Variance Bias in Monte Carlo Eigenvalue Calculations

Shim, Hyung Jin

Nuclear Engineering Department, Seoul National University

McCARD

Sample Variance

 In the Monte Carlo eigenvalue calculations, the sample variance of the mean value of a tally denoted by Q can be calculated by

where

Q = tally variable

 Q^i = value estimated by the MC calculations at *i*-th cycle

= mean value of Q

N =total number of stationary cycles

Central Limit Theorem

- Let $X_1, X_2, X_3, ..., X_n$ be a sequence of *n* independent and identically distributed (i.i.d) random variables each having finite values of expectation μ and variance $\sigma^2 > 0$.
- The central limit theorem states that as the sample size *n* increases, the distribution of the sample average of these random variables approaches the normal distribution with a mean μ and variance σ^2 / n irrespective of the shape of the original distribution.

Central Limit Theorem (Contd.)

- Telescopes and sampling errors
 - The mathematician Gauss (1777-1855) was also a keen astronomer. He acquired a new telescope, and decided to use it to produce a more accurate calculation of the diameter of the moon.
 - To his surprise, he discovered that every time he took a measurement, his answer was slightly different.
 - He plotted the results and found that they formed a bell shaped curve, with most results close to the central average but the occasional one quite inaccurate.
 - Gauss quickly realized that any measurement he took was a 'sample' prone to error but which could be used as an estimate of the correct answer. The more readings he took, the closer the average would be to the correct reading.
 - He established that errors in readings belonged to a famous **bell curve** (or **normal distribution** or **Gaussian distribution**).

Bias of Sample Variance (1/2)

• The sample variance of Q can be calculated by

Bias of Sample Variance (2/2)

• The variance of
$$\overline{Q}$$
, $\sigma^{2}[\overline{Q}]$ can be written as

$$\sigma^{2}[\overline{Q}] = \frac{1}{n^{2}} \sigma^{2}[Q_{1} + Q_{2} + \dots + Q_{n}]$$

$$= \frac{1}{n^{2}} \left\{ E[(Q_{1} + Q_{2} + \dots + Q_{n})^{2}] - n^{2}(E[Q])^{2} \right\}$$

$$= \frac{1}{n^{2}} \left\{ nE[Q_{i}^{2}] - n(E[Q])^{2} \right\} + \frac{1}{n^{2}} \sum_{i} \sum_{i \neq j} \left\{ E[Q_{i}Q_{j}] - (E[Q])^{2} \right\}$$

$$= \frac{1}{n} \sigma^{2}[Q] + \frac{1}{n^{2}} \sum_{i} \sum_{i \neq j} \left\{ cov[Q_{i}, Q_{j}] \right\}$$
(A.3)

• Then the sample are independent each other $(\operatorname{cov}[Q_i, Q_j] = 0)$, $\sigma^2[\overline{Q}]$ becomes

$$\sigma^{2}\left[\overline{Q}\right] = \frac{1}{n}\sigma^{2}\left[Q\right] \quad (\text{if } \operatorname{cov}\left[Q_{i},Q_{j}\right] = 0) \tag{A.4}$$

Derivation of Variance Bias (1/4)

• The real or true variance of \overline{Q} can be written as

$$\sigma_{R}^{2}\left[\overline{Q}\right] = E\left[\overline{Q}^{2}\right] - E\left[\overline{Q}\right]^{2}$$

$$= E\left[\left(\frac{1}{NM}\sum_{i=1}^{N}\sum_{j=1}^{M}Q_{j}^{i}\right)^{2}\right] - E\left[\frac{1}{NM}\sum_{i=1}^{N}\sum_{j=1}^{M}Q_{j}^{i}\right]^{2}$$

$$= \frac{NM}{(NM)^{2}}E\left[\left(Q_{j}^{i}\right)^{2}\right] + \frac{1}{(NM)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}E\left[Q_{j}^{i}Q_{j'}^{i'}\right]$$

$$- \frac{NM}{(NM)^{2}}E\left[Q_{j}^{i}\right]^{2} - \frac{1}{(NM)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}E\left[Q_{j}^{i}\right]E\left[Q_{j'}^{i'}\right]$$

$$= \frac{1}{NM}\sigma^{2}\left[Q_{j}^{i}\right] + \frac{1}{(NM)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}\operatorname{cov}\left[Q_{j}^{i},Q_{j'}^{i'}\right] \quad (B.1)$$

