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= In the Monte Carlo eigenvalue calculations, the sample variance of the mean value
of a tally denoted by Q can be calculated by

O-;[Q] 1 Z(Q' Q) Q— 1 ﬁ:Q, .................... (1)

N(N-1)5 NS
where
O = tally variable
(' = value estimated by the MC calculations at i-th cycle
= mean value of O

N = total number of stationary cycles
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 LetX,, X,, X;, ... X, be a sequence of n independent and identically
distributed (i.i.d) random variables each having finite values of
expectation p and variance o2 > 0.

* The central limit theorem states that as the sample size n increases, the
distribution of the sample average of these random variables approaches
the normal distribution with a mean p and variance 62 / n irrespective of the
shape of the original distribution.
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= Telescopes and sampling errors

e The mathematician Gauss (1777-1855) was also
a keen astronomer. He acquired a new telescope,
and decided to use it to produce a more accurate
calculation of the diameter of the moon.

* To his surprise, he discovered that every time he
took a measurement, his answer was slightly
different.

« He plotted the results and found that they formed
a bell shaped curve, with most results close to the
central average but the occasional one quite
inaccurate.

m Gauss quickly realized that any measurement he took was a ‘sample’ prone to
error but which could be used as an estimate of the correct answer. The more
readings he took, the closer the average would be to the correct reading.

m He established that errors in readings belonged to a famous bell curve (or
normal distribution or Gaussian distribution).
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= The sample variance of QO can be calculated by

N

1
=§Z . (A.1)

i=1

o3[0]= mZ(Q o), 0
= The expected value of Z(Q Q) can be written as
E{Z(Qi—é) }E{ZQﬁ—nQZ}

-3 £[07]ne [0’
{07 ) ne[0']

:n{az[Q]+M}—n{az[Q]+M}
_naz[Q] n( Z[Q]j
=(n—1)0'2[Q] .................... (A.2)
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= The variance of O UZ[Q] can be written as
*[0]=—0*[0+0+++0)]
- L{E[(@ 0,40, |- (E[0))]
:%{nE[Qf]—n(E[Q])Z}+%Z;{E[Qin]_(E[Q])2}

:lo_z [Q]+%ZZ{COV[QZ‘3Q;]} .................... (A.3)

n
= Then the sample are independent each other (cov[Ql.,Q]} =0) , 0’| 0| becomes

o’|0]= %62 [0] Gfeov[Q.0,|=0) (A.4)
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= The real or true variance of O can be written as

W E[0]-——=> 3 £[g]E[¢)]

2
(N. ) NENEN
1

Z > cov[0.0 ] (B.1)

l]l];ﬁl]

= On the other hand, the apparent variance of Q is defined as the expected value
of the sample variance

o [é] _ E[qﬁ [éﬂ .................... (B.2)
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= In the same way that Ueki el al [1] formulated the Var1ance bias for the
multiplication factor k- from its apparent variance, 4| O | can be expressed as

Gi[é]:E[NM(NM I)ZZ(Q Q)} NM ~ I(E[(Q;)z}E[éz})

i=l j=1

L (elo]eele]-E[0) 0 B3)

[1] T. Ueki, T. Mori, and M. Nakagawa, “Error Estimation and their Biases in
Monte Carlo Eigenvalue Calculations,” Nucl. Sci. Eng., 125, 1-11 (1997).

