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On to section 1.8... Functions

* From calculus, you are familiar with the
concept of a real-valued function f,
which assigns to each number XeR a
particular value y=f(X), where yeR.

But, the notion of a function can also be
naturally generalized to the concept of
assigning elements of any set to elements
of any set.
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Function: Formal Detfinition

* For any sets A, B, we say that a function f
from (or “mapping) Ato B (FA—>B) is a
particular assignment of exactly one
element f(X)eB to each element X€A.

* Some further generalizations of this i1dea:

— A partial (non-total) function f assigns zero or
one elements of B to each element X€A.

— Functions of n arguments; relations (ch. 6).
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Graphical Representations

* Functions can be represented graphically in
several ways:

A B Bipartite Graph
Like Venn diagrams
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Functions We’ve Seen So Far

A proposition can be viewed as a function
from “‘situations” to truth values {T,F}
— A logic system called situation theory.
— p="It 1s raining.”; S=our situation here,now
_p(s)e{T,FL.

A propositional operator can be viewed as
a function from ordered pairs of truth

values to truth values: v((F,T))=T.
Another example —((T, F)) F.
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More functions so far...

A predicate can be viewed as a function
from objects to propositions (or truth
values): P :=“1s 7 feet tall”;

P(Mike) = “Mike 1s 7 feet tall.” = False.

A bit strinyg B of lenyth n can be viewed as a
function from the numbers {1,...,n}
(bit positions) to the bits {0,1}.
E.g., B=101 = B(3)=1.
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Still More Functions

A set S over universe U can be viewed as a
function from the elements of U to
{T, F}, saying for each element of U

whether it is in S. S={3}; S(0)=F, S(3)=T.

» A set operator such as N,U, canbe
viewed as a function from pairs of sets
to sets.

— Example: N(({1,3},{3,4})) = {3}
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A Neat Trick

» Sometimes we write YX to denote the set F
of all possible functions f:X—Y.

» This notation 1s especially appropriate,
because for finite X, Y, |F| = |Y|X.

 If we use representations F=0, T=1,
2:={0,1}={F, T}, then a subset TS 1s just a
function from S to 2, so the power set of S
(set of all such fns.) is 2° in this notation.
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Some Function Terminology

» If f:A—B, and f(a)=b (where acA & beB),
then:

— A is the domain of f.
— B is the codomain of f.
— b 1s the image of a under f.

— ais a pre-image of b under f.
* In general, b may have more than 1 pre-image.

— The range RcB of fis {b | Ja f(a)=b }.
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Range versus Codomain

* The range of a function might not be its
whole codomain.

* The codomain is the set that the function 1s
declared to map all domain values into.

» The range 1is the particular set of values in
the codomain that the function actually
maps elements of the domain to.
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Range vs. Codomain - Example

* Suppose I declare to you that: “f is a
function mapping students 1n this class to

the set of grades {A,B,C,D,E}.”

o At this point, you know f’s codomain is:
{A.B.C.D.E}, and 1ts range 1S ynknown

* Suppose the grades turn out all As and Bs.

e Then the range of fis {A.B} , butits
codomain 1s _ still {A.B.C.D.E}!
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Operators (general definition)

* An n-ary operator over the set S 1s any
function from the set of ordered n-tuples of
elements of S, to S 1tself.

 E.g.,1f S={T,F}, — can be seen as a unary
operator, and A,V are binary operators on S.

* Another example: U and M are binary
operators on the set of all sets.
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Constructing Function Operators

« If o (“dot”) 1s any operator over B, then we
can extend e to also denote an operator over
functions f:A—B.

* E.g.: Given any binary operator e:BxB— B,
and functions f,y:A—B, we define
(f e g):A—B to be the function defined by:
vaeA, (f e g)(a) = f(a)eg(a).
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Function Operator Example

o +,X (“plus”,“times™) are binary operators
over R. (Normal addition & multiplication.)
* Therefore, we can also add and multiply
functions f,g:R—>R:
— (f+ g):R—>R, where (f + 9)(X) = f(X) + g(x)
— (f X g):R—>R, where (f X g)(X) =f(X) X g(X)
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Function Composition Operator

* For functions g:A—B and f:B—C, there is a
special operator called compose (“O).

— It composes (creates) a new function out of f,g
by applying f to the result of g.

— (fOQg):A—C, where (fOg)(a) = f(g(a)).
— Note g(a)eB, so f(g(a)) is defined and C.

— Note that O (like Cartesian x, but unlike
+,A,U) is non-commuting. (Generally, fOg #

8/9/2008 : : (¢)2001-2003, Michael P. Frank =



Module #4 -.Functions

Images of Sets under Functions

* Given f:A—B, and ScA,

* The Image of S under f is simply the set of
all images (under f) of the elements of S.
f(S) := {f(s) | seS}

= {b | 3 seS: f(s)=b}.

