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Why Probability?

•• In the real world, we often don’t know In the real world, we often don’t know 
whether a given proposition is true or false.whether a given proposition is true or false.

•• Probability theory gives us a way to reasonProbability theory gives us a way to reasonProbability theory gives us a way to reason Probability theory gives us a way to reason 
about propositions whose truth is about propositions whose truth is uncertainuncertain..

f l i i hi id di if l i i hi id di i•• Useful in weighing evidence, diagnosing Useful in weighing evidence, diagnosing 
problems, and analyzing situations whose problems, and analyzing situations whose 
exact details are unknown.exact details are unknown.
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Random Variables

•• A A random variablerandom variable VV is a variable whose is a variable whose 
l i k th t d d thl i k th t d d thvalue is unknown, or that depends on the value is unknown, or that depends on the 

situation.situation.
–– E.g.E.g., the number of students in class today, the number of students in class today
–– Whether it will rain tonight (Boolean variable)Whether it will rain tonight (Boolean variable)

•• Let the domain of Let the domain of VV be be domdom[V]={[V]={vv11,…,,…,vvnn}}
•• The propositionThe proposition VV==vv may be uncertain andmay be uncertain and•• The proposition The proposition VV==vvii may be uncertain, and may be uncertain, and 

be assigned a be assigned a probability.probability.
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Amount of Information

•• The The amount of informationamount of information II[[VV] in a random ] in a random 
variable variable VV is the logarithm of the size of the is the logarithm of the size of the 
domain of domain of VV,  ,  II[[VV]=log |]=log |domdom[[VV]|.]|.,, [[ ] g |] g | [[ ]|]|
–– The base of the logarithm determines the The base of the logarithm determines the 

information unit; base 2 gives a unit of 1 bitinformation unit; base 2 gives a unit of 1 bitinformation unit; base 2 gives a unit of 1 bit.information unit; base 2 gives a unit of 1 bit.
•• Example: An 8Example: An 8--bit register has 2bit register has 288 = 256 = 256 

ibl l L 256 8 biibl l L 256 8 bipossible values.  Log 256 = 8 bits.possible values.  Log 256 = 8 bits.
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Experiments

•• A (stochastic) A (stochastic) experimentexperiment is a process by is a process by 
hi h i d i bl thi h i d i bl twhich a given random variable gets which a given random variable gets 

assigned a specific value.assigned a specific value.
•• The The sample spacesample space SS of the experiment is the of the experiment is the 

domain of the random variable.domain of the random variable.
•• The The outcomeoutcome of the experiment is the of the experiment is the 

specific value of the random variable that isspecific value of the random variable that isspecific value of the random variable that is specific value of the random variable that is 
selected.selected.
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Events

•• An An eventevent EE is a set of possible outcomesis a set of possible outcomes
–– That is, That is, EE ⊆⊆ SS = = domdom[[VV].].

•• We say that eventWe say that event EE occursoccurs whenwhen VV∈∈EE•• We say that event We say that event EE occursoccurs when when VV∈∈EE..
•• Note that Note that VV∈∈EE is the (uncertain) proposition is the (uncertain) proposition 

that the actual outcome will be one of the that the actual outcome will be one of the 
outcomes in the set outcomes in the set EE..

8/9/2008 (c)2001-2002, Michael P. Frank 6



Module #16 – Probability

Probability
•• The The probabilityprobability p p = Pr[= Pr[EE] ] ∈∈ [0,1][0,1] of an event of an event EE is is 

a real number representing our degree of certaintya real number representing our degree of certaintya real number representing our degree of certainty a real number representing our degree of certainty 
that that EE will occur.will occur.
–– If Pr[If Pr[EE] = 1, then ] = 1, then EE is absolutely certain to occur, is absolutely certain to occur, 

•• thus thus VV∈∈EE is true.is true.
–– If Pr[If Pr[EE] = 0, then ] = 0, then EE is absolutely certain is absolutely certain not not to occur,to occur,

•• thusthus VV∈∈EE is falseis falsethus thus VV∈∈EE is false.is false.
–– If Pr[If Pr[EE] = ] = ½, then we are ½, then we are completely uncertaincompletely uncertain about about 

whether whether EE will occur; that is, will occur; that is, 
VV EE dd VV EE id did d ll lik lll lik l•• VV∈∈EE and and VV∉∉EE are considered are considered equally likelyequally likely..

