
Module #7 - Complexity

Module #7:Module #7:
Algorithmic Complexityg p y

hhRosen 5Rosen 5thth ed., ed., §§2.32.3
~21 slides, ~1 lecture~21 slides, ~1 lecture,,

2008-08-09 (c)2001-2002, Michael P. Frank 1

Module #7 - Complexity

What is complexity?

•• The word The word complexitycomplexity has a variety of technical has a variety of technical
i i diff fi ldi i diff fi ldmeanings in different fields.meanings in different fields.

•• There is a field of There is a field of complex systemscomplex systems, which studies , which studies
complicated, difficultcomplicated, difficult--toto--analyze analyze nonnon--linearlinear and and
chaoticchaotic natural & artificial systems.natural & artificial systems.

•• Another concept: Another concept: Informational complexityInformational complexity: the : the
amount of amount of informationinformation needed to completely needed to completely ff p yp y
describe an object. (An active research field.)describe an object. (An active research field.)

•• We will studyWe will study algorithmic complexityalgorithmic complexity

2008-08-09 (c)2001-2002, Michael P. Frank 2

We will study We will study algorithmic complexityalgorithmic complexity..

Module #7 - Complexity

§2.2: Algorithmic Complexity

•• The The algorithmic complexityalgorithmic complexity of a of a
computation is some measure of how computation is some measure of how
difficultdifficult it is to perform the computation.it is to perform the computation.ffff p pp p

•• Measures some aspect of Measures some aspect of costcost of of
computation (in a general sense of cost)computation (in a general sense of cost)computation (in a general sense of cost).computation (in a general sense of cost).

•• Common complexity measures:Common complexity measures:
–– “Time” complexity: # of ops or steps required“Time” complexity: # of ops or steps required
–– “Space” complexity: # of memory bits req’d“Space” complexity: # of memory bits req’d

2008-08-09 (c)2001-2002, Michael P. Frank 3

–– Space complexity: # of memory bits req dSpace complexity: # of memory bits req d

Module #7 - Complexity

An aside...

•• Another, increasingly important measure of Another, increasingly important measure of
complexity for computing is complexity for computing is energy energy
complexitycomplexity -- How much total energy is used How much total energy is used p yp y gygy
in performing the computation.in performing the computation.

•• Motivations: Battery life electricity costMotivations: Battery life electricity cost•• Motivations: Battery life, electricity cost...Motivations: Battery life, electricity cost...
•• I develop I develop reversiblereversible circuits & algorithms circuits & algorithms

that recycle energy, trading off energy that recycle energy, trading off energy
complexity for spacetime complexity.complexity for spacetime complexity.

2008-08-09 (c)2001-2002, Michael P. Frank 4

complexity for spacetime complexity.complexity for spacetime complexity.

Module #7 - Complexity

Complexity Depends on Input

•• Most algorithms have different complexities Most algorithms have different complexities
for inputs of different sizes. (for inputs of different sizes. (E.g.E.g. searching searching
a long list takes more time than searching a a long list takes more time than searching a g gg g
short one.)short one.)

•• Therefore complexity is usually expressedTherefore complexity is usually expressed•• Therefore, complexity is usually expressed Therefore, complexity is usually expressed
as a as a functionfunction of input length.of input length.

•• This function usually gives the complexity This function usually gives the complexity
for thefor the worstworst--casecase input of any given length.input of any given length.

2008-08-09 (c)2001-2002, Michael P. Frank 5

for the for the worstworst casecase input of any given length.input of any given length.

Module #7 - Complexity

Complexity & Orders of Growth

•• Suppose algorithm A has worstSuppose algorithm A has worst--case time case time
complexity (w.c.t.c., or just complexity (w.c.t.c., or just timetime)) ff((nn) for) for
inputs of length inputs of length nn, while algorithm B (for , while algorithm B (for p gp g , g (, g (
the same task) takes time the same task) takes time gg((nn).).

•• S ppose thatS ppose that ff ωω(() also ritten) also ritten f f•• Suppose that Suppose that ff∈ω∈ω((gg), also written .), also written .
•• Which algorithm will be Which algorithm will be fastestfastest on all on all

gf f

sufficientlysufficiently--large, worstlarge, worst--case inputs?case inputs?

