is called the computer's *transition function*.
- If the transition function is reversible (a bijection), then the computer's operation in theory requires *no energy expenditure*.
- The study of low-power *reversible computing* techniques based on this idea is my primary research area.

Graphs of Functions

- We can represent a function $f:A \rightarrow B$ as a set of ordered pairs $\{(a,f(a)) \mid a \in A\}$.
- Note that ∀a, there is only 1 pair (a,f(a)).
 Later (ch.6): *relations* loosen this restriction.
- For functions over numbers, we can represent an ordered pair (*x*,*y*) as a point on a plane. A function is then drawn as a curve (set of points) with only one *y* for each *x*.

Comment About Representations

- You can represent any type of discrete structure (propositions, bit-strings, numbers, sets, ordered pairs, functions) in terms of virtually any of the other structures (or some combination thereof).
- Probably none of these structures is *truly* more fundamental than the others (what that would mean). However, strings, log and sets are often used as the foundation for all else. *E.g.* in \rightarrow

Principia

Mathematica

A Couple of Key Functions

- In discrete math, we will frequently use the following functions over real numbers:
 - $-\lfloor x \rfloor$ ("floor of x") is the largest (most positive) integer $\leq x$.
 - $-\lceil x \rceil$ ("ceiling of x") is the smallest (most negative) integer $\ge x$.

Visualizing Floor & Ceiling

- Real numbers "fall to their floor" or "rise to their ceiling." 3 + 3
- Note that if $x \notin \mathbb{Z}$, $\lfloor -x \rfloor \neq - \lfloor x \rfloor \&$ $\lceil -x \rceil \neq - \lceil x \rceil$
- Note that if $x \in \mathbb{Z}$, $\lfloor x \rfloor = \lceil x \rceil = x$.

Plots with floor/ceiling

Note that for $f(x) = \lfloor x \rfloor$, the graph of f includes the point (a, 0) for all values of a such that $a \ge 0$ and a < 1, but not for a=1. We say that the set of points (a,0) that is in f does not include its *limit* or *boundary* point (*a*,1). Sets that do not include all of their limit points are called *open sets*. In a plot, we draw a limit point of a curve using an open dot (circle) if the limit point is not on the curve, and with a closed (solid) dot if it is on the curve.

Review of §1.8 (Functions)

- Function variables *f*, *g*, *h*, ...
- Notations: $f:A \rightarrow B$, f(a), f(A).
- Terms: image, preimage, domain, codomain, range, one-to-one, onto, strictly (in/de)creasing, bijective, inverse, composition.
- Function unary operator *f*⁻¹,
 binary operators +, −, *etc.*, and ○.
- The $\mathbf{R} \rightarrow \mathbf{Z}$ functions $\lfloor x \rfloor$ and $\lceil x \rceil$.

Infinite Cardinalities (from §3.2)

- Using what we learned about *functions* in §1.8, it's possible to formally define cardinality for infinite sets.
- We show that infinite sets come in different *sizes* of infinite!
- This gives us some interesting proof examples, in anticipation of chapter 3.

Cardinality: Formal Definition

- For any two (possibly infinite) sets A and B, we say that A and B have the same cardinality (written |A|=|B|) iff there exists a bijection (bijective function) from A to B.
- When *A* and *B* are finite, it is easy to see that such a function exists iff *A* and *B* have the same number of elements $n \in \mathbb{N}$.

Countable versus Uncountable

- For any set *S*, if *S* is finite or |S|=|N|, we say *S* is *countable*. Else, *S* is *uncountable*.
- Intuition behind "countable:" we can *enumerate* (generate in series) elements of *S* in such a way that *any* individual element of *S* will eventually be *counted* in the enumeration. Examples: **N**, **Z**.
- Uncountable: No series of elements of S (even an infinite series) can include all of S's elements.
 Examples: R, R², P(N)

Countable Sets: Examples

- **Theorem:** The set **Z** is countable.
 - **Proof:** Consider $f: \mathbb{Z} \rightarrow \mathbb{N}$ where f(i)=2i for $i \ge 0$ and f(i) = -2i-1 for $i \le 0$. Note f is bijective.
- **Theorem:** The set of all ordered pairs of natural numbers (*n*,*m*) is countable.
 - Consider listing the pairs in order by their sum s=n+m, then by n. Every pair appears once in this series; the generating function is bijective.

Uncountable Sets: Example

- **Theorem:** The open interval $[0,1) :\equiv \{r \in \mathbb{R} | 0 \le r \le 1\}$ is uncountable.
- Proof by diagonalization: (Cantor, 1891)
 - Assume there is a series $\{r_i\} = r_1, r_2, ...$ containing *all* elements $r \in [0,1)$.
 - Consider listing the elements of $\{r_i\}$ in decimal notation (although any base will do) in order of increasing index: ... (continued on next slide)

Georg Cantor 1845-1918

Uncountability of Reals, cont'd

A postulated enumeration of the reals: $r_1 = 0.d_{1,1} d_{1,2} d_{1,3} d_{1,4} d_{1,5} d_{1,6} d_{1,7} d_{1,8} \dots$ $r_2 = 0.d_{2,1} d_{2,2} d_{2,3} d_{2,4} d_{2,5} d_{2,6} d_{2,7} d_{2,8} \dots$ $r_3 = 0.d_{3,1} d_{3,2} d_{3,3} d_{3,4} d_{3,5} d_{3,6} d_{3,7} d_{3,8} \dots$ $r_4 = 0.d_{4,1} d_{4,2} d_{4,3} d_{4,4} d_{4,5} d_{4,6} d_{4,7} d_{4,8} \dots$

• Now, consider a real number generated by taking

• all digits $d_{i,i}$ that lie along the *diagonal* in this figure and replacing them with *different* digits.

8/9/2008

Uncountability of Reals, fin.

- *E.g.*, a postulated enumeration of the reals: $r_1 = 0.301948571...$ $r_2 = 0.103918481...$ $r_3 = 0.039194193...$ $r_4 = 0.918237461...$
- OK, now let's add 1 to each of the diagonal digits (mod 10), that is changing 9's to 0.
- 0.4103... can't be on the list anywhere!

Transfinite Numbers

- The cardinalities of infinite sets are not natural numbers, but are special objects called *transfinite* cardinal numbers.
- The cardinality of the natural numbers, $\aleph_0 :\equiv |\mathbf{N}|$, is the *first transfinite cardinal* number. (There are none smaller.)
- The continuum hypothesis claims that $|\mathbf{R}| = \aleph_1$, the second transfinite cardinal.

Do Uncountable Sets Really Exist?

- The set of objects that can be defined using finite-length strings of symbols ("descriptions") is only *countable*.
- Therefore, any uncountable set must consist primarily of elements which individually have *no* finite description.
- Löwenheim-Skolem theorem: No consistent theory can ever *force* an interpretation involving uncountables.
- The "constructivist school" asserts that only objects constructible from finite descriptions exist. (*e.g.* ¬∃**R**)
- Most mathematicians are happy to use uncountable sets anyway, because postulating their existence has not led to any demonstrated contradictions (so far).

Countable vs. Uncountable

- You should:
 - Know how to define "same cardinality" in the case of infinite sets.
 - Know the definitions of *countable* and *uncountable*.
 - Know how to prove (at least in easy cases) that sets are either countable or uncountable.