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3.1.2.1 RVG – Principles 
(Inverse Transform & Rejection Methods)
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 From a probability density function (PDF), f(x) for a≤x≤b, the corresponding 
cumulative probability density function (CDF), F(x) can be defined as

 When a random variable X follows a PDF, f(x) and its corresponding CDF, F(x), it 
can be sampled using a random number, ξ, which is sampled from a uniform 
distribution in interval (0,1), as

 Proof:

Inverse Transform Method
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Explanatory Diagram of Inverse Transform Method
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 A probability that a particle flies as long as l and collides with a atom can be written 
as

 Then, the flight length can be sampled by

Example #1 – Sampling the flight length
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Nuclide t PDF CDF
U-235 0.107 0.216 0.216 
U-238 0.211 0.425 0.641 
O-16 0.178 0.359 1.000 

Example #2 – Selection of a Collided Nuclide
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 It is common that the CDF and its inverse function for a random variable cannot be 
analytically obtained.

 A random variable X, which follows the PDF, f(x) in interval [a,b] can be sampled 
by trial and error as

① Sample X by                              using a random number 1.

② From another random number 2, accept X if                    and return to ①
elsewhere.

Acceptance – Rejection Method – 1/2
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 In order to enhance the sampling efficiency, the PDF f(x) can be represented as

where            ,           is also a PDF, and                          .

 Then X can be sampled as

① Sample X from the PDF of h(x).

② Using a random number ξ, accept X if                    and reject elsewhere.                

Acceptance – Rejection Method – 2/2
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 The standard normal distribution can be expressed as

 Then X can be sampled by

① Sample X from h(x).

② If the below condition is satisfies, accept X. The condition is violated, go to step 
①.

Example #1 – Sampling from Normal Distribution
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 Method 1
phi=2*PI*RNG->GetRN();

sinP=sin(phi); cosP=cos(phi);

 Method 2
do {

C1=2.*RNG->GetRN()-1.;

C2=2.*RNG->GetRN()-1.;

C3=C1*C1+C2*C2;

}while(C3>1.);

C4=sqrt(C3); sinP=C1/C4; cosP=C2/C4;

Example #2 – Sampling from Isotropic Distribution
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3.1.2.2 Substitution of Variables
in Multiple Integration
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Compute the Area of an Ellipse
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the double integrals can be computed by

2 2

1
x y

a b
       
   

2 2

1
?x y

a b

A dxdy       
   

  

,       ,   
x y

u v dx adu dy bdv
a b

    

2 2

2 2

1

1

x y

a b

u v

A dxdy

abdudv ab

       
   

 



 

 

 



14 SNU Monte Carlo Lab.

McCARD

y

 In the double integrations, we are going to change the original set of variables (x,y) 
to a set of other variables (u,v).

 Then our problem becomes how to convert a small area of A=xy to the 
corresponding area of A’=uv.

 Consider the two-dimensional linear transformation as

 Then the rectangular area is converted to the area of a parallelogram as

Integration by Linear Transformation

11 12

21 22

,u a x a y

v a x a y

 
 

dxdy dudv    



15 SNU Monte Carlo Lab.

McCARD

 From the property of the linear transformation, the scaling factor F in A’=FA is 
independent of its location and size.

 The scaling factor F becomes the area of the parallelogram:

 Therefore the integration becomes

Integration by Linear Transformation (Contd.)

11 22 12 21F A a a a a  
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 The area of the parallelogram is the absolute value of the determinant of the matrix 
formed by the vectors representing the parallelogram's sides.

 The volume of the parallelepiped is the absolute value of the determinant of the 
matrix formed by the rows r1, r2, and r3.

Meaning of Determinant
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Properties of Determinant

det( ) det( )TA A

1det( ) 1 det( )A A 

det( ) det( )det( )AB A B
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 When the variable x and y are transformed to u and v as 

 Then, by the linear approximation x and y can be written as

 In the same way to the linear transformation, the small rectangular area in x-y
coordinate becomes a small area of the corresponding parallelogram in u-v
coordinate.

General Transformation
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 In vector calculus, the Jacobian matrix 
is the matrix of all first-order partial 
derivatives of a vector- or scalar-valued 
function with respect to another vector. 