2008-08-09 (c)2001-2002, Michael P. Frank 6

Module #7 - Complexity

Example 1: Max algorithm

•• Problem: Find the Problem: Find the simplest formsimplest form of the of the exactexact
order of growth (order of growth (ΘΘ) of the) of the worstworst--casecase time time
complexity (w.c.t.c.) of the complexity (w.c.t.c.) of the maxmax algorithm, algorithm, p y ()p y () g ,g ,
assuming that each line of code takes some assuming that each line of code takes some
constant time every time it is executed (withconstant time every time it is executed (withconstant time every time it is executed (with constant time every time it is executed (with
possibly different times for different lines of possibly different times for different lines of

d)d)code).code).

2008-08-09 (c)2001-2002, Michael P. Frank 7

Module #7 - Complexity

Complexity analysis of max

procedureprocedure maxmax((aa11, , aa22, …, , …, aann: integers): integers)
vv :=:= aa11 tt11

forfor ii :=:= 22 toto nn tt
Times for

hforfor ii :=:= 2 2 toto nn tt22

ifif aaii > > vv then then vv :=:= aaii tt33

each
execution
of each

returnreturn vv tt44

Wh t’ i f thWh t’ i f th tt t t lt t l

of each
line.

What’s an expression for the What’s an expression for the exactexact total total
worstworst--case time? (Not its order of growth.)case time? (Not its order of growth.)

2008-08-09 (c)2001-2002, Michael P. Frank 8

Module #7 - Complexity

Complexity analysis, cont.

procedureprocedure maxmax((aa11, , aa22, …, , …, aann: integers): integers)
vv :=:= aa11 tt11

forfor ii :=:= 22 toto nn tt
Times for

hforfor ii :=:= 2 2 toto nn tt22

ifif aaii > > vv then then vv :=:= aaii tt33

each
execution
of each

returnreturn vv tt44

tt

of each
line.

w.c.t.c.: w.c.t.c.:

4321)()(ttttnt
n

+⎟
⎠

⎞
⎜
⎝

⎛
++= ∑

2008-08-09 (c)2001-2002, Michael P. Frank 9

4
2

321)()(
i ⎠⎝
∑
=

Module #7 - Complexity

Complexity analysis, cont.

Now, what is the simplest form of the exact Now, what is the simplest form of the exact
((ΘΘ) order of growth of) order of growth of tt((nn)?)?

)()(ttttt
n

+⎟
⎞

⎜
⎛

++ ∑)()(4
2

321 ttttnt
i

⎞⎛

+⎟
⎠

⎜
⎝

++= ∑
=

)1()1()1()1()1()1(
2

n
n

i
Θ−+Θ=Θ+⎟

⎠

⎞
⎜
⎝

⎛
Θ+Θ= ∑

=

)()()1()1()()1(nnn Θ=Θ+Θ=ΘΘ+Θ=
⎠⎝

2008-08-09 (c)2001-2002, Michael P. Frank 10

Module #7 - Complexity

Example 2: Linear Search

procedureprocedure linear search linear search ((xx: integer, : integer, aa11, , aa22, ,
…, …, aann: distinct integers): distinct integers)
ii :=:= 11 tt1111
whilewhile ((ii ≤≤ nn ∧∧ xx ≠≠ aaii)) tt22

ii :=:= ii + 1+ 1 tt33ii :=:= ii + 1+ 1 tt33
ifif ii ≤≤ n n then then locationlocation :=:= ii tt44
ll l til ti :: 00 ttelseelse locationlocation :=:= 00 tt55

return return locationlocation tt66

2008-08-09 (c)2001-2002, Michael P. Frank 11

Module #7 - Complexity

Linear search analysis

•• Worst case time complexity order:Worst case time complexity order:

•• Best case:Best case:
)()()(654

1
321 nttttttnt

n

i
Θ=+++⎟

⎠

⎞
⎜
⎝

⎛
++= ∑

=•• Best case:Best case:
)1()(6421 Θ=+++= ttttnt

•• Average case, if item is present:Average case, if item is present:
2/n ⎞⎛)()()(654

