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Appendix. Cartesian tensors

= Kronecker Delta and Alternating Tensor
— Kronecker delta is defined as
ol g 0]
/ 0 if i#]
— Which is written in the matrix form as
1 0 0
5= 0 1 0
00 1
— The most common use (think summation convention)

5ijuj =0,,u, +0.,u, +0,,l,

— Simply we can write
O, =u,
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Appendix. Cartesian tensors

— So we call kroneker tensor as “isotropic tensors” of the sec
ond order tensors.

— |Isotropic tensor for the third order (Alternating tensor)
(1 if ijk=123,231,0r 312 (cyclic order)

e. =+ 0 if anytwoindices are equal
—1 if ijk=321,213,0r 132 (anticyclic order)

\

— Therefore

Cik = €jri = Eyj and Cix = "€

— The epsilon delta relation.
€ikEiim = 010 juy = 0,0

im™ jl
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Appendix. Cartesian tensors
= Dot Products

u-v=v-u= uv, +M2V2 +M3V3 = Uy,
= Cross product
1 2
uxXv=-vxu= (u2v3 —u3v2)a +(u3v1 —u1v3)a +(u1v2 —uzvl)a
— Symbolic determinant

3

uxv=vxu=| u, u, U,

— The k-component of uxv can be written as

(uxv)k = €UV, = €UV,

— Example, i=1
(u X V)1 = €UV = €3 Uy V5 T €55 ULV, = U V5 — UV,
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1. Definitions

= Coordinate system
— Spatial position vector
x, =(x,,%,,%;)=(s,n,2)
— Instantaneous flow velocity vector is give
U, = (ul Uy vu3) = (u,v,w)
— Vertical bed and water surface elevation above some datum are

given as n and ¢. Channel depth measured normal to the bed is
given as H. If z is nearly vertical
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2. Navier-stokes equations

= For flow in a river channel with a dilute concentration of sediment, th
ese relations take the form

ou, . ou, __la_p_l_v J’u,
or 'dx, pox,  Ox,ox,

= Continuity equation

Ju, du, du, Jdu, Jdu Jv Iw

l

+ g,

=—+ + =—+—+
dx, dx, dx, dx, dx dz 0z
= Gravitational acceleration
8 = (81982383)
= Denotes the component of the vector of gravitational acceleration in
the x, y, and z directions.
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2. Navier-stokes equations

= Let's e4, €,, and e; denote unit vectors in the x4, X,, and x
5 directions, and let k denote a unit vector in the upward
vertical direction.

g =—8K-e
= For example, consider a rectangular channel with a trans

versely horizontal bed that is tilted a small angle a in the
down stream direction. The bed slope s is given by

S:tana:—a—n

dx

4
z T ' e
n &
— longitudinal section S

cross section
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2. Navier-stokes equations

= Thus ei-k=cos(90+0)=—sino =S,

22-1_{:0, es-k=cosa=1
= An the gravitational vector can approximated as
g, =g(5,0,—1)

= gS implies the river flow and represents the downstream
force of gravity acting on the flow.
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3. Stress tensor

= The Navier-Stokes equations can also be written in the f
ollowing form:

aui ou . B | a’L'ij

o ' dx. ; ox;

= Newtonian stress tensor:

T. = 5+vau"+auj
i = PO TP dx. OJx.

J l

T8

i

T,,, T, and 7., denote normal stresses;

the other denote shear stresses.
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4. Reynolds Equations

The effect of turbulence is dominant as regards to river b
ehavior.

The instantaneous flow field cannot be predicted nor wo
uld one be able to process the massive amount of rando
m data were the prediction possible.

An appropriate technique is to average the Navier-Stoke
S equations.

The convective term in N-S equations
du, auiuj

u. =
J
axj 8xj
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4. Reynolds Equations

When the overbar denotes averaging (ensemble) and pri
me means the fluctuations (or deviation from the mean)
u =u,+u,’

When apply this Reynolds decomposition, then

WU, = U, +ui'uj'
Nonlinearity generates a residual term that in fact becom
es dominant in the case of turbulence.

