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Appendix. Cartesian tensors

§ Kronecker Delta and Alternating Tensor
– Kronecker delta is defined as

– Which is written in the matrix form as

– The most common use (think summation convention)

– Simply we can write 
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δ ij =
1 if i = j
0 if i ≠ j

⎧
⎨
⎪

⎩⎪

δ =
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

δ iju j = δ i1u1 +δ i2u2 +δ i3u3

δ iju j = ui
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Appendix. Cartesian tensors

– So we call kroneker tensor as “isotropic tensors” of the sec
ond order tensors.

– Isotropic tensor for the third order (Alternating tensor)

– Therefore

– The epsilon delta relation.
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ijk =
1 if ijk = 123, 231, or 312 (cyclic order)
0 if any two indices are equal
−1 if ijk = 321, 213, or 132 (anticyclic order)

⎧

⎨
⎪

⎩
⎪

 
ijk = jki = kij and ijk = −ikj

 
ijkklm = δ ilδ jm −δ imδ jl
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Appendix. Cartesian tensors
§ Dot Products

§ Cross product

– Symbolic determinant

– The k-component of uxv can be written as

– Example, i=1
4

u ⋅v = v ⋅u = u1v1 + u2v2 + u3v3 = uivi

u× v = −v × u = u2v3 − u3v2( )a1 + u3v1 − u1v3( )a2 + u1v2 − u2v1( )a3

u× v = v × u =
a1 a2 a3

u1 u2 u3
v1 v2 v3

 
u× v( )k = ijkuivj = kijuivj

 
u× v( )1 = ij1uivj = 231u2v3 + 321u3v2 = u2v3 − u3v2
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1. Definitions
§ Coordinate system

– Spatial position vector

– Instantaneous flow velocity vector is give

– Vertical bed and water surface elevation above some datum are 
given as η and ξ.  Channel depth measured normal to the bed is 
given as H. If z is nearly vertical

5

xi = x1, x2 , x3( ) = s,n,z( )

ui = u1,u2 ,u3( ) = u,v,w( )

η + H ≅ ξ
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2. Navier-stokes equations

§ For flow in a river channel with a dilute concentration of sediment, th
ese relations take the form

§ Continuity equation

§ Gravitational acceleration

§ Denotes the component of the vector of gravitational acceleration in 
the x, y, and z directions.
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∂ui
∂t

+ u j
∂ui
∂x j

= − 1
ρ
∂p
∂xi

+ν ∂2ui
∂x j ∂x j

+ gi

∂ui
∂xi

= ∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

= ∂u
∂x

+ ∂v
∂z

+ ∂w
∂z

gi = g1,g2 ,g3( )
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2. Navier-stokes equations
§ Let’s e1, e2, and e3 denote unit vectors in the x1, x2, and x

3 directions, and let k denote a unit vector in the upward 
vertical direction. 

§ For example, consider a rectangular channel with a trans
versely horizontal bed that is tilted a small angle α in the 
down stream direction. The bed slope s is given by
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gi = −gk ⋅ei

S = tanα = − ∂η
∂x
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2. Navier-stokes equations
§ Thus

§ An the gravitational vector can approximated as

§ gS implies the river flow and represents the downstream 
force of gravity acting on the flow.
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e

1 ⋅k

= cos 90 +α( ) = −sinα ≅ −S,

e

2 ⋅k

= 0, e


3 ⋅k

= cosα ≅ 1

gi = g S,0,−1( )
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3. Stress tensor
§ The Navier-Stokes equations can also be written in the f

ollowing form:

§ Newtonian stress tensor:
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∂ui
∂t

+ ui
∂u j

∂xi
= 1
ρ
∂τ ij
∂x j

+ gi

τ ij = − pδ ij + ρν ∂ui
∂x j

+
∂u j

∂xi

⎛

⎝⎜
⎞

⎠⎟

τ11, τ 22 and τ 33  denote normal stresses; 
the other denote shear stresses.
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4. Reynolds Equations

§ The effect of turbulence is dominant as regards to river b
ehavior.

§ The instantaneous flow field cannot be predicted nor wo
uld one be able to process the massive amount of rando
m data were the prediction possible.

§ An appropriate technique is to average the Navier-Stoke
s equations.

§ The convective term in N-S equations

10

u j
∂ui
∂x j

=
∂uiu j

∂x j
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4. Reynolds Equations

§ When the overbar denotes averaging (ensemble) and pri
me means the fluctuations (or deviation from the mean)

§ When apply this Reynolds decomposition, then

§ Nonlinearity generates a residual term that in fact becom
es dominant in the case of turbulence.