–– What about other cases?What about other cases?
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Four Definitions of Probability

•• Several alternative definitions of probability Several alternative definitions of probability 
are commonly encountered:are commonly encountered:
–– Frequentist, Bayesian, Laplacian, AxiomaticFrequentist, Bayesian, Laplacian, AxiomaticFrequentist, Bayesian, Laplacian, AxiomaticFrequentist, Bayesian, Laplacian, Axiomatic

•• They have different strengths & They have different strengths & 
kkweaknesses.weaknesses.

•• Fortunately, they coincide and work well Fortunately, they coincide and work well y, yy, y
with each other in most cases.with each other in most cases.
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Probability: Frequentist Definition

•• The probability of an event The probability of an event EE is the limit, as is the limit, as 
f th f ti f ti th tf th f ti f ti th t VV EE iinn→∞→∞,, of the fraction of times that of the fraction of times that VV∈∈EE in in nn

repetitions of the same experiment.repetitions of the same experiment.
•• Problems: Problems: 

–– Only wellOnly well--defined for experiments that are defined for experiments that are yy pp
infinitely repeatable (at least in principle).infinitely repeatable (at least in principle).

–– Can never be measured exactly in finite time!Can never be measured exactly in finite time!yy
•• Advantage: Objective, mathematical def’n.Advantage: Objective, mathematical def’n.
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Probability: Bayesian Definition

•• Suppose a rational entity Suppose a rational entity RR is offered a choice is offered a choice 
b db dbetween two rewards:between two rewards:
–– Winning $1 if event Winning $1 if event EE occurs.occurs.
–– Receiving Receiving pp dollars (where pdollars (where p∈∈[0,1]) unconditionally.[0,1]) unconditionally.

•• If If RR is indifferent between these two rewards, then is indifferent between these two rewards, then 
we say we say RR’s probability for ’s probability for EE is is pp..

•• Problem: Subjective definition, depends on the Problem: Subjective definition, depends on the j , pj , p
reasoner reasoner RR, and his knowledge & rationality., and his knowledge & rationality.
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Probability: Laplacian Definition

•• First, assume that all outcomes in the sample space First, assume that all outcomes in the sample space 
ll lik lll lik lare are equally likelyequally likely

–– This term still needs to be defined.This term still needs to be defined.

•• Then, the probability of event Then, the probability of event EE, , 
Pr[Pr[EE] = |] = |EE|/||/|SS|.   Very simple!|.   Very simple!

•• Problems: Still needs a definition for Problems: Still needs a definition for equally equally 
likelylikely, and depends on existence of a finite sample , and depends on existence of a finite sample yy, p p, p p
space with all equally likely outcomes.space with all equally likely outcomes.
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Probability: Axiomatic Definition

•• Let Let pp be any function be any function pp::SS→[0,1], such that:→[0,1], such that:
•• 0 ≤ 0 ≤ pp((ss) ≤ 1 for all outcomes ) ≤ 1 for all outcomes ss∈∈SS..
•• ∑ ∑ pp((ss) = 1.) = 1.

•• Such a Such a pp is called a is called a probability distributionprobability distribution..
•• Then, the probability of any event Then, the probability of any event EE⊆⊆SS is just:is just:, p y y, p y y ⊆⊆ jj

•• Advantage: Totally mathematically wellAdvantage: Totally mathematically well defineddefined
∑
∈

=
Es

spE )(]Pr[

•• Advantage: Totally mathematically wellAdvantage: Totally mathematically well--defined.defined.
•• Problem: Leaves operational def’n unspecified.Problem: Leaves operational def’n unspecified.
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Probability of ComplementaryProbability of Complementary 
Events

