

Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

Introduction to Water Pollution & Water Treatment Engineering

Changha Lee

School of Chemical and Biological Engineering Seoul National University

Water Problems

Water Shortage

Water Pollution

- 3.4 Million people die each year from water, sanitation, and hygiene-related causes.
- 780 Million people suffer from lack access to clean water.
- Climate change and emerging contaminants are new challenges that aggravate the water problems

World Water Supply

97.50% salt water in the oceans01.72% ice caps and glaciers00.77% groundwater00.01% surface water

Hydrologic Cycle

 $\sqrt{\text{Hydrologic cycle:}}$ the cyclic movement of water through the environment

- Nations have boundaries but water has no boundaries!
- Water treatment engineering mimics natural cleaning processes!

Water Pollutants (Contaminants)

$\sqrt{\mathbf{8}}$ classes of water pollutants of interest

- 1. Pathogens
- 2. Nutrients
- 3. Salts
- 4. Thermal Pollution
- 5. Heavy Metals
- 6. Pesticides
- 7. Volatile Organic Compounds (VOCs)
- 8. Oxygen Demanding Waste

Common Water Pollutants

- In developing nations, 80% of diseases are water-related.
- $\sqrt{\text{Pathogens}}$
- $\sqrt{\text{Chemical pollutants (organic & inorganic)}}$
- $\sqrt{\text{Thermal discharges (e.g., power plant coolant)}}$

Pathogens

$\sqrt{}$ Types:

- Bacteria
- Viruses
- Protozoa
- Algae
- Helminth

e.g., salmonella, campylobacter, Vibrio cholerae, Vibrio sp., shigella, pathogenic Escherichia coli & so many others

Chemical Pollutants

$\sqrt{}$ Types:

- Petroleum products
- Detergents
- Pesticides, insecticides, herbicides
- Volatile organic compounds (VOCs)
- Disinfection byproducts (DBPs)
- Radioactive substances
- Fertilizer
- Heavy metals
- & so many other forms

$\sqrt{\text{Sources:}}$

 Industrial wastewater, municipal wastewater, stormwater runoff, accidental spills ...

Algal Toxins and Taste and Odor Compounds

Microcystins, Geosmin, 2-MIB...

2-Methylisoborneol

Thermal Discharges

Cold Water

Building a dam results in very cold water released Downstream killing organisms and changing species

Hot Water

Potrero Generating Station discharges heated water into San Francisco Bay

Evolution of Technologies

Traditional Water Treatment Technologies

Advanced

Water Treatment Technologies

Innovative

Water Treatment Technologies

- Coagulation-Flocculation-Sedimentation
- Granular Filtration
- Chlorine Disinfection
- Activated Sludge Process

- Membrane Filtration
- Advanced Oxidation Process
- UV Disinfection
- Membrane-Bioreactor

Where is Water Treatment Needed

Water Treatment

 $\sqrt{}$ Water cleaning process = purification = decontamination...

- **Decomposition:** biodegradation, (photo)chemical degradation
- Isolation: physical process (adsorption, immobilization, filtration...)
- Dilution: rainwater

Water Treatment

: Removal of contaminants from untreated water to produce clean water enough for its intended use

√ Drinking Water Treatment

 \sqrt{W} Wastewater (Industrial or Municipal) Treatment

√ Groundwater Treatment

 $\sqrt{\text{Desalination}}$

 $\sqrt{Production of Ultrapure Water}$

Drinking Water Treatment Process

(출처: 울산광역시 상수도사업본부 홈페이지)

Coagulation/Flocculation/Sedimentation

precipitate and trapped impurities settle to bottom

Before After

Coagulation/Flocculation/Sedimentation

▲ Typical Flocculation & Sedimentation Basins

Granular (Sand) Filtration

GRAVITY FILTER MEDIA CONFIGURATION

Advanced Water Treatment Process (Ozonation/Activated Carbon Process)

▲ Activated Carbon Adsorption

Disinfection (Chlorination) / Distribution

▲ Disinfection Basin (using chlorine) & Distribution Pipelines

Old Water Pipelines

Water Leakage

Wastewater Treatment Process (Activated Sludge Process)