§ Question: What is the physical meaning of the following t
erm?

§ Reynolds stress (tensor):
11

ui = ui + ui ′

uiu j = uiu j + ui ′u j ′

ρui ′u j ′

−ρui ′u j ′
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4. Reynolds Equations

§ The entire N-S equations can be averaged to yield the R
eynolds equations. 

§ Here
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∂ui
∂t

+ u j
∂ui
∂x j

= 1
ρ

∂
∂x j

τ ij − ρui ′u j ′( ) + gi

τ ij = − pδ ij + ρν ∂ui
∂x j

+
∂u j

∂xi

⎛

⎝⎜
⎞

⎠⎟

Tij = τ ij − ρui ′u j ′
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5. Boundary shear stress: 
(normal flow in a wide, rectangular open channel)

§ In a wide rectangular flumes. 
§ The bed is taken to be horizontal in the transverse directi

on but tilted with slope S in the down stream direction.
§ Wall effect zone is excluded. Then flow flow is taken to b

e steady in time and uniform in the x1(s) and x2(n) directi
ons.
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ui = u1(x3),0,0( ) = u(z),0,0( )
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5. Boundary shear stress: 
(normal flow in a wide, rectangular open channel)

§ The non-zero components of the mean stress tensor

§ The Reynolds equations reduce to

§ Integrating at the water surface (z=H), then
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T13 = ρν du1
dx3

− ρu1′u3′ = ρν du
dz

− ρu′w′ ≡ τ

T33 = − p − ρu3′u3′ = − p − ρw′2 ≡ −P

(i = 1) 0 = 1
ρ
dτ
dz

+ gS

(i = 3) 0 = − 1
ρ
dP
dz

− g

τ = τ b 1−
z
H

⎛
⎝⎜

⎞
⎠⎟

P = ρgH 1− z
H

⎛
⎝⎜

⎞
⎠⎟

where τ b = ρgHS (bottom shear stress)
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5. Boundary shear stress: 
(normal flow in a wide, rectangular open channel)

§ The effective mean pressure obeys the hydrostatic law, a
nd the mean shear stress varies linearly, as shown abov
e.

§ The bottom shear stress drives sediment transport in mo
st cases.
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τ = τ b 1−
z
H

⎛
⎝⎜

⎞
⎠⎟

P = ρgH 1− z
H

⎛
⎝⎜

⎞
⎠⎟

τ b = ρgHS
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6. One-dimensional model of varying boundary shear stress
: Gradually varied flow in a wide rectangular channel 

§ Assumptions:
– Vary slowly in x and t
– Wide and rectangular

§ One dimensional St. Venant Shallow Water equation
– If a typical scale of flow variation in the x direction is much 

larger than the depth H, and the scale of time variation is li
kewise much larger than H/u, the Reynolds equations can 
be approximated by the turbulent boundary layer equation
s.

– Logarithmic law for turbulent flow, 
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∂U
∂t

+U ∂U
∂s

= −g ∂
∂s

η + H( )− 1
ρ
τ bH

−1
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6. One-dimensional model of varying boundary shear stress
: Gradually varied flow in a wide rectangular channel 

§ One dimensional St. Venant Shallow Water equation

§ Continuity equations

§ With assumptions
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∂U
∂t

+U ∂U
∂s

= −g ∂
∂s

η + H( )− 1
ρ
τ bH

−1

∂H
∂t

+ ∂UH
∂s

= 0

U = 1
H

u dz
0

H

∫

g ∂
∂s

η + H( ) = − 1
ρ
τ bH

−1

τ b = −ρgHS − ρgH ∂H
∂s
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6. One-dimensional model of varying boundary shear stress
: Gradually varied flow in a wide rectangular channel 

§ Velocity decrease, shear decreases, and H increases (d
H/ds>0).

§ Decreasing bottom shear stress implies declining sedime
nt transport capacity n the down stream direction; this is t
he mechanism that drives sedimentation in dams. 
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6. Two dimensional St. Venant Equations

§ Depth integrated transverse velocity V is defined as follo
ws:

§ An integration of the appropriate form of the Reynolds eq
uations yields

§ Continuity

19

V = 1
H

v dz
0

H

∫

∂U
∂t

+U ∂U
∂s

+V ∂V
∂n

= −g ∂
∂s

η + H( )− τ bs
ρH

∂V
∂t

+U ∂V
∂s

+V ∂V
∂n

= −g ∂
∂n

η + H( )− τ bn
ρH

∂H
∂t

+ ∂UH
∂s

+ ∂VH
∂n

= 0