= And E[éz in Eq. (B.3) can be expressed as

E|Q|-E (LMff

»3 ” NA]‘Z) E[(Q,)} 'y E[0,0; ]
- E| (@) [+ [T ( (00 ]-£[¢T)
_ ]\;\4 o [Q;]+E[Q; ]2 + (th{)z ;IJZ;J COV[Q;,Q;IJ C (B.4)
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= Insertion of Eq. (B.4) into Eq. (B. 3) leads to

oi[0)- | [0) sl e[ e -

l]l]?tl] }

1 NM-1 ,r 1
"N -1 M C [Qf]_NM—l (NM m;JCOV[Q Q]
1 1
= @) (NM W;,COV[QJ’Q o (5:5)

= From Egs. (B.1) and (B.5), the variance bias defined by the difference between
the real and apparent variance can be written as

i[0)-oi[0)- o]+ [0,.0]

i,j i',j'#i,j
1 e 1 1 o
_W_Qj_ T NM -1 ’ (NM)2 ;ji";’jcov[Qjﬂgj’:l

1 o
:NM(NM—I)Z Z COVI:Qjan':|- .................... (B6)

i,j i',j'#i,j
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= Because there is no inter-cycle correlation between the histories except when
J'# j, the following condition is satisfied

COV[Q;.,Q;.',] =0(j=j) e (B.7)
= Using Eq. (B.7), the variance bias of Eq. (B.6) can be expressed as
21 N PN 1
o [Q]—O'A[Q]:N(NM " ZECOV[Q],Q ] .................... (B.8)
= Because cov[Q 0, ] —cov[Q ,O' ] Eq. (B.8) can be written as
o [é]—aA [é] l/M ZZZCOV[Q 0 } ____________________ (B.9)

=  Assuming that cov[Q", Q"'] depends only on the cycle difference from the
equilibrium property, the variance bias of Eq. (B.9) can be expressed as

AR N l/M Z(N n-eov[0,07] (B.10)

2 [ 7] 27 2 S i
o’ [k_—aA _k]:N(N—IZ(N )-cov] k', k"]

1
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= As Ueki et al derived!!l the relation between the real variance, O » and the expected
value of the sample variance, E I:O'S:I of the eigenvalue £, the bias of the sample
variance of O can be expressed by

O'é[é]—E[O‘é[ ﬂ V- I)ZZ [ ] .................... )

J#L
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If Q' and (¥ (i#)) are uncorrelated (COV[Q 0’ ] =0), the sample variance becomes

unbiased.
£l oi[o]]-a[0]
If O" and O (i#) are correlated (COV[Q", o’ } = (), the sample variance is biased as much

1 N N ; ;
as mZZCOV[Q»Q ]

i=1 j=I
i

Why are @' and @ (i#j) correlated in the MC eigenvalue calculations?
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= In the Monte Carlo power method, the fission source distribution (FSD) at cycle ¢ is
calculated from the FSD of the previous cycle by

S'(r)= ktl—l IH ¥ >SS (rdr+&'x), 0000 e (3)
where
S'(r) = fission source distribution at cycle ¢,
k' = eigenvalue estimated at cycle ¢,
H(r' - r) = expected number of first-generation fission neutrons born per unit volume
about r, due to a parent neutron born at r’,

& = stochastic error generated at cycle ¢.

= The FSD at #-th cycle gets correlated with the FSDs of the previous cycles by Eq. (3).
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= The tally Q is defined by a detector response in the MC simulation as follows:
0= dPg(P)¥(P)

23 j dPg(P) j dPK (P —> P) j dP'T(P" - P)S(P"), (4)
j=0"%
where
P=(r,E,Q),

Y(P) = collision density,

g(P) =response function for the tally O at P,
K,(P"—> P)=6(P'—-P),
K,(P'—P)=[dR---[dP_ K (P, —P)---K(P' > R),

K(P > P)=C(";E',Q — E,Q)T(E,Q;r' —r) = transport kernel

S(P) = fission source distribution.

= The tally Q is related to the FSD by Eq. (4).
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Correlation betw. FSDs by the MC power method:
1
S'(r)= = "1)S7 (r)dr+£'(r)

1 cov[ 8,8 ]#0, (121

Relation betw. tally and FSD:
0=) j dPg(P) j dPK (P — P) j dP'T(P"— P)S(P")
j=0"%

lcov[Q",Qf];to, (i % j)

Bias of the sample variance:

0} 0] 2o e]

Iil
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