•• Let Let EE be an event in a sample space be an event in a sample space SS..
•• Then, Then, EE represents the represents the complementarycomplementary event event 

thatthat VV∉∉EEthat that VV∉∉EE..
•• Pr[Pr[EE] = 1 ] = 1 − Pr[− Pr[EE]]

8/9/2008 (c)2001-2002, Michael P. Frank 13



Module #16 – Probability

Probability of Unions of Events

•• Let Let EE11,,EE22 ⊆⊆ SS = = domdom[[VV].].
•• Then: Then: 

Pr[Pr[EE11∪∪ EE22] = Pr[] = Pr[EE11] + Pr[] + Pr[EE22]] − Pr[− Pr[EE11∩∩EE22]]Pr[Pr[EE11∪∪ EE22]  Pr[]  Pr[EE11] + Pr[] + Pr[EE22] ]  Pr[ Pr[EE11∩∩EE22]]
–– By the inclusionBy the inclusion--exclusion principle.exclusion principle.
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Mutually Exclusive Events

•• Two events Two events EE11, , EE22 are called are called mutually mutually 
exclusiveexclusive if they are disjoint: if they are disjoint: EE11∩∩EE22 = = ∅∅

•• Note that two mutually exclusive eventsNote that two mutually exclusive eventsNote that two mutually exclusive events Note that two mutually exclusive events 
cannot both occurcannot both occur in the same instance of a in the same instance of a 
given experimentgiven experimentgiven experiment.given experiment.

•• For mutually exclusive events,For mutually exclusive events,
Pr[Pr[EE11 ∪∪ EE22] = Pr[] = Pr[EE11] + Pr[] + Pr[EE22].].
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Exhaustive Sets of Events

•• A set A set EE = {= {EE11, , EE22, …} of events in the sample , …} of events in the sample 
SS ii h ih i ifif Uspace space SS is is exhaustiveexhaustive if                   .if                   .

•• An exhaustive set of events that are all mutually An exhaustive set of events that are all mutually 
SEi =U

exclusive with each other has the property thatexclusive with each other has the property that
1]Pr[ =∑ iE 1]Pr[∑ iE
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Independent Events

•• Two events Two events EE,,FF are are independentindependent if if 
Pr[Pr[EE∩∩FF] = Pr[] = Pr[EE]]·Pr[·Pr[FF].].

•• Relates to product rule for number of waysRelates to product rule for number of waysRelates to product rule for number of ways Relates to product rule for number of ways 
of doing two independent tasksof doing two independent tasks

l li i d ll dil li i d ll di•• Example: Flip a coin, and roll a die.Example: Flip a coin, and roll a die.
Pr[ quarter is heads Pr[ quarter is heads ∩∩ die is 1 ] =die is 1 ] =[ q[ q ]]

Pr[quarter is heads] Pr[quarter is heads] ×× Pr[die is 1]Pr[die is 1]
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Conditional Probability

•• Let Let EE,,FF be events such that Pr[be events such that Pr[FF]>0.]>0.
•• Then, the Then, the conditional probabilityconditional probability of E given of E given 

FF, written Pr[, written Pr[EE||FF], is defined as ], is defined as ||
Pr[Pr[EE∩∩FF]/Pr[]/Pr[FF].].

•• This is the probability thatThis is the probability that EE would turn outwould turn outThis is the probability that This is the probability that EE would turn out would turn out 
to be true, given just the information that to be true, given just the information that FF
is trueis trueis true.is true.

•• If If EE and and FF are independent, Pr[are independent, Pr[EE||FF] = Pr[] = Pr[EE].].
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Bayes’s Theorem

•• Allows one to compute the probability that a Allows one to compute the probability that a 
h h ih h i HH i i di i d DDhypothesis hypothesis HH is correct, given data is correct, given data DD::

]Pr[]|Pr[]|Pr[ HHDDH ⋅
=

•• Easy to prove from def’n of conditional probEasy to prove from def’n of conditional prob
]Pr[

]|Pr[
D

DH =

Easy to prove from def n of conditional prob.Easy to prove from def n of conditional prob.
•• Extremely useful in artificial intelligence apps:Extremely useful in artificial intelligence apps:

