2017 Spring

"Calculation and Applications Phase Equilibria" Principles of Solidification

03.08.2017

Eun Soo Park

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by appointment

1

Chapter 1 Introduction of Solidification

Melting and Crystallization are Thermodynamic Transitions

Solidification: Liquid → Solid

4 Fold Anisotropic Surface Energy/2 Fold Kinetics, Many Seeds

Thermodynamic Transitions: $\Delta G = 0$

G_L versus G_S
 Interfacial free energy

1) Homogeneous Nucleation

$$\Delta G_r = -\frac{4}{3} \pi r^3 \Delta G_V + 4\pi r^2 \gamma_{SL}$$

1) Homogeneous Nucleation

Unstable equilibrium

Fig. 4.2 The free energy change associated with homogeneous nucleation of a sphere of radius r.

Why r^{*} is not defined by $\Delta G_r = 0$?

r < r* : unstable (lower free E by reduce size)
r > r* : stable (lower free E by increase size)
r* : critical nucleus size

1.8 Themodynamic Criteria for Equilibrium (at T_m) 2) Driving force for solidification

2) Driving force for solidification

Melting and Crystallization are Thermodynamic Transitions

3) Nucleation of melting

Although nucleation during solidification usually requires some undercooling, melting invariably occurs at the equilibrium melting temperature even at relatively high rates of heating.

In general, wetting angle = 0 No superheating required!

Melting and Crystallization are Thermodynamic Transitions

Example of Superheating (PPT 3 pages)

2) Change of interfacial free energy → Heterogeneous Nucleation

11

What is the meaning for the ΔT (undercooling) during solidification?

How to obtain large undercooling during cooling?

By dispersing a liquid into a large number of small droplets within a suitable medium, the catalytic effects of active nucleants may be restricted to a small ¹⁴ fraction of the droplets so that many droplets will exhibit extensive undercooling.

17

FIGURE

Time-temperature-transformation (T-T-T) curves (solid lines) and the corresponding continuous cooling transformation curves (dashed lines) for the formation of a small volume fraction for pure metal Ni, and Au₇₈Ge₁₄Si₈, Pd₈₂Si₁₈, and Pd₇₈Cu₆Si₁₆ alloys.

How to classify thermodynamic transition?

The First-Order Transitions

Latent heat Energy barrier Discontinuous entropy, heat capacity

- First Order Phase Transition at T_T:
 - G is continuous at T_T
 - First derivatives of G (V, S, H) are discontinuous at T_T

$$V = \left(\frac{\partial G}{\partial P}\right)_T \qquad S = -\left(\frac{\partial G}{\partial T}\right)_P \qquad H = G - T\left(\frac{\partial G}{\partial T}\right)_P$$

– Second derivatives of G (α , β , C_p) are <u>discontinuous</u> at T_T

$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} \qquad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P} \qquad \beta = \frac{-1}{V} \left(\frac{\partial V}{\partial P}\right)_{T}$$

Heat capacity at constant P or V Coefficient of Thermal expansion

Compressibility at constant T or S

- G Т S $\Delta S = L/T$ Т ∂S $C_P = T$ C_{P}
- Examples: Vaporization, Condensation, Fusion, Crystallization, Sublimation.

Τ

How to obtain kinetic transition?

Cyclic Cooling Curves of $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ (VIT 1)

Time (sec)

Glass Formation is Controlled by Kinetics

- Glass-forming liquids are those that are able to "by-pass" the melting point, T_m
- Liquid may have a "high viscosity" that makes it difficult for atoms of the liquid to diffuse (rearrange) into the crystalline structure
- Liquid maybe cooled so fast that it does not have enough time to crystallize
- Two time scales are present
 - (1)"Internal" time scale controlled by the viscosity (bonding) of the liquid for atom/molecule arrangement
 - (2) "External" timescale controlled by the cooling rate of the liquid

Schematic of the glass transition showing the effects of temperature on the entropy, viscosity, specific heat, and free energy. T_x is the crystallization onset temperature. ²⁴

Chapter 1 Introduction of Solidification

Melting and Crystallization are Thermodynamic Transitions

Glass transition is kinetic Transitions