* Note the range of f can be defined as simply

the image (under f) of f’s domain!
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One-to-One Functions

A function is one-to-one (1-1), or injective, or an injection,
iff every element of its range has only 1 pre-image.
— Formally: given f:A—B,
“X 1s injective” = (—3X,Y: X2y A TX)=f(y)).
Only one element of the domain 1s mapped to any given
one element of the range. ;"g A
— Domain & range have same cardinality. What about codomain?;,

« Each element of the domain 1s injected into a different
clement of the range.

— Compare “each dose of vaccine is injected into a different patient.”
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One-to-One Illustration

* Bipartite (2-part) graph representations of
functions that are (or not) one-to-one:

Not one-to-one Not even a
One-to-one function!
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Sufficient Conditions for 1-1ness

e For functions f over numbers,

— f is strictly (or monotonically) increasing iff
x>y — f(x)>f(y) for all X,y in domain;

— f is strictly (or monotonically) decreasing iff
x>y — f(x)<f(y) for all X,y in domain;
o Iffis either strictly increasing or strictly
decreasing, then f is one-to-one. E.g. X3

— Converse is not necessarily true. E.g. 1/x
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Onto (Surjective) Functions

A function f:A—B is onto or surjective or a
surjection iff its range is equal to its
codomain (VbeB, JacA: f(a)=Db).

* An onto function maps the set A onto (over,
covering) the entirety of the set B, not just
over a piece of 1t.

« E.g., for domain & codomain R, X3is onto,
whereas x?isn’t. (Why not?)
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[1lustration of Onto

« Some functions that are or are not onto their
codomains:

Onto Not Onto Both 1-1 1-1 but
(but not 1-1) (or 1-1) and onto not onto

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank
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Bijections

A function f is a one-to-one
correspondence, or a bijection, or

reversible, or invertible, iff it 1s both one-to-
one and onto.

* For bijections f:A—B, there exists an
inverse of f, written f ~1:B—A, which is the
unique function such that f'o f = |
(the 1dentity function)

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank =
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The Identity Function

» For any domain A, the identity function
|:A—A (variously written, 1,, 1, 1,) 1s the
unique function such that VaeA: l(a)=a.

* Some 1dentity functions you’ve seen:

— +1ng 0, ‘ing by 1, Aing with T, ving with F,
wing with &, Ning with U.

* Note that the 1dentity function 1s both one-

to-one and onto (bijective).
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Identity Function Illustrations

* The 1dentity function:

Domain and range

8/9/2008 : : (¢)2001-2003, Michael P. Frank =
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A Fun Application

 In a computer, the function mapping state at clock

8/9/2008

cycle #t to state at clock cycle #t+1 is called the
computer’s transition function.

If the transition function 1s reversible (a bijection),
then the computer’s operation in theory requires
no energy expenditure.

The study of low-power reversible computing
techniques based on this 1dea 1s my primary
research area.

(¢)2001-2003, Michael P. Frank
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Graphs of Functions

* We can represent a function f:A—B as a set
of ordered pairs {(a,f(a)) | acA}.

* Note that Va, there is only 1 pair (a,f(a)).
— Later (ch.6): relations loosen this restriction.
 For functions over numbers, we can
represent an ordered pair (X,y) as a point on

a plane. A function 1s then drawn as a curve
(set of points) with only one y for each X.
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Comment About Representations

* You can represent any type of discrete
structure (propositions, bit-strings, numbers,
sets, ordered pairs, functions) in terms of
virtually any of the other structures (or
some combination thereof).

DI‘(\]’\Q]’\]‘I none nf thege Qfﬂ1nh11~pc 1
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more fundamental than the others (whatd SRS
that would mean). However, strings, log[Riiists
and sets are often used as

the foundation for all else. E.g. in =>
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A Couple of Key Functions

 In discrete math, we will frequently use the
following functions over real numbers:

— ] (“floor of X) is the largest (most positive)
integer < X.
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Visualizing Floor & Ceiling

* Real numbers “fall to their floor” or “rise to
their ceiling.”

* Note that 1f xgZ,
| x]=-|x]&
| —x|#—[x]

* Note that 1f xeZ,

[ x]=[x]|=x.

O3 H-5-3
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Plots with floor/ceiling

Note that for f(x)=|.xJ, the graph of f includes the

8/9/2008

point (a, 0) for all values of a such that a>0 and
a<l, but not for a=1. We say that the set of points
(a,0) that is in f does not include its limit or
boundary point (a,1). Sets that do not include all
of their limit points are called open sets. In a plot,
we draw a limit point of a curve using an open dot
(circle) if the limit point 1s not on the curve, and
with a closed (solid) dot if 1t 1s on the curve.

