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Today’s objectives

§ Understanding the propagation or accumulation of errors
§ Learning the way to determine the total uncertainty. 
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Uncertainty Analysis

§ In many expreimental situations, the final desited result is not 
measured directly. Instead, measurments of several varaibles are 
substituted into a data reduction equation to obtain the desired 
quantity. 

§ As an exmple, suppose the density of a flowing gas stream is 
dsired.Direct measurements of gas density are difficult, so instead 
the pressure P and temperature T are measured and, assuming the 
gas can be treated as ideal, the denisty can be found from the ideal 
gas euqation of state

§ The question that natually arises is: How do the uncertainites in the 
individual measured variables P and T propagate through the data 
reduction equation into the final result for density?

§ The purpose of uncertainty analysis is to answer this important 
question.
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Uncertainty Analysis

§ As discussed in previous section, bias is a fixed error that can be 
reduced by calibration. 

§ On the other hand, precision error is a random error that can be 
reduced by obtaining multiple measurements. 

§ Because of the differing nature of these two components of 
uncertainty, it is desirable to investigate their propagation into the 
experimental result separately.

§ This approach is consistent with that recommended in the 
ANSI/ASME Standard on Measurement Uncertainty.
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Propagation of Bias Errors

§ The steps involved in 
determining the bias limit BR for
the experimental results are 
sketched to the next.

§ Each of the individual 
measurement variables (X1, X2, 
…, XK) is subject to several, say 
M, elemental bias errors. 

§ The bias limits for each of these 
elemental sources are combined 
in some manner to obtain the 
overall bias limit  (B1, B2, …, BK) 
for each variable.
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Propagation of Bias Errors

§ Perhaps the most difficult step in this process is the identification a
nd quantification of the element bias limits that affect each of the m
easurement variables. 

§ As discussed in an earlier section, element bias error sources can 
generally be placed in three categories: calibration, data acquisitio
n, and data reduction. However, assigning magnitudes to these so
urces is not a straightforward task. 

§ Unlike estimating the precision limit from computation of the precisi
on index S, there is no statistical calculation that can be done to es
timate the bias limit. Since it is a fixed error, the bias is the same fo
r each measurement. However, its magnitude, being the difference 
between the sample mean and the true value, is unknown because 
the true values is always unknown in any realistic experiment.
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Propagation of Bias Errors

§ Thus the element bias limits must always be estimated. In addition, 
the bias limit estimates are made at a 95% confidence level for con
sistency with the precision limit determinations. This can be interpr
eted to mean that the magnitude of the bias     is less than or equal 
to the bias limit B at a 95% level of confidence. 

§ Information on bias errors can be inferred from comparison of inde
pendent measurements that depend on different physical principle
s or that have been independently calibrated. 

§ Bias limit estimates can also be made based on previous experien
ce of the experimenter or other individuals, instrument manufacture
r's information and specifications, and comparison of measurement
s with known values.
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Propagation of Bias Errors

§ Once the bias limits for the elemental error sources are estimated, 

they must be combined in some manner to obtain the bias limit for 

each measured variable. 

§ The preferred method for doing this is the root-sum-square (RSS) t

echnique. For measurement variable XK this is given by:

§ Where BK, is the 95% confidence estimate of the bias limit for mea

surement. 

§ The next step in the procedure is to apply uncertainty analysis to d

etermine how the bias limits (B1, B2,…, BK) for individual variables 

propagate through the data reduction equation to form the bias limi

t BR for the experimental result.  
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Propagation of Bias Errors

§ The data reduction equation is taken to be of the form

§ Where it is assumed that this relation is continuous and has 
continuous derivatives in the domain of interest and that the bias 
limit Bi for the measurement variables are independent of one 
another. Under these conditions, the bias limit for the result is 
given by the uncertainty analysis expression.
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Propagation of Precision Errors

§ The procedure for determining the precision limit, PR for an 
experimental result is similar to that for determining the bias limit 
BR. In fact, a sketch of the procedure would look identical to the 
one given previously for the bias limit with the substitution  of “P” 
for “B” and “precision” for “bias.” 

§ The measurement of each variable (X1, X2,…, XK) is influenced by 
precision errors from a number of element error sources. These ra
ndom errors combine to cause the precision error in the measurem
ent of each variable; the latter is quantified by determining the prec
ision limit (P1, P2,…, PK) of each measured variable.

§ These individual measurement precision limits are then propagate
d through the uncertainty analysis to obtain the PR for the results.
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Propagation of Precision Errors

§ The manner of determining precision limits of the individual 
measruement variales depends on the type of experiment and the 
phase underconsideratin. 

§ For example, on the design phase of a new experiment, before any 
equipment has been specified or data obtained, esimtates for the 
precision limits are made based on all available infromation: the 
experimenter’s experience, that of others, manufacturer’s 
specifications, etc.
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Propagation of Precision Errors

§ At this stage in the experiment, the precision limit associated with 
the measurement system may be the only precision error sources 
considered.

§ As a general rule-of-thumb, the precision limit resulting from the 
readability of an analog instrument can be taken as one-half of the 
least digit in the output. Likewise, for a digital output, the precision 
limit associated with the readability is one-half of the least digit in 
the output. 