- (1) Pretreatment: grit chamber & bar screen, removal of all big objects
- (2) Primary treatment: primary clarifier, settling small particles
- (3) Secondary treatment: aerobic microbial digestion chamber, secondary clarifier
- (4) Tertiary Treatment: nitrogen and phosphorus removal
 - (nitrification and denitrification, PAOs or chemical precipitation)
- (5) Disinfection: inactivating pathogens (UV or chlorine)

Wastewater Treatment Process (Activated Sludge Process)

▲ Pleasant Grove Wastewater Treatment Plant, CA

Pretreatment

Screen Type	Description
Trash Rack	Designed to prevent logs, timbers, stumps, and other large debris from entering treatment processes. Opening size: 38 to 150 mm (1.5-6 in)
Manually Cleaned Bar Screen	Designed to remove large solids, rags, and debris. Opening size: 30 to 50 mm (1 to 2 in) Bars set at 30 to 45 degrees from vertical to facilitate cleaning. Primarily used in older or smaller treatment facilities, or in bypass channels.
Mechanically Cleaned Bar Screen	Designed to remove large solids, rags, and debris. Opening size: 6 to 38 mm (0.25 to 1.5 in). Bars set at 0 to 30 degrees from vertical. Almost always used in new installations because of large number of advantages relative to other screens.

▲ **Pretreatment:** grit chamber & bar screen, removal of all big objects

Primary and Secondary (main) Treatment

Primary clarifier (sedimentation basin) : settling tank ▲ Aeration basin

Secondary clarifier (sedimentation basin) Return activated sludge

Tertiary Treatment

$\sqrt{\text{Nitrogen removal}}$

• Nitrification (oxidation)

 $\begin{array}{l} {\sf NH}_3 + {\sf CO}_2 + 1.5 \; {\sf O}_2 + {\sf Nitrosomonas} \to {\sf NO}_2^- + {\sf H}_2{\sf O} + {\sf H}^+ \\ {\sf NO}_2^- + {\sf CO}_2 + 0.5 \; {\sf O}_2 + {\sf Nitrobacter} \to {\sf NO}_3^- \\ {\sf NH}_3 + {\sf O}_2 \to {\sf NO}_2^- + 3{\sf H}^+ + 2{\sf e}^- \\ {\sf NO}_2^- + {\sf H}_2{\sf O} \to {\sf NO}_3^- + 2{\sf H}^+ + 2{\sf e}^- \end{array}$

• Denitrification (reduction)

 $2NO_3^- + 10e^- + 12H^+ \rightarrow N_2^- + 6H_2O$

$\sqrt{Phosphorus removal}$

Using bacteria, PAOs (polyphosphate accumulating organisms) or chemical precipitation by iron and aluminum salts

UV Disinfection

▲ DNA damage by UV light

Groundwater Remediation (Treatment)

√ Characteristics

- Takes long time, hard to operate
- Closely related to soil remediation

$\sqrt{\text{Classification}}$

- In situ treatment
- Ex situ treatment
- Bioremediation
- Phytoremediation
- Chemical treatment

& others

▲ Chemical treatment

Groundwater Remediation (Treatment)

▲ ZVI reactive barrier (ZVI: zero-valent iron)

Desalination Process

Ultrapure Water Production Process

Membrane Filtration

Membrane Structure

Structure of an asymmetric UF membrane.

Membrane Module Configuration

√ PRESSURE-VESSEL CONFIGURATION (가압식)

Pressure-vessel configuration for membrane filtration: (a) schematic of a single cross-flow membrane module and (b) photograph (courtesy of US Filter Memcor Products).

Membrane Module Configuration

Full-scale membrane filtration facility using the pressure-vessel configuration.

Membrane Module Configuration

√ SUBMERGED CONFIGURATION (침지식)

Submerged configurations for membrane filtration: (a) schematic of a submerged membrane module and (b) photograph of a single module. (© 2011 General Electric Company. All rights reserved. Reprinted with permission.)

Feed-and-bleed and semibatch modes of operation. In feed-and-bleed, Q_P and Q_W are both continuous, the sum of the two flows equals Q_F . In semibatch, Q_P is continuous and equal to Q_F , Q_W only flows when solids are being wasted.

Membrane Fouling

Membrane Fouling

Mechanisms for fouling in membrane filtration: (a) Pore blocking, (b) pore constriction, and (c) cake layer formation.