2/

1
321 nttttttnt

n

i
Θ=+++⎟

⎠

⎞
⎜
⎝

⎛
++= ∑

=

2008-08-09 (c)2001-2002, Michael P. Frank 12

Module #7 - Complexity

Review §2.2: Complexity

•• Algorithmic complexity = Algorithmic complexity = costcost of computation.of computation.
•• Focus on Focus on timetime complexity (space & energy are complexity (space & energy are

also important.)also important.)
•• Characterize complexity as a function of input Characterize complexity as a function of input

size: Worstsize: Worst--case, bestcase, best--case, averagecase, average--case.case.,, , g, g
•• Use orders of growth notation to concisely Use orders of growth notation to concisely

summarize growth properties of complexity fnssummarize growth properties of complexity fnssummarize growth properties of complexity fns.summarize growth properties of complexity fns.

2008-08-09 (c)2001-2002, Michael P. Frank 13

Module #7 - Complexity

Example 3: Binary Search

procedureprocedure binary search binary search ((xx:integer:integer, a, a11, , aa22, …, , …, aann: :
di i i)di i i)distinct integers)distinct integers)
ii :=:= 1 1
jj Θ(1)

Key question:
jj :=:= nn
whilewhile ii<<j j beginbegin

⎣⎣((ii jj)/2)/2⎦⎦

Θ(1)
How many loop iterations?

mm :=:= ⎣⎣((ii++jj)/2)/2⎦⎦
ifif xx>>aamm thenthen i i :=:= mm+1 +1 else else j j :=:= mm

dd

Θ(1)

endend
ifif xx = = aaii thenthen locationlocation :=:= ii elseelse locationlocation :=:= 00

tt l il i Θ(1)

2008-08-09 (c)2001-2002, Michael P. Frank 14

returnreturn locationlocation ()

Module #7 - Complexity

Binary search analysis

•• Suppose Suppose nn=2=2kk..
•• Original range from Original range from ii=1 to =1 to jj==nn contains contains nn elems.elems.
•• Each iteration: Size Each iteration: Size jj−−ii+1 of range is cut in half.+1 of range is cut in half.jj gg
•• Loop terminates when size of range is 1=2Loop terminates when size of range is 1=200 ((ii==jj).).
•• Therefore number of iterations isTherefore number of iterations is kk = log= log nn•• Therefore, number of iterations is Therefore, number of iterations is k k = log= log22nn

= = ΘΘ(log(log22 nn)=)= ΘΘ(log (log nn))
E fE f 22kk (i l f 2)(i l f 2)•• Even for Even for nn≠≠22kk (not an integral power of 2),(not an integral power of 2),
time complexity is still time complexity is still ΘΘ(log(log22 nn) =) = ΘΘ(log (log nn).).

2008-08-09 (c)2001-2002, Michael P. Frank 15

Module #7 - Complexity

Names for some orders of growth

•• ΘΘ(1)(1) ConstantConstant
•• ΘΘ(log(logcc nn)) Logarithmic (same order Logarithmic (same order ∀∀cc))
•• ΘΘ(log(logcc nn)) PolylogarithmicPolylogarithmic (With c•• ΘΘ(log(logcc nn)) PolylogarithmicPolylogarithmic
•• ΘΘ((nn)) LinearLinear

(With c
a constant.)

•• ΘΘ((nncc)) PolynomialPolynomial
ΘΘ((nn)) >1>1 E ti lE ti l•• ΘΘ((ccnn),), cc>1>1 ExponentialExponential

•• ΘΘ((nn!)!) FactorialFactorial

2008-08-09 (c)2001-2002, Michael P. Frank 16

(())

Module #7 - Complexity

Problem Complexity

•• The complexity of a computational The complexity of a computational problemproblem
or or tasktask is (the order of growth of) the is (the order of growth of) the
complexity of complexity of the algorithm with the lowest the algorithm with the lowest p yp y gg
order of growth of complexityorder of growth of complexity for solving for solving
that problem or performing that taskthat problem or performing that taskthat problem or performing that task.that problem or performing that task.

•• E.g. E.g. the problem of searching an ordered list the problem of searching an ordered list
has has at most logarithmicat most logarithmic time complexity. time complexity.
(Complexity is O(log (Complexity is O(log nn).)).)