§ For cases in which the precision limit Pi is  estimated, the estimate 
should be that band which will contain the mean value of the 
variable with 95% confidence.
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Propagation of Precision Errors

§ During execution phase of an experiment, previous measurements 
may be available with which to determine each of the Pi values. In 
other cases, multiple measurements of the variable may be made 
during the actual experiment, from which the precision index Si and 
precision limit Pi can be calculated from a sample of N readings. 

§ Several comments may clarify this procedure. From the discussion 
in preceding sections, recall the appropriate precision limit to use 
with a variable Xi determined from a single reading is the precision 
index of the sample population times factor taken from the t-
distribution table for N<31 or t=2.0 for N>30,
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Propagation of Precision Errors

§ Of course, for a single reading Pxi must be estimated or must be 
available from previous measurements. As discussed previously, 
the �Pxi band around the measurement Xi contains the mean value 
of the measured variable with 95% confidence. Therefore, in the 
uncertainty analysis equations given below Xi and Pi should be 
interpreted as

when the value of Xi used in the data reduction equation is 
determined from a single reading.

§ When the value of the measurement is determined as the mean     
of N separate readings, then the precision limit of the sample mean

should be used. 
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Propagation of Precision Errors

§ In such case, the          band around the sample mean      contains 
the mean value of the measured variable with 95% confidence. 
Therefore, if the value of the variable that is used in the data 
reduction euqation is determined as the mean of N separate 
measurements, the values  

should be used in the uncertainity anlaysis equations.
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Propagation of Precision Errors

§ When several separate factors can be identified as causing the 
precision error in a measured variable, it may sometimes be 
desirable to determine the precision limit by considering the 
contributions of the bias limt. 

§ For the Xk measurement variable, suppose that M element 
precision error sources are identified and their 95% confidence 
precision limmts are determined as                                    . Then at 
95% confidence, the overall precision limit s given 
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Propagation of Precision Errors

§ Another factor that must be considered in estimating precision limit
s is the time period over which the sample population is obtained. 

§ The following rule should be observed:

Data sets for estimating precision indices should be acquired over 
a period that is long relative to the time scale of any factor with a s
ignificant influence on the data and the precision errors.

§ If this rule is not followed, the precision limit estimations would not i
nclude long time (low frequency) variations that affect the measure
ment, and therefore these limit estimates would be inaccurate.
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Propagation of Precision Errors

§ Once the 95% precision limit, Pi for each measured variable, Xi in t
he data reduction equation,                                   is  determined, th
en 95% precision limit for the experimental result PR is found from t
he uncertainty analysis expression (Coleman and Steele, 1989)

§ Note that this expression is identical in form to the one used for det
ermination of the bias limit BR of the result. It is assumed that the d
ata reduction equation is continuous and has continuous derivative
s in the domain of interest and that the precision limit Pi for the me
asured variables are independent of one another.
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Propagation of Precision Errors

§ In addition, it is assumed that the result R is determined from the re
duction equation only once at a given experimental condition using 
either a single measurement Xi or the mean value      of N repeated 
measurements. 
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Uncertainty of the Experimental Result

§ In order to determine the overall uncertainty UR of the experimental 
result, the bias and precision limits BR and PR must be combined. T
his is accomplished using the root-sum-square (RSS) method

thereby providing 95% coverage of the true value.
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Example

§ The drag coefficient,  is to be reported for t
he flow of water over a strut-mounted sphere. The drag force FD is 
measured directly with a force transducer, the freestream velocity 
V is measured with a pitot-static probe, and the sphere diameter D
is measured with a micrometer. The table below fives nominal valu
es of the measurement variables and the water density ρ, as well a
s estimates for the bias and precision limits of each variable at the 
95% confidence level. The bias limits have been estimated based 
on manufacturer’s specifications and previous experience with the 
instruments during independent calibrations.  The precision limits, 
on the other hand, have been determined from multiple measurem
ents of each variable, together with computation of the precision in
dices, and . Estimate the overall uncertainty in the r
eported drag coefficient at a confidence level of 95%.
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Example

§ Before beginning the details of the solution, discussion of the perce
ntage uncertainty listed for the water density is in order.  When using 
tabular or curve-fit reference values for quantities such as material p
roperties, it tis important to remember that these are not true values. 
Rather , they are “best estimates: based on experimental data that h
ave uncertainties associated with them.  However, once a table or c
urve-fit equation has been chosen to determine a property, the same 
values will be obtained for a given experimental condition no matter 
how many times the table or equation is used.  
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Example

§ Thus, the precision limit associated with a property value determined 
from a table or equation is zero.  All of the uncertainty in experiment
al property data is combined into a bias limit that is the best estimate 
of the overall uncertainty in the data used to generate the table or eq
uation.  In the current cased, the 95% bias limit estimate for density (
expressed here as a percentage) is quite low, 0.2%, since the densit
y of water is well known and is also relatively insensitive to environm
ental factors such as temperature variations.
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Example
§ Writing the expression for the data reduction equation and the unce

rtainty expression for the bias limit  
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Example
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Example
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Example

27