Jacobian Matrix
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 According to the inverse function theorem, the matrix inverse of the Jacobian matrix 
of an invertible function is the Jacobian matrix of the inverse function. 

 If m=n, then F is a function from n-space to n-
space and the Jacobian matrix is a square 
matrix. We can then form its determinant, 
known as the Jacobian determinant. The 
Jacobian determinant is sometimes simply 
called "the Jacobian."
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 Sometimes, it is often advantageous to evaluate                            in a coordinate 
system other than the xy-coordinate system. 

 The formula for change of variables is given by

where |…| means the absolute value.

Change of Variables in Double Integrals
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 Let R be the disc of radius 2 centered at the origin. Calculate

 Solution:

Example 1 of Transformation to Polar Coordinates
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 Evaluate

where R is the region between the two circles x2+y2=1 and x2+y2=4.

 Solution:

Example 2
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 The function exp(-x2) has no elementary anti-derivative. But we can evaluate 

by using the theory of double integrals.

 Now transform to polar coordinates x=rcos, y=rsin.

 Hence

Example 3
2xe dx
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3.1.2.3 Generations of
Continuous Random Variables
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 If Z~N(,2), its pdf is given by

where  is the mean and 2 the variance of the distribution.

 We consider only generation from N(0,1) (standard normal variables), since any 
random Z~N(,2) can be represented as Z=+X, where X is from N(0,1).

 Box and Müller Algorithm:

• Let X and Y be two independent standard normal random variables, so (X,Y) is a 
random point in the plane. 

• Then the pdf of the two random variable, f(x,y) can be expressed as

Normal (Gaussian) Distribution
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• When x=rcos and y=rsin, the pdf, f(r,) becomes

• Then r can be sampled by

• Because  can be generated from the uniform distribution over [0,2], X and Y
can be sampled by

Box and Müller Algorithm (Contd.)
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 Method 1
phi=2*PI*RNG->GetRN();

sinP=sin(phi); cosP=cos(phi);

 Method 2
do {

C1=2.*RNG->GetRN()-1.;

C2=2.*RNG->GetRN()-1.;

C3=C1*C1+C2*C2;

}while(C3>1.);

C4=sqrt(C3); sinP=C1/C4; cosP=C2/C4;

Example #1 – Sampling from Isotropic Distribution
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 Let’s consider a uniform distribution in a disc of radius of 1:

 Then the corresponding pdf for the polar coordinates becomes

 Therefore the uniform pdf in a disc can be regarded as the multiplication of fR(r) and 
f() where f() follows the isotropic distribution.

 Then from the sampled X and Y in the xy-coordinates, the R and  can be calculated 
by

Proof of Method 2 for the Isotropic Distribution
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3.1.2.4 Random Variate Generation
from Joint Distribution
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 Let x=(x1, , xn)T be a column vector in Rn and A an m×n matrix. The mapping 
x→z, with z=Ax, is called a linear transformation.

 Now consider a random vector X=(X1, , Xn)T, and let

Then Z is a random vector in Rm.

 Let’s see how the expectation vector and covariance matrix of Z are transformed.

Linear Transformation
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 For a linear transformation z=Ax,

 For general transformations 

, the pdf function for z becomes

Transformation of PDF
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 Let X~N(0,1). Then X has density fX given by

 Now consider the transformation Z=+X. Then Z has density

In other words, Z~N(,2).

 If Z~N(,2), then (Z-) / ~ N(0,1). This procedure is called standardization.

Standardization
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 We now generalize this to n dimensions. Let X1, , Xn be independent and standard 
normal random variables. The joint pdf of X=(X1, , Xn)T is given by

 Consider the affine transformation (that is, a linear transformation plus a constant).

 Then the expectation and covariance becomes

 Any random vector of the form of                      is said to have a jointly normal or 
multivariate normal distribution.

Standardization of Joint PDF
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 Conversely, given a covariance matrix , there exists a unique lower triangular 
matrix 

such that =BBT. This matrix can be obtained efficiently via the Cholesky 
decomposition.

Jointly Normal Random Variables
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 Let  be a covariance matrix. Then we wish to find a matrix B such that =BBT.

 The Cholesky square root method computes a lower triangular matrix B via a set of 
recursive equations as follows:

Cholesky Square Root Method
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 Generally, the bij can be found by

where by convention,

Cholesky Square Root Method (Contd.)
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