Reversibility of Fouling

Time or volume of water filtered

Variation in specific flux during filtration of natural waters. The loss of specific flux from the initial clean membrane permeability, which cannot be recovered by backwashing or cleaning, is called irreversible fouling; that which can be recovered is called reversible fouling.

What is "Advanced Oxidation Process" ?

AOP (or AOT): Water treatment process (or technology) utilizing hydroxyl radical (•OH), a nonselective oxidizing radical species

Oxidants for water treatment

 $O_3 (E^0(O_3/O_2) = +2.08 V_{NHE}; 2e red.)$

 H_2O_2 ($E^0(H_2O_2/2H_2O) = +1.776 V_{NHE}$; 2e red.)

 Cl_2 ($E^0(Cl_2/2Cl^-)+1.48 - 0.84 V_{NHE}$; 2e red.)

Fe(VI) (E^0 (Fe(VI)/Fe(III)) = +2.20 - 0.7 V_{NHE}; 3e red.)

 $CIO_2 (E^0(CIO_2/CIO_2) = +1.04 V_{NHE}; 1e red.)$

 $O_2 (E^0(O_2/2H_2O) = +0.695 V_{NHE}: 2e red.)$

Applications of AOPs

- 1. Drinking water treatment (e.g., ozonation, UV/H₂O₂)
- 2. Wastewater treatment (e.g., Fenton processes, ozonation)
- 3. Groundwater remediation (e.g., Fenton process, ozonation, inorganic oxidants w/ or w/o catalysts)
- 4. Disinfection and biofilm control (e.g., ozonation, photocatalysts)
- 5. Production of ultrapure water (e.g., VUV)
- 6. Sludge pretreatment

Ozone generator

Ozone generation

Firstly, ozone was synthetically discovered through the electrolysis of sulfuric acid. Ozone can be produced Several ways, although one method, Corona discharge, predominates in Ozone generation industry

Corona discharge

Corona discharge consists of passing an oxygen-containing gas through two electrodes separated by dielectric and a discharge gap. These electrons provide the energy to disassociate the oxygen molecules, leading to the formation of ozone

Chemistry of ozonation process

Fenton reaction

Fe(II) + H₂O₂
$$\rightarrow$$
 Fe(III) + OH + OH
(fast)
Fe(III) + H₂O₂ \rightarrow Fe(II) + HO₂ + H⁺
(slow)

Fe(III) + H₂O + $h\nu \rightarrow$ Fe(II) + •OH + H⁺ "Photo-Fenton"

$$Fe(III) + e^{-} \rightarrow Fe(II)$$
"Electro-Fenton"

Traditional Fenton process

Source: Prof. Y. H. Huang from NCKU, Taiwan

Heterogeneous Fenton process using FBR

Source: Prof. Y. H. Huang from NCKU, Taiwan

Full-scale Fenton process using FBR

UV/H₂O₂ System

$$H_2O_2 + hv \rightarrow 2 \circ OH$$

(<300 nm)

$$H_2O_2 + hv \leftrightarrow [HO^{\bullet} + {}^{\bullet}OH] \rightarrow 2^{\bullet}OH$$

Solvent cage

Primary quantum yield: 0.5 Overall quantum yield for $^{\circ}OH$: 0.5 x 2 = 1

Subsequent reactions

$$\begin{array}{l} \bullet OH + H_2O_2 \rightarrow HO_2 \bullet + H_2O \\ \\ 2HO_2 \bullet \rightarrow H_2O_2 + O_2 \\ \\ 2\bullet OH \rightarrow H_2O_2 \end{array}$$

UV/H₂O₂ Reactor

Main components:

- UV lamp
- Quartz sleeve
- Wiper for mechanical cleaning of quartz
 - sleeves to protect against fouling
- UV sensor to control UV output
- Power supply

Source: Ozonia Co. (Aquaray[®] H₂O)

▲ Longitudinal flow system

▲ Cross flow system

Principles of semiconductor photocatalysis

Application of semiconductor photocatalysis

Air purification (Trojan Technologies)

Deordoriser (NHKspring co)

Water purification (Purifics environmental technologies Inc)

Water purification (Photox Bradford)

Source: Prof. W. Choi from POSTECH