(¢)2001-2003, Michael P. Frank =
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Plots with floor/ceiling: Example

* Plot of graph of functl%)(n) f(x) =[x/3
X

8/9/2008 ; ; (¢)2001-2003, Michael P. Frank =
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Review of §1.8 (Functions)

Function variables f, g, h, ...
Notations: f:A—B, f(a), f(A).

Terms: 1mage, preimage, domain, codomain,
range, one-to-one, onto, strictly (in/de)creasing,
bijective, inverse, composition.

Function unary operator f ~1,
binary operators +, —, etc., and O.

The R—Z functions | x| and | x|,
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Module #4 -.Functions

Module #4, Topic #oo:
Cardinality & Infinite Sets

| Rosen 5t ed., §3.2
| ~1 lecture
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Infinite Cardinalities (from §3.2)

» Using what we learned about functions in
§1.8, it’s possible to formally define
cardinality for infinite sets.

« We show that infinite sets come 1n
different sizes of infinite!

» This gives us some interesting proof
examples, 1n anticipation of chapter 3.
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Cardinality: Formal Definition

* For any two (possibly infinite) sets A and B,
we say that A and B have the same
cardinality (written |A|=|B|) iff there exists a
byjection (bijective function) from A to B.

 When A and B are finite, it 1s easy to see
that such a function exists 1ff A and B have
the same number of elements heN.
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Countable versus Uncountable

e For any set S, if S 1s finite or |S|=|N|, we say S 1s
countable. Else, S is uncountable.
Intuition behind “countable:” we can enumerate
(generate 1n series) elements of S in such a way

that any individual element of S will eventually be
counted in the enumeration. Examples: N, Z.

Uncountable: No series of elements of S (even an

infinite series) can include all of S’s elements.
Examples: R, R?, P(N)
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Countable Sets: Examples

 Theorem: The set Z is countable.
— Proof: Consider f:Z—N where f(1)=21 for 1>0
and f(1) = —2I-1 for 1<0. Note f is bijective.
* Theorem: The set of all ordered pairs of
natural numbers (N,M) 1s countable.

— Consider listing the pairs in order by their sum
s=n-+m, then by n. Every pair appears once in
this series; the generating function 1s bijective.

8/9/2008 : : (¢)2001-2003, Michael P. Frank =
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Uncountable Sets: Example

» Theorem: The open interval
[0,1) .= {reR| 0 <r <1} is uncountable. |

» Proof by diagonalization: (Cantor, 1891) P

. . Georg Cantor §
— Assume there 1s a series {I;} =1, T, ... 1845-1918

containing all elements re[0,1).

— Consider listing the elements of {r;} in decimal
notation (although any base will do) in order of
increasing index: ... (continued on next slide)
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Uncountability of Reals, cont’d

A postulated enumeration of the reals:

Now, consider a real number generated by taking
all digits d;; that lie along the diagonal in this figure
and replacing them with different digits.

I TGOS ¢ AtRar e \\c
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Uncountability of Reals, fin.

* E.g., a postulated enumeration of the reals:
1948571...

018481...
94193...

* OK, now let’s add 1 to each of the diagonal
digits (mod 10), that 1s changing 9’s to 0.

* 0.4103... can’t be on the list anywhere!
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Transfinite Numbers

 The cardinalities of infinite sets are not
natural numbers, but are special objects
called transfinite cardinal numbers.

* The cardinality of the natural numbers,
N o:=|N|, 1s the first transfinite cardinal
number. (There are none smaller.)

« The continuum hypothesis claims that
R|=X,, the second transfinite E?W*ﬂ'l e

8/9/2008 4 _ p ""m,” I VS
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Do Uncountable Sets Really Exist?

The set of objects that can be defined using finite-length
strings of symbols (“descriptions”) is only countable.

Therefore, any uncountable set must consist primarily of
elements which individually have no finite description.

Lowenheim-Skolem theorem: No consistent theory can
ever force an interpretation involving uncountables.

The “constructivist school” asserts that only objects
constructible from finite descriptions exist. (e.g. -dR)

Most mathematicians are happy to use uncountable sets
anyway, because postulating their existence has not led
to any demonstrated contradictions (so far).
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Countable vs. Uncountable

* You should:

— Know how to define “same cardinality” in the
case of infinite sets.

— Know the definitions of countable and
uncountable.

— Know how to prove (at least in easy cases) that
sets are either countable or uncountable.
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