• On the other hand, the apparent variance of Q is defined as the expected value of the sample variance

$$\sigma_A^2 \left[\overline{Q} \right] = E \left[\sigma_S^2 \left[\overline{Q} \right] \right] \tag{B.2}$$

Derivation of Variance Bias (2/4)

• In the same way that Ueki el al [1] formulated the variance bias for the multiplication factor k_{eff} from its apparent variance, $\sigma_A^2 \boxed{Q}$ can be expressed as

[1] T. Ueki, T. Mori, and M. Nakagawa, "Error Estimation and their Biases in Monte Carlo Eigenvalue Calculations," *Nucl. Sci. Eng.*, 125, 1-11 (1997).

• And
$$E\left[\overline{Q}^{2}\right]$$
 in Eq. (B.3) can be expressed as

$$E\left[\overline{Q}^{2}\right] = E\left[\left(\frac{1}{NM}\sum_{i=1}^{N}\sum_{j=1}^{M}Q_{j}^{i}\right)^{2}\right] = \frac{NM}{(NM)^{2}}E\left[\left(Q_{j}^{i}\right)^{2}\right] + \frac{1}{(NM)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}E\left[Q_{j}^{i}Q_{j'}^{i'}\right]$$

$$= \frac{1}{NM}E\left[\left(Q_{j}^{i}\right)^{2}\right] + \frac{NM-1}{NM}E\left[Q_{j}^{i}\right]^{2} + \frac{1}{(NM)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}\left(E\left[Q_{j}^{i}Q_{j'}^{i'}\right] - E\left[Q_{j}^{i}\right]^{2}\right)$$

$$= \frac{1}{NM}\sigma^{2}\left[Q_{j}^{i}\right] + E\left[Q_{j}^{i}\right]^{2} + \frac{1}{(NM)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}\operatorname{cov}\left[Q_{j}^{i},Q_{j'}^{i'}\right].$$
(B.4)

Derivation of Variance Bias (3/4)

• Insertion of Eq. (B.4) into Eq. (B.3) leads to

$$\sigma_{A}^{2}\left[\overline{Q}\right] = \frac{1}{NM-1} \left\{ \sigma^{2}\left[Q_{j}^{i}\right] + E\left[Q_{j}^{i'}\right]^{2} - \frac{1}{NM}\sigma^{2}\left[Q_{j}^{i}\right] - E\left[Q_{j}^{i'}\right]^{2} - \frac{1}{\left(NM\right)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}\operatorname{cov}\left[Q_{j}^{i},Q_{j'}^{i'}\right] \right\}$$
$$= \frac{1}{NM-1} \cdot \frac{NM-1}{NM}\sigma^{2}\left[Q_{j}^{i}\right] - \frac{1}{NM-1} \cdot \frac{1}{\left(NM\right)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}\operatorname{cov}\left[Q_{j}^{i},Q_{j'}^{i'}\right]$$
$$= \frac{1}{NM}\sigma^{2}\left[Q_{j}^{i}\right] - \frac{1}{NM-1} \cdot \frac{1}{\left(NM\right)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}\operatorname{cov}\left[Q_{j}^{i},Q_{j'}^{i'}\right]. \tag{B.5}$$

• From Eqs. (B.1) and (B.5), the variance bias defined by the difference between the real and apparent variance can be written as

$$\sigma_{R}^{2}\left[\overline{Q}\right] - \sigma_{A}^{2}\left[\overline{Q}\right] = \frac{1}{\mathcal{N}M}\sigma^{2}\left[Q_{j}^{i}\right] + \frac{1}{\left(\mathcal{N}M\right)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}\operatorname{cov}\left[Q_{j}^{i},Q_{j'}^{i'}\right] - \frac{1}{\mathcal{N}M}\sigma^{2}\left[Q_{j}^{i}\right] + \frac{1}{\mathcal{N}M-1}\cdot\frac{1}{\left(\mathcal{N}M\right)^{2}}\sum_{i,j}\sum_{i',j'\neq i,j}\operatorname{cov}\left[Q_{j}^{i},Q_{j'}^{i'}\right] = \frac{1}{\mathcal{N}M}\left(\mathcal{N}M-1\right)\sum_{i,j}\sum_{i',j'\neq i,j}\operatorname{cov}\left[Q_{j}^{i},Q_{j'}^{i'}\right].$$
(B.6)