Question: What is the physical meaning of the following t

erm? —
pu; u;

Reynolds stress (tensor):  —pu,"u;’
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4. Reynolds Equations

= The entire N-S equations can be averaged to yield the R
eynolds equations.

du. —ou, 1 9

+u. =——\(T.—pu’u.’|+ g
or T ox, paxj('f pu’;’) &
= Here
ou.  Ou.
T.=—DO0. + Ly S

- V4 /
T. =T, — PuU; U,

7)
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5. Boundary shear stress:
(normal flow in a wide, rectangular open channel)

W wall
Wa“ AAATAAAAN 1= mvvwvv'v'vvv\
RAL R o o o A ¥ .

= |n a wide rectangular flumes.

= The bed is taken to be horizontal in the transverse directi
on but tilted with slope S in the down stream direction.

= \Wall effect zone is excluded. Then flow flow is taken to b
e steady in time and uniform in the x,(s) and x,(n) directi
ons.

i, =(1,(x,),0,0) =(u(2),0,0)

13
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5. Boundary shear stress:
(normal flow in a wide, rectangular open channel)

= The non-zero components of the mean stress tensor

dl/_tl / / dl/_t 7.7
Ty = pv——L—pu/u,’ = py——pu'w’ =7
dx, dz

Ty,=-p—puu=~p—pw’=-P
= The Reynolds equations reduce to

1 dt Z
= - _ 1— >
i=1) O de+gS T Tb( )
1 dP Z
=3) O=———— P=poH|1——
< ) p dz 5 P8 ( H)

= Integrating at the water surface (z=H), then
where T, = pgHS (bottom shear stress)

14
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5. Boundary shear stress:
(normal flow in a wide, rectangular open channel)

— | T:Tb(l—é)

P:ng(l—i)

H

Te

= The effective mean pressure obeys the hydrostatic law, a
nd the mean shear stress varies linearly, as shown abov
e.

= The bottom shear stress drives sediment transport in mo
st cases.

T, = pgHS
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6. One-dimensional model of varying boundary shear stress
. Gradually varied flow in a wide rectangular channel

Assumptions:
Vary slowly in x and t
Wide and rectangular

One dimensional St. Venant Shallow Water equation

If a typical scale of flow variation in the x direction is much
larger than the depth H, and the scale of time variation is |i
kewise much larger than H/u, the Reynolds equations can
be approximated by the turbulent boundary layer equation

S.
Logarithmic law for turbulent flow,
oU ~oU 0

1
—+U—=- H)-—1, H™
8t+ ds as(n+ ) pr
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6. One-dimensional model of varying boundary shear stress
. Gradually varied flow in a wide rectangular channel

= One dimensional St. Venant Shallow Water equation

oU  dU 0 1 y
—+U—=-g—(N+H)-—1,H
5 TUgs T8, 1t H) 0T
= Continuity equations
OH  OUH _
ot Js
1 ¢H_
U:EJO LtdZ
= With assumptions
0 1 y
—(n+H)=——1,H
gas(n_l_ ) pr
oH

T, =—pgHS - PgHa—
\) 17
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6. One-dimensional model of varying boundary shear stress
. Gradually varied flow in a wide rectangular channel

= Velocity decrease, shear decreases, and H increases (d
H/ds>0).

= Decreasing bottom shear stress implies declining sedime

nt transport capacity n the down stream direction; this is t
he mechanism that drives sedimentation in dams.
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6. Two dimensional St. Venant Equations

= Depth integrated transverse velocity V is defined as follo
WS: .
V= —J vdz
H Yo
= An integration of the appropriate form of the Reynolds eq
uations yields

oU oU aV 0 T
G U4V =—g—(n+H)——&
5 U TV o T e T )
oV oV vV %, T
L U4V =g (n+H)-—
8t+ 8s+ on gan(n+ ) pH

= Continuity oH L OUH  JVH _
ot  Js on

19