2008-08-09 (c)2001-2002, Michael P. Frank 17

(p y (g(p y (g))))

Module #7 - Complexity

Tractable vs. intractable

•• A problem or algorithm with at most polynomial A problem or algorithm with at most polynomial
i l i i id di l i i id d blbl ((time complexity is considered time complexity is considered tractabletractable (or (or

feasiblefeasible).). PP is the set of all tractable problems.is the set of all tractable problems.
•• A problem or algorithm that has more than A problem or algorithm that has more than

polynomial complexity is considered polynomial complexity is considered intractable intractable
(or (or infeasibleinfeasible))..

•• Note that Note that nn1,000,0001,000,000 is is technicallytechnically tractable, but tractable, but yy ,,
really impossible. really impossible. nnlog log log log log log nn is is technicallytechnically
intractable, but easy. Such cases are rare though.intractable, but easy. Such cases are rare though.

2008-08-09 (c)2001-2002, Michael P. Frank 18

, y g, y g

Module #7 - Complexity

Unsolvable problems

•• Turing discovered in the 1930’s that there Turing discovered in the 1930’s that there
are problems unsolvable by are problems unsolvable by anyany algorithm.algorithm.
–– Or equivalently, there are undecidable yes/noOr equivalently, there are undecidable yes/noOr equivalently, there are undecidable yes/no Or equivalently, there are undecidable yes/no

questions, and uncomputable functions.questions, and uncomputable functions.
•• Example: theExample: the halting problemhalting problem•• Example: the Example: the halting problemhalting problem..

–– Given an arbitrary algorithm and its input, will Given an arbitrary algorithm and its input, will
h l i h ll h l ill ih l i h ll h l ill ithat algorithm eventually halt, or will it that algorithm eventually halt, or will it

continue forever in an “continue forever in an “infinite loopinfinite loop?”?”

2008-08-09 (c)2001-2002, Michael P. Frank 19

Module #7 - Complexity

P vs. NP

•• NPNP is the set of problems for which there is the set of problems for which there
exists a tractable algorithm for exists a tractable algorithm for checking checking
solutionssolutions to see if they are correct.to see if they are correct.yy

•• We know We know PP⊆⊆NPNP, but the most famous , but the most famous
unproven conjecture in computer science isunproven conjecture in computer science isunproven conjecture in computer science is unproven conjecture in computer science is
that this inclusion is that this inclusion is properproper ((i.e.i.e., that , that PP⊂⊂NPNP
rather than rather than PP==NPNP).).

•• Whoever first proves it will be famous!Whoever first proves it will be famous!
2008-08-09 (c)2001-2002, Michael P. Frank 20

Whoever first proves it will be famous!Whoever first proves it will be famous!

Module #7 - Complexity

Computer Time Examples
(125 kB)

Assume time Assume time #ops(n) n=10 n=106
(125 kB)(1.25 bytes)

= 1 ns (10= 1 ns (10−−99

second) per second) per
log2 n 3.3 ns 19.9 ns
n 10 ns 1 ms) p) p

op, problem op, problem
size =size = nn bitsbits

n log2 n 33 ns 19.9 ms
n2 100 ns 16 m 40 s size size nn bits, bits,

#ops a #ops a
f ti ff ti f

n 100 ns 16 m 40 s
2n 1.024 μs 10301,004.5

Gyr function of function of nn
as shown.as shown.

Gyr
n! 3.63 ms Ouch!

2008-08-09 (c)2001-2002, Michael P. Frank 21

Module #7 - Complexity

Things to Know

•• Definitions of algorithmic complexity, time Definitions of algorithmic complexity, time
complexity, worstcomplexity, worst--case complexity; names case complexity; names
of orders of growth of complexity.of orders of growth of complexity.g p yg p y

•• How to analyze the worst case, best case, or How to analyze the worst case, best case, or
average case order of growth of timeaverage case order of growth of timeaverage case order of growth of time average case order of growth of time
complexity for simple algorithms.complexity for simple algorithms.

2008-08-09 (c)2001-2002, Michael P. Frank 22