Derivation of Variance Bias (4/4)

• Because there is no inter-cycle correlation between the histories except when $j' \neq j$, the following condition is satisfied

$$\operatorname{cov}\left[Q_{j}^{i}, Q_{j'}^{i'}\right] = 0 \ (j \neq j')$$
 (B.7)

• Using Eq. (B.7), the variance bias of Eq. (B.6) can be expressed as

• Because
$$\operatorname{cov}\left[Q_{j}^{i}, Q_{j}^{i'}\right] = \frac{1}{M} \operatorname{cov}\left[Q^{i}, Q^{i'}\right]$$
, Eq. (B.8) can be written as
 $\sigma_{R}^{2}\left[\overline{Q}\right] - \sigma_{A}^{2}\left[\overline{Q}\right] = \frac{1}{N\left(N-1/M\right)} \sum_{i} \sum_{i'\neq i} \operatorname{cov}\left[Q^{i}, Q^{i'}\right]$ (B.9)

• Assuming that $\operatorname{cov}[Q^i, Q^{i'}]$ depends only on the cycle difference from the equilibrium property, the variance bias of Eq. (B.9) can be expressed as

Bias of the Sample Variance in MC Eigenvalue Calculations

• As Ueki et al derived^[1] the relation between the real variance, σ_R^2 and the expected value of the sample variance, $E[\sigma_s^2]$ of the eigenvalue k, the bias of the sample variance of Q can be expressed by

$$\sigma_R^2 \left[\overline{Q} \right] - E \left[\sigma_S^2 \left[\overline{Q} \right] \right] = \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{\substack{j=1\\j \neq i}}^N \operatorname{cov} \left[Q^i, Q^j \right]. \quad (2)$$

Correlation betw. Samples

• If Q^i and Q^j $(i \neq j)$ are uncorrelated $(\operatorname{cov}[Q^i, Q^j] = 0)$, the sample variance becomes unbiased.

$$E\left[\sigma_{S}^{2}\left[\overline{Q}\right]\right] = \sigma_{R}^{2}\left[\overline{Q}\right]$$

• If Q^i and Q^j $(i \neq j)$ are correlated $(\operatorname{cov} [Q^i, Q^j] \neq 0)$, the sample variance is biased as much

as
$$\frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \operatorname{cov}\left[Q^{i}, Q^{j}\right].$$

• Why are Q^i and Q^j $(i \neq j)$ correlated in the MC eigenvalue calculations?

Correlation betw. Fission Source Distributions

In the Monte Carlo power method, the fission source distribution (FSD) at cycle t is calculated from the FSD of the previous cycle by

where

 $S^{t}(\mathbf{r}) =$ fission source distribution at cycle *t*,

 k^t = eigenvalue estimated at cycle t,

 $H(\mathbf{r'} \rightarrow \mathbf{r}) =$ expected number of first-generation fission neutrons born per unit volume about \mathbf{r} , due to a parent neutron born at $\mathbf{r'}$,

 ε^{t} = stochastic error generated at cycle *t*.

• The FSD at *t*-th cycle gets correlated with the FSDs of the previous cycles by Eq. (3).

Relation betw. FSD and Tally

• The tally *Q* is defined by a detector response in the MC simulation as follows:

$$Q = \int_{\chi} dPg(P)\Psi(P)$$

= $\sum_{j=0}^{\infty} \int_{\chi} dPg(P) \int dP' K_j(P' \to P) \int dP'' T(P'' \to P') S(P''), \qquad (4)$

where

$$P \equiv (\mathbf{r}, E, \mathbf{\Omega}),$$

 $\Psi(P) =$ collision density,

g(P) = response function for the tally Q at P, $K_0(P' \to P) = \delta(P' - P),$ $K_j(P' \to P) = \int dP_1 \cdots \int dP_{j-1} K(P_{j-1} \to P) \cdots K(P' \to P_1),$ $K(P' \to P) \equiv C(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) = \text{transport kernel}$ S(P) = fission source distribution.

• The tally Q is related to the FSD by Eq. (4).

Mechanism of Variance Bias in MC Eigenvalue Cal.

McCARL