D t i i t t d di i tt itiD t i i t t d di i tt iti–– Data mining, automated diagnosis, pattern recognition, Data mining, automated diagnosis, pattern recognition, 
statistical modeling, evaluating scientific hypotheses.statistical modeling, evaluating scientific hypotheses.
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Expectation Values

•• For a random variable For a random variable VV having a numeric having a numeric 
d i itd i it i li l dddomain, its domain, its expectation valueexpectation value or or expected expected 
valuevalue or or weighted average valueweighted average value or or 

h lh l EE [[VV] i d fi d] i d fi darithmetic mean valuearithmetic mean value ExEx[[VV] is defined as ] is defined as 
∑∑vv∈∈domdom[[VV]] v·pv·p((vv).).

•• The term “expected value” is widely used, The term “expected value” is widely used, 
but misleading since the expected value but misleading since the expected value g pg p
might be totally unexpected or impossible!might be totally unexpected or impossible!
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Derived Random Variables

•• Let Let SS be a sample space over values of a random be a sample space over values of a random 
i bli bl VV ( i ibl )( i ibl )variable variable VV (representing possible outcomes).  (representing possible outcomes).  

•• Then, any function Then, any function ff over over SS can also be considered can also be considered 
to be a random variable (whose value is derived to be a random variable (whose value is derived 
from the value of from the value of VV).).

•• If the range If the range RR = = rangerange[[ff] of ] of ff is numeric, then is numeric, then 
ExEx[[ff] can still be defined, as ] can still be defined, as ∑ ⋅ sfsp )()([[ff] ,] , ∑

∈Ss
sfsp )()(
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Linearity of Expectation

•• Let Let XX11, , XX22 be any two random variables be any two random variables 
derived from the same sample space.  Then:derived from the same sample space.  Then:

•• ExEx[[XX11++XX22] =] = ExEx[[XX11] +] + ExEx[[XX22]]ExEx[[XX11++XX22]  ]  ExEx[[XX11] + ] + ExEx[[XX22]]
•• ExEx[[aXaX11 + + bb] = ] = aaExEx[[XX11] + ] + bb
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Variance

•• The The variancevariance VarVar[[XX] = ] = σσ22((XX)) of a random variable of a random variable 
XX i h d l f h f hi h d l f h f hXX is the expected value of the square of the is the expected value of the square of the 
difference between the value of difference between the value of XX and its and its 

i li l EE [[XX]]expectation value expectation value ExEx[[XX]:]:

∑ −≡ spXsXX )(])[)((:][ 2ExVar

•• TheThe standard deviationstandard deviation oror rootroot--meanmean--squaresquare

∑
∈Ss

p )(])[)((][

The The standard deviationstandard deviation or or rootroot meanmean squaresquare
(RMS) (RMS) differencedifference of of XX, , σσ((XX) :≡ ) :≡ VarVar[[XX]]1/21/2..
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Entropy

•• The The entropyentropy HH of a probability distribution of a probability distribution pp over over 
a sample spacea sample space SS over outcomes is a measure ofover outcomes is a measure ofa sample space a sample space SS over outcomes is a measure of over outcomes is a measure of 
our degree of uncertainty about the outcome.our degree of uncertainty about the outcome.

It measures the expected amount of increase in knownIt measures the expected amount of increase in known–– It measures the expected amount of increase in known It measures the expected amount of increase in known 
information from learning the actual outcome.information from learning the actual outcome.

))(/1(log)( spspH ∑=
•• The base of the logarithm gives the unit of The base of the logarithm gives the unit of 

entropy; base 2entropy; base 2 → 1 bit, base→ 1 bit, base ee → 1 nat→ 1 nat

))((g)( pp
Ss
∑
∈

entropy; base 2 entropy; base 2  1 bit, base  1 bit, base ee  1 nat 1 nat
–– 1 nat is also known as “Boltzmann’s constant” 1 nat is also known as “Boltzmann’s constant” kkBB & as & as 

the “ideal gas constant” the “ideal gas constant” RR, first discovered physically, first discovered physically
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