Module #7 -.Complexity

2008-08-09 =

Module #7:
Algorithmic Complexity

Rosen 5t ed., §2.3
~21 slides, ~1 lecture

(€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

2008-08-09

What Is complexity?

The word complexity has a variety of technical
meanings in different fields.

There is a field of complex systems, which studies
complicated, difficult-to-analyze non-linear and
chaotic natural & artificial systems.

Another concept: Informational complexity: the
amount of information needed to completely
describe an object. (An active research field.)

We will study algorithmic complexity.

(€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

§2.2: Algorithmic Complexity

e The algorithmic complexity of a
computation is some measure of how
difficult it is to perform the computation.

* Measures some aspect of cost of
computation (in a general sense of cost).

e Common complexity measures:

Ime’ compIeX|ty # of ops or steps requIregs
_ uS 1 ANZ 1 ' A 3
2008-08-09 = _

Module #7 -.Complexity

An aside...

e Another, increasingly important measure of
complexity for computing is energy
complexity - How much total energy is used

In performing the computation.
* Motivations: Battery life, electricity cost...

| develop reversible circuits & algorithms
that recycle energy, trading off energy
complexity for spacetime complexity.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Complexity Depends on Input

* Most algorithms have different complexities
for inputs of different sizes. (E.g. searching
a long list takes more time than searching a

short one.)

o Therefore, complexity iIs usually expressed
as a function of input length.

 This function usually gives the complexity
for the worst-case input of any given length.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Complexity & Orders of Growth

e Suppose algorithm A has worst-case time
complexity (w.c.t.c., or just time) f(n) for
inputs of length n, while algorithm B (for
the same task) takes time g(n).

 Suppose that few(y), also written f - g .

* Which algorithm will be fastest on all
sufficiently-large, worst-case Inputs? »

2008-08-09 = : (¢)2001-2002;, Michael P. Frank =

Module #7 -.Complexity

2008-08-09 =

Example 1. Max algorithm

Problem: Find the simplest form of the exact
order of growth (®) of the worst-case time
complexity (w.c.t.c.) of the max algorithm,
assuming that each line of code takes some

constant flmn everv flmn |1' 1Q execu |1'ar| (\Anfh
WNUJITIIVVULLALILU LTIV y | KO |

possibly different times for different Imes of
code).

(€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Complexity analysis of max

procedure max(a,, a,, ..., &,: Integers)

VIi=a, 9] |
_ Times for
fori z=2ton each

ifa, >vthenv :=a, g

return v line.

What’s an expression for the exact total
worst-case time? (Not its order of growth.)

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Complexity analysis, cont.

procedure max(a,, a,, ..., &,: Integers)

VIi=a, .
_ Times for
fori z=2ton each
ifa, >vthenv :=a, g

return v line.

w.c.t.c.: .
t(n) =t, + (Z (t, + tg)j +1,

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Complexity analysis, cont.

Now, what Is the simplest form of the exact
(®) order of growth of t(n)?

\

o) @x@» o) +Q(n)

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Example 2: Linear Search

procedure linear search (x: integer, a,, a,,
..., a,. distinct integers)

while (I<n A X#a)

| -=1+1
If 1 <n then location =1
else location =0
return location

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Linear search analysis

« \Worst case time complexity order:
t(n) =t +(Zn:(t2 +t3)j+t4 +1, +t, =0O(n)

=1

e Best case:
t(n) =t +t, +t, +t, =6O()

* Average case, If item Is present:

n/2

t(n) =t +(Z(t2 +t3)j+t4 +t. +t, = O(n)

=1

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Review §2.2: Complexity

Algorithmic complexity = cost of computation.

Focus on time complexity (space & energy are
also important.)

Characterize complexity as a function of input
size: Worst-case, best-case, average-case.

Use orders of growth notation to concisely
summarize growth properties of complexity fns.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Example 3: Binary Search

procedure binary search (x:integer, a,, a,, ..., a,:
distinct integers)
1 2=1 Key gquestion:
. O(1) : :
J == How many loop iterations?
while i<j begin
m = (i+j)/2] o(1)
If x>a_ theni z=m+lelsej z=m
end
If X = a, then location =1 else location =0

return location

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

2008-08-09

Binary search analysis

Suppose n=2,
Original range from i=1 to j=n contains n elems.
Each iteration: Size j—+1 of range is cut in half.

Loop terminates When size of range is 1=2° (i=j).
|

"
|

cicl, — lAn
19 15 K = 1UY»

Even for n=2X (not an integral power of 2),
time complexity is still ®(log, n) = ©(log n).

(¢)2001-2002;, Michael P. Frank =&

Module #7 -.Complexity

Names for some orders of growth

Constant
Logarithmic (same order Vc)
Polylogarithmic ~ (With¢
_ a constant.)
Linear
Polynomial
Exponential
Factorial

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Problem Complexity

e The complexity of a computational problem
or task is (the order of growth of) the
complexity of the algorithm with the lowest
order of growth of complexity for solving

fh:\f prnhlam or parfnrmmn fh:\f c|1

INVJITT] IIH 1AL LM\J

E.g. the problem of searching an ordered list
has at most logarithmic time complexity.
(Complexity i1s O(log n).)

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Tractable vs. intractable

* A problem or algorithm with at most polynomial
time complexity Is considered tractable (or
feasible). P is the set of all tractable problems.

* A problem or algorithm that has more than

polynomial complexity is considered intractable
(or infeasible).

Note that n1.090.000 js technically tractable, but
really impossible. nlegloglogn js technically

Intractable, but easy. Such cases are rare though.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Unsolvable problems

e Turing discovered In the 1930’s that there
are problems unsolvable by any algorithm.

— Or equivalently, there are undecidable yes/no
questions, and uncomputable functions.

o Example: the halting problem.

— Given an arbitrary algorithm and its input, will
that algorithm eventually halt, or will it
continue forever in an “infinite loop?”

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

e NP is the set of problems for which there
exists a tractable algorithm for checking
solutions to see If they are correct.

 We know PcNP, but the most famous
unproven conjecture in computer science Is
that this inclusion is proper (i.e., that PcNP
rather than P=NP).

* \Whoever first proves it will be famous!

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

Module #7 -.Complexity

Computer Time Examples
(1.25 bytes) mmmm (125 kB)

n=10

n=10°

3.3 NS

19.9 ns

10 ns

1 ms

33 ns

19.9 ms

100 ns

16 m40 s

1.024 us 10301,004.5

Gyr

3.63 ms Ouch!

2008-08-09 =

(€)2001-2002;, Michael P. Frank &

Assume time
=1ns (107°
second) per
op, problem

size = n bits,
#ops a
function of n
as shown.

Module #7 -.Complexity

Things to Know

 Definitions of algorithmic complexity, time
complexity, worst-case complexity; names
of orders of growth of complexity.

 How to analyze the worst case, best case, or
average case order of growth of time
complexity for simple algorithms.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &

